1
|
Djulejic V, Ivanovski A, Cirovic A, Cirovic A. Increased Cadmium Load, Vitamin D Deficiency, and Elevated FGF23 Levels as Pathophysiological Factors Potentially Linked to the Onset of Acute Lymphoblastic Leukemia: A Review. J Pers Med 2024; 14:1036. [PMID: 39452542 PMCID: PMC11508935 DOI: 10.3390/jpm14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short duration or absence of breastfeeding, cesarean section, a diet lacking in short-chain fatty acids (SCFAs), the use of antibiotics, absence of infection during infancy, and lack of pets, among other factors. Namely, it has been shown that iron deficiency anemia (IDA) and lack of vitamin D may cause intestinal dysbiosis, while at the same time, both increase the risk of hematological malignancies. The presence of IDA and vitamin D deficiency have been shown to lead to a decreased proportion of Firmicutes in stool, which could, as a consequence, lead to a deficit of butyrate. Moreover, children with IDA have increased blood concentrations of cadmium, which induces systemic inflammation and is linked to the onset of an inflammatory microenvironment in the bone marrow. Finally, IDA and Cd exposure increase fibroblast growth factor 23 (FGF23) blood levels, which in turn suppresses vitamin D synthesis. A lack of vitamin D has been associated with a higher risk of ALL onset. In brief, as presented in this review, there are three independent ways in which IDA increases the risk of acute lymphocytic leukemia (ALL) appearance. These are: intestinal dysbiosis, disruption of vitamin D synthesis, and an increased Cd load, which has been linked to systemic inflammation. All of the aforementioned factors could generate the appearance of a second mutation, such as ETV6/RUNX1 (TEL-AML), leading to mutation homozygosity and the onset of disease. ALL has been observed in both IDA and thalassemia. However, as IDA is the most common type of anemia and the majority of published data pertains to it, we will focus on IDA in this review.
Collapse
Affiliation(s)
- Vuk Djulejic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| |
Collapse
|
2
|
Roy A, Saha T, Sahoo J, Das A. Hypophosphatemic osteomalacia due to cadmium toxicity in silverware industry: A curious case of aches and pains. J Family Med Prim Care 2024; 13:2516-2519. [PMID: 39027858 PMCID: PMC11254031 DOI: 10.4103/jfmpc.jfmpc_1836_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 07/20/2024] Open
Abstract
Hypophosphatemic osteomalacia in an adult often gives clinical diagnostic challenges. Usually, they are caused by either tumor-induced osteomalacia or due to genetically mediated hypophosphatemia, particularly X-linked hypophosphatemia. However, heavy metal toxicity, leading to global proximal renal tubular dysfunction, is a rare cause, and in particular, cadmium toxicity is rarely encountered in clinical practice. The presence of bony pain and neurological deficit, along with a classical exposure history, provides the diagnostic clue. In this background, here we present a middle-aged man who had severe bony pains all over his body and lower back stiffness for five years. He underwent an initial workup as a suspected spondyloarthropathy but was later on, found to have hypophosphatemic osteomalacia and severe proximal renal tubular dysfunction. Further, the workup revealed elevated FGF-23. His occupational history revealed prolonged exposure to cadmium fumes in the silverware industry. He improved moderately with treatment; however, significant renal damage is still present. This case highlights the importance of considering cadmium toxicity in proper clinical and occupational contexts in the evaluation of hypophosphatemic osteomalacia in an adult.
Collapse
Affiliation(s)
- Ayan Roy
- Endocrinology and Metabolism, AIIMS, Kalyani, West Bengal, India
| | - Taurja Saha
- Endocrinology and Metabolism, AIIMS, Kalyani, West Bengal, India
| | | | - Abanti Das
- Radiodiagnosis, AIIMS, Kalyani, West Bengal, India
| |
Collapse
|
3
|
Fukumoto S. Regulation of FGF23 Production in Osteocytes. Curr Osteoporos Rep 2024; 22:273-279. [PMID: 38334918 DOI: 10.1007/s11914-024-00860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW FGF23 is a bone-derived hormone working to reduce serum phosphate level. This review focuses on recent findings regarding regulatory mechanisms of FGF23 expression in osteocytes, FGF23 levels, and activities. RECENT FINDINGS Circulatory FGF23 levels reflecting FGF23 biological activities can be regulated by both FGF23 expression and posttranslational modification of FGF23 protein. O-linked glycosylation and phosphorylation of FGF23 protein as well as enzymes that can cleave FGF23 protein are involved in the posttranslational modification. However, precise mechanisms of FGF23 protein processing are not clear. Several extracellular factors have been shown to affect FGF23 levels in kidney injuries. Contribution of these factors may be different depending on the causes and stages of kidney injury. FGF23 activities are regulated by complex mechanisms involving transcriptional and posttranslational modulations. There still remain several questions regarding the regulatory mechanisms of FGF23 expression and FGF23 processing.
Collapse
Affiliation(s)
- Seiji Fukumoto
- Department of Diabetes and Endocrinology, Tamaki-Aozora Hospital, Kitakashiya 56-1, Hayabuchi, Kokufucho, Tokushima, Tokushima, 779-3125, Japan.
| |
Collapse
|
4
|
Kishimoto H, Nakano T, Torisu K, Tokumoto M, Uchida Y, Yamada S, Taniguchi M, Kitazono T. Indoxyl sulfate induces left ventricular hypertrophy via the AhR-FGF23-FGFR4 signaling pathway. Front Cardiovasc Med 2023; 10:990422. [PMID: 36895836 PMCID: PMC9988908 DOI: 10.3389/fcvm.2023.990422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Background Patients with chronic kidney disease (CKD) have a high risk of left ventricular hypertrophy (LVH). Fibroblast growth factor 23 (FGF23) and indoxyl sulfate (IS) are associated with LVH in patients with CKD, but the interactions between these molecules remain unknown. We investigated whether IS contributes to LVH associated with FGF23 in cultured cardiomyocytes and CKD mice. Methods and results In cultured rat cardiac myoblast H9c2 cells incubated with IS, mRNA levels of the LVH markers atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain were significantly upregulated. Levels of mRNA of the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), which regulates FGF23 O-glycosylation, and FGF23 were also upregulated in H9c2 cells. Intact FGF23 protein expression and fibroblast growth factor receptor 4 (FGFR4) phosphorylation were increased in cell lysates by IS administration. In C57BL/6J mice with heminephrectomy, IS promoted LVH, whereas the inhibition of FGFR4 significantly reduced heart weight and left ventricular wall thickness in IS-treated groups. While there was no significant difference in serum FGF23 concentrations, cardiac FGF23 protein expression was markedly increased in IS-injected mice. GALNT3, hypoxia-inducible factor 1 alpha, and FGF23 protein expression was induced in H9c2 cells by IS treatment and suppressed by the inhibition of Aryl hydrocarbon receptor which is the receptor for IS. Conclusion This study suggests that IS increases FGF23 protein expression via an increase in GALNT3 and hypoxia-inducible factor 1 alpha expression, and activates FGF23-FGFR4 signaling in cardiomyocytes, leading to LVH.
Collapse
Affiliation(s)
- Hiroshi Kishimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Alhamad DW, Bensreti H, Dorn J, Hill WD, Hamrick MW, McGee-Lawrence ME. Aryl hydrocarbon receptor (AhR)-mediated signaling as a critical regulator of skeletal cell biology. J Mol Endocrinol 2022; 69:R109-R124. [PMID: 35900841 PMCID: PMC9448512 DOI: 10.1530/jme-22-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been implicated in regulating skeletal progenitor cells and the activity of bone-forming osteoblasts and bone-resorbing osteoclasts, thereby impacting bone mass and the risk of skeletal fractures. The AhR also plays an important role in the immune system within the skeletal niche and in the differentiation of mesenchymal stem cells into other cell lineages including chondrocytes and adipocytes. This transcription factor responds to environmental pollutants which can act as AhR ligands, initiating or interfering with various signaling cascades to mediate downstream effects, and also responds to endogenous ligands including tryptophan metabolites. This review comprehensively describes the reported roles of the AhR in skeletal cell biology, focusing on mesenchymal stem cells, osteoblasts, and osteoclasts, and discusses how AhR exhibits sexually dimorphic effects in bone. The molecular mechanisms mediating AhR's downstream effects are highlighted to emphasize the potential importance of targeting this signaling cascade in skeletal disorders.
Collapse
Affiliation(s)
- Dima W. Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology, Medical University of South Carolina, Thurmond/Gazes Bldg-Room 506A, 30 Courtenay Drive, Charleston, SC 29403 Charleston, SC, USA
- Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| |
Collapse
|
6
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
7
|
Zhang R, Wang SY, Yang F, Ma S, Lu X, Kan C, Zhang JB. Crosstalk of fibroblast growth factor 23 and anemia-related factors during the development and progression of CKD (Review). Exp Ther Med 2021; 22:1159. [PMID: 34504604 PMCID: PMC8393509 DOI: 10.3892/etm.2021.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/08/2021] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays an important role in the development of chronic kidney disease-mineral bone disorder (CKD-MBD). Abnormally elevated levels of 1,25-dihydroxyvitamin D cause osteocytes to secrete FGF23, which subsequently induces phosphaturia. Recent studies have reported that iron deficiency, erythropoietin (EPO) and hypoxia regulate the pathways responsible for FGF23 production. However, the molecular mechanisms underlying the interactions between FGF23 and anemia-related factors are not yet fully understood. The present review discusses the associations between FGF23, iron, EPO and hypoxia-inducible factors (HIFs), and their impact on FGF23 bioactivity, focusing on recent studies. Collectively, these findings propose interactions between FGF23 gene expression and anemia-related factors, including iron deficiency, EPO and HIFs. Taken together, these results suggest that FGF23 bioactivity is closely associated with the occurrence of CKD-related anemia and CKD-MBD.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Song-Yan Wang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Fan Yang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Shuang Ma
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Xu Lu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Chao Kan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Jing-Bin Zhang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Cadmium induces apoptosis via generating reactive oxygen species to activate mitochondrial p53 pathway in primary rat osteoblasts. Toxicology 2020; 446:152611. [PMID: 33031904 DOI: 10.1016/j.tox.2020.152611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd), a heavy metal produced by various industries, contaminates the environment and seriously damages the skeletal system of humans and animals. Recent studies have reported that Cd can affect the viability of cells, including osteoblasts, both in vivo and in vitro. However, the mechanism of Cd-induced apoptosis remains unclear. In the present study, primary rat osteoblasts were used to investigate the Cd-induced apoptotic mechanism. We found that treatment with 2 and 5 μM Cd for 12 h decreased osteoblast viability and increased apoptosis. Furthermore, Cd increased the generation of reactive oxygen species (ROS), and, thus, DNA damage measured via p-H2AX. The level of the nuclear transcription factor p53 was significantly increased, which upregulated the expression of PUMA, Noxa, Bax, and mitochondrial cytochrome c, downregulated the expression of Bcl-2, and increased the level of cleaved caspase-3. However, pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC) or the p53 transcription specific inhibitor PFT-α suppressed Cd-induced apoptosis. Our results indicate that Cd can induce apoptosis in osteoblasts by increasing the generation of ROS and activating the mitochondrial p53 signaling pathway, and this mechanism requires the transcriptional activation of p53.
Collapse
|
9
|
Zhang S, Sun L, Zhang J, Liu S, Han J, Liu Y. Adverse Impact of Heavy Metals on Bone Cells and Bone Metabolism Dependently and Independently through Anemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000383. [PMID: 33042736 PMCID: PMC7539179 DOI: 10.1002/advs.202000383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Mounting evidence is revealing that heavy metals can incur disordered bone homeostasis, leading to the development of degenerative bone diseases, including osteoporosis, osteoarthritis, degenerative disk disease, and osteomalacia. Meanwhile, heavy metal-induced anemia has been found to be intertwined with degenerative bone diseases. However, the relationship and interplay among these adverse outcomes remain elusive. Thus, it is of importance to shed light on the modes of action (MOAs) and adverse outcome pathways (AOPs) responsible for degenerative bone diseases and anemia under exposure to heavy metals. In the current Review, the epidemiological and experimental findings are recapitulated to interrogate the contributions of heavy metals to degenerative bone disease development which may be attributable dependently and independently to anemia. A few likely mechanisms are postulated for anemia-independent degenerative bone diseases, including dysregulated osteogenesis and osteoblastogenesis, imbalanced bone formation and resorption, and disturbed homeostasis of essential trace elements. By contrast, remodeled bone microarchitecture, inhibited erythropoietin production, and disordered iron homeostasis are speculated to account for anemia-associated degenerative bone disorders upon heavy metal exposure. Together, this Review aims to elaborate available literature to fill in the knowledge gaps in understanding the detrimental effects of heavy metals on bone cells and bone homeostasis through different perspectives.
Collapse
Affiliation(s)
- Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Yajun Liu
- Beijing Jishuitan HospitalPeking University Health Science CenterBeijing100035China
| |
Collapse
|
10
|
Roy A, Nethi SK, Suganya N, Raval M, Chatterjee S, Patra CR. Attenuation of cadmium-induced vascular toxicity by pro-angiogenic nanorods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111108. [DOI: 10.1016/j.msec.2020.111108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
|
11
|
Che X, Dai W. Aryl Hydrocarbon Receptor: Its Regulation and Roles in Transformation and Tumorigenesis. Curr Drug Targets 2020; 20:625-634. [PMID: 30411679 DOI: 10.2174/1389450120666181109092225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.
Collapse
Affiliation(s)
- Xun Che
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| |
Collapse
|
12
|
Che X, Dai W. Negative regulation of aryl hydrocarbon receptor by its lysine mutations and exposure to nickel. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 2017; 66:391-402. [PMID: 28248532 DOI: 10.33549/physiolres.933454] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.
Collapse
Affiliation(s)
- I Zofkova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
15
|
Darwish WS, Ikenaka Y, Nakayama SMM, Mizukawa H, Ishizuka M. Constitutive Effects of Lead on Aryl Hydrocarbon Receptor Gene Battery and Protection by β-carotene and Ascorbic Acid in Human HepG2 Cells. J Food Sci 2015; 81:T275-81. [DOI: 10.1111/1750-3841.13162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Wageh S. Darwish
- Laboratory of Toxicology, Dept. of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine; Hokkaido Univ; Kita 18, Nishi 9 Kita-ku Sapporo 060-0818 Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Dept. of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine; Hokkaido Univ; Kita 18, Nishi 9 Kita-ku Sapporo 060-0818 Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Dept. of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine; Hokkaido Univ; Kita 18, Nishi 9 Kita-ku Sapporo 060-0818 Japan
| | - Hazuki Mizukawa
- Laboratory of Toxicology, Dept. of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine; Hokkaido Univ; Kita 18, Nishi 9 Kita-ku Sapporo 060-0818 Japan
| | - Mayumi Ishizuka
- Food Control Dept, Faculty of Veterinary Medicine; Zagazig Univ; Zagazig 44510 Egypt
| |
Collapse
|
16
|
di Giuseppe R, Kühn T, Hirche F, Buijsse B, Dierkes J, Fritsche A, Kaaks R, Boeing H, Stangl GI, Weikert C. Potential Predictors of Plasma Fibroblast Growth Factor 23 Concentrations: Cross-Sectional Analysis in the EPIC-Germany Study. PLoS One 2015; 10:e0133580. [PMID: 26193703 PMCID: PMC4508099 DOI: 10.1371/journal.pone.0133580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Increased fibroblast growth factor 23 (FGF23), a bone-derived hormone involved in the regulation of phosphate and vitamin D metabolism, has been related to the development of cardiovascular disease (CVD) in chronic kidney disease patients and in the general population. However, what determines higher FGF23 levels is still unclear. Also, little is known about the influence of diet on FGF23. The aim of this study was therefore to identify demographic, clinical and dietary correlates of high FGF23 concentrations in the general population. METHODS We performed a cross-sectional analysis within a randomly selected subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany comprising 2134 middle-aged men and women. The Human FGF23 (C-Terminal) ELISA kit was used to measure FGF23 in citrate plasma. Dietary data were obtained at baseline via validated food frequency questionnaires including up to 148 food items. RESULTS Multivariable adjusted logistic regression showed that men had a 66% lower and smokers a 64% higher probability of having higher FGF23 (≥ 90 RU/mL) levels compared, respectively, with women and nonsmokers. Each doubling in parathyroid hormone, creatinine, and C-reactive protein was related to higher FGF23. Among the dietary factors, each doubling in calcium and total energy intake was related, respectively, to a 1.75 and to a 4.41 fold increased probability of having higher FGF23. Finally, each doubling in the intake of iron was related to an 82% lower probability of having higher FGF23 levels. Results did not substantially change after exclusion of participants with lower kidney function. CONCLUSIONS In middle-aged men and women traditional and non-traditional CVD risk factors were related to higher FGF23 concentrations. These findings may contribute to the understanding of the potential mechanisms linking increased FGF23 to increased CVD risk.
Collapse
Affiliation(s)
- Romina di Giuseppe
- Research Group Cardiovascular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- * E-mail:
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Human Nutrition Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Brian Buijsse
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jutta Dierkes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Fritsche
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Gabriele I. Stangl
- Institute of Agricultural and Nutritional Sciences, Human Nutrition Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cornelia Weikert
- Research Group Cardiovascular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute for Social Medicine, Epidemiology and Health Economics, Charité University Medical Center, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|