1
|
Mai X, Dong Y, Xiang L, Er Z. Maternal exposure to 2,3,7,8-tetrachlorodibenzo -p-dioxin suppresses male reproductive functions in their adulthood. Hum Exp Toxicol 2020; 39:890-905. [PMID: 32031418 DOI: 10.1177/0960327120903489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant in the environment. The developmental period is more sensitive to TCDD and there is a possibility that maternal exposure to TCDD may affect in adulthood. Adult female Wistar rats were exposed to 0.5, 1.0, and 2.0 µg/kg TCDD during the critical stage of organogenesis, that is, on GD15. The results revealed a significant decrease in indices of reproductive organ weight in adult male rats exposed to prenatal TCDD, and dose-dependent reduction in epididymal sperm reserves, percent motile, and viable sperm with an increase in percent morphological abnormal sperm. Polymerase chain reaction analysis revealed downregulated expression levels of steroidogenic markers such as steroidogenic acute regulatory, cholesterol side-chain cleavage, and 3β- and 17β-hydroxysteroid dehydrogenase (HSDs) in experimental rats. Immunofluorescence sections portrayed reduced distribution of 3β- and 17β-HSD proteins in testes of experimental rats. Furthermore, spermatogenic markers (acid phosphatase, alkaline phosphatase, lactate dehydrogenase, and sorbitol dehydrogenase) were significantly altered in the testes. Serum levels of testosterone, follicle stimulating hormones, and luteinizing hormone were significantly decreased. Testicular levels of hydrogen peroxide and lipid peroxidation were significantly elevated with a decline in superoxide dismutase, catalase, glutathione peroxidase activities, and total thiol levels. Moreover, histological and morphometric examination of testicular cross-sections depicted degenerative changes. Male fertility assessment in adult rats revealed a significant decrease in mating index, fertility index, and mean number of pre- and postimplantations with an increase in pre- and postimplantation losses in rats cohabited with in utero TCDD-exposed adult males. In conclusion, the findings of this study provided clear evidence that maternal exposure to TCDD during the critical stage of development results in suppressed reproductive health in adulthood.
Collapse
Affiliation(s)
- X Mai
- Department of Reproductive medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Y Dong
- Department of Reproductive medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - L Xiang
- Department of Reproductive medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Z Er
- Department of Reproductive medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Yoshioka W, Tohyama C. Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. Int J Mol Sci 2019; 20:E617. [PMID: 30708991 PMCID: PMC6387164 DOI: 10.3390/ijms20030617] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Dioxins and related compounds induce morphological abnormalities in developing animals in an aryl hydrocarbon receptor (AhR)-dependent manner. Here we review the studies in which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is used as a prototypical compound to elucidate the pathogenesis of morphological abnormalities. TCDD-induced cleft palate in fetal mice involves a delay in palatogenesis and dissociation of fused palate shelves. TCDD-induced hydronephrosis, once considered to be caused by the anatomical obstruction of the ureter, is now separated into TCDD-induced obstructive and non-obstructive hydronephrosis, which develops during fetal and neonatal periods, respectively. In the latter, a prostaglandin E₂ synthesis pathway and urine concentration system are involved. TCDD-induced abnormal development of prostate involves agenesis of the ventral lobe. A suggested mechanism is that AhR activation in the urogenital sinus mesenchyme by TCDD modulates the wingless-type MMTV integration site family (WNT)/β-catenin signaling cascade to interfere with budding from urogenital sinus epithelium. TCDD exposure to zebrafish embryos induces loss of epicardium progenitor cells and heart malformation. AHR2-dependent downregulation of Sox9b expression in cardiomyocytes is a suggested underlying mechanism. TCDD-induced craniofacial malformation in zebrafish is considered to result from the AHR2-dependent reduction in SRY-box 9b (SOX9b), probably partly via the noncoding RNA slincR, resulting in the underdevelopment of chondrocytes and cartilage.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Brocqueville G, Chmelar RS, Bauderlique-Le Roy H, Deruy E, Tian L, Vessella RL, Greenberg NM, Rohrschneider LR, Bourette RP. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells. Oncotarget 2018; 7:29228-44. [PMID: 27081082 PMCID: PMC5045392 DOI: 10.18632/oncotarget.8709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin- CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells.
Collapse
Affiliation(s)
- Guillaume Brocqueville
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Renee S Chmelar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hélène Bauderlique-Le Roy
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Emeric Deruy
- BioImaging Center Lille, Institut Pasteur de Lille, University of Lille, F-59000 Lille, France
| | - Lu Tian
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Norman M Greenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Present address: NMG Scientific Consulting, North Potomac, MD 20878, USA
| | - Larry R Rohrschneider
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland P Bourette
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| |
Collapse
|
4
|
Moore RW, Fritz WA, Schneider AJ, Lin TM, Branam AM, Safe S, Peterson RE. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice. Toxicol Appl Pharmacol 2016; 305:242-249. [PMID: 27151233 PMCID: PMC4982706 DOI: 10.1016/j.taap.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 01/08/2023]
Abstract
It is well established that the prototypical aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can both cause and protect against carcinogenesis in non-transgenic rodents. But because these animals almost never develop prostate cancer with old age or after carcinogen exposure, whether AHR activation can affect cancer of the prostate remained unknown. We used animals designed to develop this disease, Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, to investigate the potential role of AHR signaling in prostate cancer development. We previously reported that AHR itself has prostate tumor suppressive functions in TRAMP mice; i.e., TRAMP mice in which Ahr was knocked out developed neuroendocrine prostate carcinomas (NEPC) with much greater frequency than did those with both Ahr alleles. In the present study we investigated effects of AHR activation by three different xenobiotics. In utero and lactational TCDD exposure significantly increased NEPC tumor incidence in TRAMP males, while chronic TCDD treatment in adulthood had the opposite effect, a significant reduction in NEPC incidence. Chronic treatment of adult TRAMP mice with the low-toxicity selective AHR modulators indole-3-carbinol or 3,3'-diindolylmethane did not significantly protect against these tumors. Thus, we demonstrate, for the first time, that ligand-dependent activation of the AHR can alter prostate cancer incidence. The nature of the responses depended on the timing of AHR activation and ligand structures.
Collapse
Affiliation(s)
- Robert W Moore
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Wayne A Fritz
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Andrew J Schneider
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Tien-Min Lin
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, 4466 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Richard E Peterson
- School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Gamat M, Malinowski RL, Parkhurst LJ, Steinke LM, Marker PC. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS One 2015; 10:e0139522. [PMID: 26426536 PMCID: PMC4591331 DOI: 10.1371/journal.pone.0139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022] Open
Abstract
The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating prostatic bud induction, and are required for the expression of a subset of prostatic developmental regulatory genes including Notch1 and Nkx3.1.
Collapse
Affiliation(s)
- Melissa Gamat
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Rita L. Malinowski
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Linnea J. Parkhurst
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Laura M. Steinke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
| | - Paul C. Marker
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
6
|
Gamat M, Chew KY, Shaw G, Renfree MB. FOXA1 and SOX9 Expression in the Developing Urogenital Sinus of the Tammar Wallaby (Macropus eugenii). Sex Dev 2015; 9:216-28. [PMID: 26406875 DOI: 10.1159/000439499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
The mammalian prostate is a compact structure in humans but multi-lobed in mice. In humans and mice, FOXA1 and SOX9 play pivotal roles in prostate morphogenesis, but few other species have been examined. We examined FOXA1 and SOX9 in the marsupial tammar wallaby, Macropus eugenii, which has a segmented prostate more similar to human than to mouse. In males, prostatic budding in the urogenital epithelium (UGE) was initiated by day 24 postpartum (pp), but in the female the UGE remained smooth and had begun forming the marsupial vaginal structures. FOXA1 was upregulated in the male urogenital sinus (UGS) by day 51 pp, whilst in the female UGS FOXA1 remained basal. FOXA1 was localised in the UGE in both sexes between day 20 and 80 pp. SOX9 was upregulated in the male UGS at day 21-30 pp and remained high until day 51-60 pp. SOX9 protein was localised in the distal tips of prostatic buds which were highly proliferative. The persistent upregulation of the transcription factors SOX9 and FOXA1 after the initial peak and fall of androgen levels suggest that in the tammar, as in other mammals, these factors are required to sustain prostate differentiation, development and proliferation as androgen levels return to basal levels.
Collapse
Affiliation(s)
- Melissa Gamat
- ARC Centre of Excellence in Kangaroo Genomics, Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
7
|
Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol Appl Pharmacol 2015; 284:163-79. [PMID: 25711857 DOI: 10.1016/j.taap.2015.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022]
Abstract
Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.
Collapse
|
8
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|