1
|
Ameri P, Bertero E, Lombardi M, Porto I, Canepa M, Nohria A, Vergallo R, Lyon AR, López-Fernández T. Ischaemic heart disease in patients with cancer. Eur Heart J 2024; 45:1209-1223. [PMID: 38323638 DOI: 10.1093/eurheartj/ehae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Cardiologists are encountering a growing number of cancer patients with ischaemic heart disease (IHD). Several factors account for the interrelationship between these two conditions, in addition to improving survival rates in the cancer population. Established cardiovascular (CV) risk factors, such as hypercholesterolaemia and obesity, predispose to both IHD and cancer, through specific mechanisms and via low-grade, systemic inflammation. This latter is also fuelled by clonal haematopoiesis of indeterminate potential. Furthermore, experimental work indicates that IHD and cancer can promote one another, and the CV or metabolic toxicity of anticancer therapies can lead to IHD. The connections between IHD and cancer are reinforced by social determinants of health, non-medical factors that modify health outcomes and comprise individual and societal domains, including economic stability, educational and healthcare access and quality, neighbourhood and built environment, and social and community context. Management of IHD in cancer patients is often challenging, due to atypical presentation, increased bleeding and ischaemic risk, and worse outcomes as compared to patients without cancer. The decision to proceed with coronary revascularization and the choice of antithrombotic therapy can be difficult, particularly in patients with chronic coronary syndromes, necessitating multidisciplinary discussion that considers both general guidelines and specific features on a case by case basis. Randomized controlled trial evidence in cancer patients is very limited and there is urgent need for more data to inform clinical practice. Therefore, coexistence of IHD and cancer raises important scientific and practical questions that call for collaborative efforts from the cardio-oncology, cardiology, and oncology communities.
Collapse
Affiliation(s)
- Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Marco Lombardi
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Roma, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anju Nohria
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rocco Vergallo
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | | | - Teresa López-Fernández
- Cardiology Department, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
- Cardiology Department, Quirón Pozuelo University Hospital, Madrid, Spain
| |
Collapse
|
2
|
Zhu LL, Wang YH, Zhou Q. Progress in Research on the Mechanisms and Interventions of Phlebitis from the Perspective of Vascular Endothelial Cell and Signaling Pathway. J Inflamm Res 2023; 16:6469-6481. [PMID: 38170089 PMCID: PMC10759916 DOI: 10.2147/jir.s450149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Background Phlebitis is a common complication of intravenous administration and greatly affects clinical outcomes, patient satisfaction, and health-care expenditure. Numerous studies have revealed venous injuries only through visual and histopathological examination. Although sporadic studies have explored the cellular and molecular biological mechanisms of phlebitis and the outcomes of pharmacological interventions, an updated review over the last decade is not available. Methods Progress in research on the mechanisms and interventions of phlebitis was summarized from the perspective of endothelial cells and signaling pathways by retrieving the PubMed, Web of Science Core Collection, MEDLINE, Embase, and CNKI. Results Phlebitis involves multiple signaling pathways (eg, nuclear factor kappa B, Wnt/β-catenin, focal adhesion kinase/protein kinase B, Toll-like receptor, protein kinase C beta/NADPH oxidase, PI3K/AKT/TNF, and JAK2/STAT3), upregulation of E-selectin, GBP5/NLRP3 inflammasome axis, cell apoptosis, intracellular ROS generation, SOD reduction, stimulation of angiogenesis, and induction of autophagy-associated cell death. Preventive and curative interventions included α-solanine, baicalein, escin, intermedin, Y15, micro-ribonucleic acid-223, sotrastaurin, cimetidine, aescin, resveratrol, α-chaconine, Chahuang ointment, QingLuoTongMai, Mailuo Shutong, and N-acetylcysteine. Laboratory models included vascular endothelial cells, real-time cell-monitoring analysis, network pharmacology analysis and experimental verification in vivo, animal models of phlebitis (rat, rabbit, and mouse), rabbit models with peripherally inserted central catheters (PICC) catheterization, models of PICC/central venous catheter indwelling with combined drugs in human umbilical vein endothelial cells, and compatibility with endothelial cells. Factors affecting vascular endothelial cell injury include difference in the same class of drugs, concentration and exposure time of precipitant, and infusion strategy. Conclusion Phlebitis is accompanied by endothelial dysfunction and may involve multiple molecular and cellular mechanisms. These findings improve our understanding of the molecular targets of interventions and help identify effective candidates for the prophylaxis and treatment of phlebitis. Vascular health and risk management should be considered when initiating intravenous administration.
Collapse
Affiliation(s)
- Ling-Ling Zhu
- VIP Geriatric Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yan-hong Wang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Hsieh CY, Lin CC, Chang WC. Taxanes in the Treatment of Head and Neck Squamous Cell Carcinoma. Biomedicines 2023; 11:2887. [PMID: 38001888 PMCID: PMC10669519 DOI: 10.3390/biomedicines11112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Taxanes, particularly docetaxel (DTX), has been widely used for combination therapy of head and neck squamous cell carcinoma (HNSCC). For locally advanced unresectable HNSCC, DTX combined with cisplatin and 5-fluorouracil as a revolutionary treatment revealed an advantage in the improvement of patient outcome. In addition, DTX plus immune check inhibitors (ICIs) showed low toxicity and an increased response of patients with recurrent or metastatic HNSCC (R/M HNSCC). Accumulated data indicate that taxanes not only function as antimitotics but also impair diverse oncogenic signalings, including angiogenesis, inflammatory response, ROS production, and apoptosis induction. However, despite an initial response, the development of resistance remains a major obstacle to treatment response. Taxane resistance could result from intrinsic mechanisms, such as enhanced DNA/RNA damage repair, increased drug efflux, and apoptosis inhibition, and extrinsic effects, such as angiogenesis and interactions between tumor cells and immune cells. This review provides an overview of taxanes therapy applied in different stages of HNSCC and describe the mechanisms of taxane resistance in HNSCC. Through a detailed understanding, the mechanisms of resistance may help in developing the potential therapeutic methods and the effective combination strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
4
|
Fujimura T, Maekawa T, Kato H, Ito T, Matsushita S, Yoshino K, Fujisawa Y, Ishizuki S, Segawa K, Yamamoto J, Hashimoto A, Kambayashi Y, Asano Y. Treatment for taxane-resistant cutaneous angiosarcoma: A multicenter study of 50 Japanese cases. J Dermatol 2023. [PMID: 36938650 DOI: 10.1111/1346-8138.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Cutaneous angiosarcoma (CAS) is a rare and highly aggressive type of vascular tumor. Although chemoradiotherapy with taxanes is recognized as a first-line therapy for CAS, second-line therapy for CAS remains controversial. From the above findings, the efficacy and safety profiles of taxane-switch (change paclitaxel to docetaxel or vise), eribulin methylate, and pazopanib regimens in second-line chemotherapy were evaluated retrospectively in 50 Japanese taxane-resistant CAS patients. Although there was no significant difference in progression-free survival (P = 0.3528) among the regimens, the incidence of all adverse events (AEs) (P = 0.0386), as well as severe G3 or more AEs (P = 0.0477) was significantly higher in the eribulin methylate group and pazopanib group than in the taxane-switch group. The present data suggest that switching to another taxane should be considered for the treatment of taxane-resistant CAS in second-line therapy based on the safety profiles.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Maekawa
- Department of Dermatology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Koji Yoshino
- Department of Dermato-Oncology/Dermatology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Dermato-Oncology/Dermatology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, University of Tsukuba, Tsukuba, Japan.,Department of Dermatology, University of Ehime, Matsuyama, Japan
| | | | - Kojiro Segawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yamamoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Hashimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Szczepaniak P, Siedlinski M, Hodorowicz-Zaniewska D, Nosalski R, Mikolajczyk TP, Dobosz AM, Dikalova A, Dikalov S, Streb J, Gara K, Basta P, Krolczyk J, Sulicka-Grodzicka J, Jozefczuk E, Dziewulska A, Saju B, Laksa I, Chen W, Dormer J, Tomaszewski M, Maffia P, Czesnikiewicz-Guzik M, Crea F, Dobrzyn A, Moslehi J, Grodzicki T, Harrison DG, Guzik TJ. Breast cancer chemotherapy induces vascular dysfunction and hypertension through NOX4 dependent mechanism. J Clin Invest 2022; 132:149117. [PMID: 35617030 PMCID: PMC9246378 DOI: 10.1172/jci149117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in breast cancer survivors. Chemotherapy contributes to this risk. We aimed to define the mechanisms of long-term vascular dysfunction caused by neoadjuvant chemotherapy (NACT) and identify novel therapeutic targets.We studied arteries from postmenopausal women who had undergone breast cancer treatment using docetaxel, doxorubicin and cyclophosphamide (NACT), and women with no history of such treatment matched for key clinical parameters. Mechanisms were explored in wild-type and Nox4-/- mice and human microvascular endothelial cells.Endothelium-dependent vasodilatation is severely impaired in patients after NACT, while endothelium-independent responses remain normal. This was mimicked by 24-hour exposure of arteries to NACT agents ex-vivo. When applied individually, only docetaxel impaired endothelial function in human vessels. Mechanistic studies showed that NACT increased inhibitory eNOS phosphorylation of threonine 495 in a ROCK-dependent manner and augmented vascular superoxide and hydrogen peroxide production and NADPH oxidase activity. Docetaxel increased expression of NADPH oxidase NOX4 in endothelial and smooth muscle cells and NOX2 in the endothelium. NOX4 increase in human arteries may be mediated epigenetically by diminished DNA methylation of the NOX4 promoter. Docetaxel induced endothelial dysfunction and hypertension in mice. These were prevented in Nox4-/- and by pharmacological inhibition of Nox4 or Rock.Commonly used chemotherapeutic agents, and in particular, docetaxel, alter vascular function by promoting inhibitory phosphorylation of eNOS and enhancing ROS production by NADPH oxidases.
Collapse
Affiliation(s)
- Piotr Szczepaniak
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz P Mikolajczyk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Joanna Streb
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Katarzyna Gara
- Department of Surgery, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Pawel Basta
- Department of Gynecology and Gynecological Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Jaroslaw Krolczyk
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ewelina Jozefczuk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iwona Laksa
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - John Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, University of the Sacred Heart, Rome, Italy
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Javid Moslehi
- University of California San Fransisco, San Francisco, United States of America
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Study on Protection of Human Umbilical Vein Endothelial Cells from Amiodarone-Induced Damage by Intermedin through Activation of Wnt/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889408. [PMID: 34434487 PMCID: PMC8382522 DOI: 10.1155/2021/8889408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Amiodarone (AM) is one of the most effective antiarrhythmic drugs and normally administrated by intravenous infusion which is liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. Intermedin (IMD), a member of calcitonin family, has a broad spectrum of biological effects including anti-inflammatory effects, antioxidant activities, and antiapoptosis. But now, the protective effects of IMD against amiodarone-induced phlebitis and the underlying molecular mechanism are not well understood. In this study, the aim was to investigate the protective efficiency and potential mechanisms of IMD in amiodarone-induced phlebitis. The results of this study revealed that treatment with IMD obviously attenuated apoptosis and exfoliation of vascular endothelial cells and infiltration of inflammatory cells in the rabbit model of phlebitis induced by intravenous infusion of amiodarone compared with control. Further tests in vitro demonstrated that IMD lessened amiodarone-induced endothelial cell apoptosis, improved amiodarone-induced oxidative stress injury, reduced inflammatory reaction, and activated the Wnt/β-catenin signal pathway which was inhibited by amiodarone. And these effects could be reversed by Wnt/β-catenin inhibitor IWR-1-endo, and si-RNA knocked down the gene of Wnt pathway. These results suggested that IMD exerted the protective effects against amiodarone-induced endothelial injury via activating the Wnt/β-catenin pathway. Thus, IMD could be used as a potential agent for the treatment of phlebitis.
Collapse
|
7
|
Eckert MA, Orozco C, Xiao J, Javellana M, Lengyel E. The Effects of Chemotherapeutics on the Ovarian Cancer Microenvironment. Cancers (Basel) 2021; 13:3136. [PMID: 34201616 PMCID: PMC8268261 DOI: 10.3390/cancers13133136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by a complex and dynamic tumor microenvironment (TME) composed of cancer-associated fibroblasts (CAFs), immune cells, endothelial cells, and adipocytes. Although most approved therapies target cancer cells, a growing body of evidence suggests that chemotherapeutic agents have an important role in regulating the biology of the diverse cells that compose the TME. Understanding how non-transformed cells respond and adapt to established therapeutics is necessary to completely comprehend their action and develop novel therapeutics that interrupt undesired tumor-stroma interactions. Here, we review the effects of chemotherapeutic agents on normal cellular components of the host-derived TME focusing on CAFs. We concentrate on therapies used in the treatment of HGSOC and synthesize findings from studies focusing on other cancer types and benign tissues. Agents such as platinum derivatives, taxanes, and PARP inhibitors broadly affect the TME and promote or inhibit the pro-tumorigenic roles of CAFs by modifying the bidirectional cross-talk between tumor and stromal cells in the tumor organ. While most chemotherapy research focuses on cancer cells, these studies emphasize the need to consider all cell types within the tumor organ when evaluating chemotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA; (M.A.E.); (C.O.); (J.X.); (M.J.)
| |
Collapse
|
8
|
Toss A, Spinella A, Isca C, Vacchi C, Ficarra G, Fabbiani L, Iannone A, Magnani L, Castrignanò P, Macripò P, Gasparini E, Piana S, Cortesi L, Maiorana A, Salvarani C, Dominici M, Giuggioli D. Clinical and Pathological Features of Breast Cancer in Systemic Sclerosis: Results from the Sclero-Breast Study. J Pers Med 2021; 11:580. [PMID: 34203014 PMCID: PMC8234103 DOI: 10.3390/jpm11060580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022] Open
Abstract
Systemic Sclerosis (SSc) is a chronic disease associated with a 1.5-fold increase in cancer risk, including lung cancer, hematological malignancies, and breast cancer (BC). This is a retrospective study aiming to explore the clinical and pathological features of BC developed by SSc patients. A total of 54.5% of patients developed BC before SSc (median interval: 5 years), whereas 45.5% of patients developed BC after SSc (median delay: 8 years). A total of 93.1% of patients were diagnosed with an early stage tumor. Among invasive carcinomas, 70.8% presented with a low Mib1, 8.3% with a tubular histotype, and 42.8% with a Luminal A-like phenotype. A total of 66.6% of patients underwent breast-conserving surgery and 55.5% RT. A total of 40% of patients developed interstitial lung disease after RT and 20% diffuse cutaneous SSc. The cause of death of the six deceased patients was PAH. A significant association was observed between the use of immunosuppressive therapy and diffuse skin extension, negative ACA, positive Anti-Scl-70, and interstitial lung disease, but not BC status. SSc patients developed BC at a good prognosis, suggesting a de-escalation strategy of cancer therapies. In particular, ionizing radiation and chemotherapeuticals should be limited to higher-risk cases. Finally, proper screening is mandatory in order to allow for early cancer detection in SSc patients.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (C.I.); (L.C.); (M.D.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Amelia Spinella
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
| | - Chrystel Isca
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (C.I.); (L.C.); (M.D.)
| | - Caterina Vacchi
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
| | - Guido Ficarra
- Pathology Unit, University Hospital of Modena, 41124 Modena, Italy; (G.F.); (L.F.); (A.M.)
| | - Luca Fabbiani
- Pathology Unit, University Hospital of Modena, 41124 Modena, Italy; (G.F.); (L.F.); (A.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Anna Iannone
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Luca Magnani
- Rheumatology Unit, Azienda Unità Sanitaria Locale (AUSL)-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Paola Castrignanò
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
| | - Pierluca Macripò
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
| | - Elisa Gasparini
- Oncology Unit, Azienda Unità Sanitaria Locale (AUSL)-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Simonetta Piana
- Pathology Unit, Azienda Unità Sanitaria Locale (AUSL)-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (C.I.); (L.C.); (M.D.)
| | - Antonino Maiorana
- Pathology Unit, University Hospital of Modena, 41124 Modena, Italy; (G.F.); (L.F.); (A.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Carlo Salvarani
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
- Rheumatology Unit, Azienda Unità Sanitaria Locale (AUSL)-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (C.I.); (L.C.); (M.D.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Dilia Giuggioli
- SSc Unit, Rheumatology Unit, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy; (A.S.); (C.V.); (P.C.); (P.M.); (C.S.); (D.G.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
9
|
Mahoutforoush A, Solouk A, Hamishehkar H, Haghbin Nazarpak M, Abbaspour-Ravasjani S. Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents. Life Sci 2021; 279:119576. [PMID: 33965376 DOI: 10.1016/j.lfs.2021.119576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Cancer-targeted co-delivery of therapeutic agents has been recognized as an effective strategy for increasing efficacy and reducing side effects of therapeutic agents. In this study, we used methotrexate (MTX) alone as a targeting moiety and chemotherapeutic agent and in combination with docetaxel (DTX) and doxorubicin (DOX) as chemotherapeutic agents to stop cancer cell proliferation with the aid of newly designed nanostructured lipid carriers (NLCs). The physicochemical properties of our designed nanocomplexes were evaluated by DLS, FT-IR spectroscopy, SEM, and TEM. Moreover, the targeting efficiency of the designed and synthesized nanoplatforms was evaluated on the folate receptor (FR) positive human breast cancer cell line (MCF-7) and FR negative human alveolar basal epithelial cells (A549). The NLCs/DTX/DOX/CS and NLCs/DTX/DOX/CS-MTX complexes significantly increased the cell cytotoxicity and the cell apoptosis rate. However, the complexes significantly reduced the capability of colony formation and cell migration. Our results revealed that NLCs/DTX/DOX/CS-MTX had synergistic cytotoxicity, reactive oxygen spaces, autophagy, and the apoptosis induction ability with an enhanced cellular internalization rate in FR-positive cancer cells, thorough MTX recognition capability. We conclude that the NLCs/DTX/DOX/CS-MTX complex is a new promising paradigm for breast cancer-targeted co-delivery.
Collapse
Affiliation(s)
- Amin Mahoutforoush
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 1591634653, Iran
| | | |
Collapse
|
10
|
Grayson KA, Jyotsana N, Ortiz-Otero N, King MR. Overcoming TRAIL-resistance by sensitizing prostate cancer 3D spheroids with taxanes. PLoS One 2021; 16:e0246733. [PMID: 33661931 PMCID: PMC7932526 DOI: 10.1371/journal.pone.0246733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional spheroid cultures have been shown to better physiologically mimic the cell-cell and cell-matrix interactions that occur in solid tumors more than traditional 2D cell cultures. One challenge in spheroid production is forming and maintaining spheroids of uniform size. Here, we developed uniform, high-throughput, multicellular spheroids that self-assemble using microwell plates. DU145 and PC3 cells were cultured as 2D monolayers and 3D spheroids to compare sensitization of TRAIL-resistance cancer cells to TRAIL mediated apoptosis via chemotherapy based on dimensionality. Monocultured monolayers and spheroids were treated with soluble TRAIL alone (24 hr), DTX or CBZ alone (24 hr), or a combination of taxane and TRAIL (24 + 24 hr) to determine the effectiveness of taxanes as TRAIL sensitizers. Upon treatment with soluble TRAIL or taxanes solely, monolayer cells and spheroids exhibited no significant reduction in cell viability compared to the control, indicating that both cell lines are resistant to TRAIL and taxane alone in 2D and 3D. Pretreatment with CBZ or DTX followed by TRAIL synergistically amplified apoptosis in 2D and 3D DU145 cell cultures. PC3 spheroids were more resistant to the combination therapy, displaying a more additive effect in the DTX + TRAIL group compared to 2D. There was a downregulation of DR4/5 expression in spheroid form compared to monolayers in each cell line. Additionally, normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were cocultured with both PCa cell lines as spheroids to determine if CAFs confer additional resistance to chemotherapy. We determined that co-cultured spheroids show similar drug resistance to monocultured spheroids when treated with taxane plus TRAIL treatment. Collectively, these findings suggest how the third dimension and cocultures of different cell types effect the sensitization of androgen-independent prostate cancer cells to TRAIL, suggesting therapeutic targets that could overcome TRAIL-resistance in metastatic castration-resistant prostate cancer (mCRPC).
Collapse
Affiliation(s)
- Korie A. Grayson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nidhi Jyotsana
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nerymar Ortiz-Otero
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wilk M, Waśko-Grabowska A, Szmit S. Cardiovascular Complications of Prostate Cancer Treatment. Front Pharmacol 2020; 11:555475. [PMID: 33414715 PMCID: PMC7783464 DOI: 10.3389/fphar.2020.555475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Treatment of prostate cancer (PC) is a rapidly evolving field of pharmacology research. In recent years, numerous novel therapeutics that improve survival and ameliorate disease control have been approved. Currently, the systemic treatment for prostate neoplasm consists of hormonal therapy, chemotherapy, immunotherapy, radiopharmaceuticals, targeted therapy, and supportive agents (e.g., related to bone health). Unfortunately, many of them carry a risk of cardiovascular complications, which occasionally pose a higher mortality threat than cancer itself. This article provides a unique and comprehensive overview of the prevalence and possible mechanisms of cardiovascular toxicities of all PC therapies, including state-of-the-art antineoplastic agents. Additionally, this article summarizes available recommendations regarding screening and prevention of the most common cardiac complications among patients with advanced cancer disease.
Collapse
Affiliation(s)
- Michał Wilk
- Department of Clinical Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Anna Waśko-Grabowska
- Department of Clinical Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Sebastian Szmit
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| |
Collapse
|
12
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
13
|
Disulfiram potentiates docetaxel cytotoxicity in breast cancer cells through enhanced ROS and autophagy. Pharmacol Rep 2020; 72:1749-1765. [PMID: 32617902 DOI: 10.1007/s43440-020-00122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Recent studies have demonstrated that autophagy plays a critical role in reducing the drug sensitivity of docetaxel (DTX) therapy. Disulfiram (DSF) has exhibited potent autophagy inducing activity in multiple studies. We hypothesized that DSF co-treatment could sensitize breast cancer cells to DTX therapy via autophagy modulation. METHODS Breast cancer cells, MCF7, and 4T1, were treated with DTX and DSF, alone and in combination. The effects were analyzed by evaluating cytotoxicity, induction of apoptosis, induction of autophagy, and reactive oxygen species (ROS) generation. In addition, the consequence of autophagy and ROS inhibition on the DTX + DSF mediated cytotoxicity was also evaluated. RESULTS Significant synergism in cytotoxicity was observed with DTX + DSF combination in breast cancer cells, MCF7, and 4T1. Hyper induction of ROS and autophagy was also found with the combination treatment. ROS inhibition by N-Acetyl Cysteine (NAC), as well as autophagy inhibition by ATG5 silencing significantly reduced the autophagy level as well as cytotoxicity of the DTX + DSF combination, indicating that the induction of autophagy mediated by high ROS generation played a critical role behind the synergistic cytotoxicity. CONCLUSIONS This study indicates that DTX + DSF combination therapy can effectively sensitize cancer cells by hyper inducing autophagy through ROS generation and can be developed as a therapeutic strategy for cancer treatment in the future.
Collapse
|
14
|
Molecular Mechanism of HSF1-Upregulated ALDH2 by PKC in Ameliorating Pressure Overload-Induced Heart Failure in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3481623. [PMID: 32626739 PMCID: PMC7313111 DOI: 10.1155/2020/3481623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Evidences abound that HSF1 and ALDH2 are of cardioprotective effect, yet there is still no report on whether HSF1 can regulate ALDH2 to delay the occurrence of heart failure. We first established the pressure overload-induced heart failure model of mice by transverse aortic constriction (TAC) and discovered that, in the forming period of heart failure, changes of HSF1 and ALDH2 expression recorded the consistent trend. When HSF1 was upregulated/downregulated to delay/promote the occurrence of heart failure, PKC and ALDH2 also showed increased/decreased expression. And when ALDH2 was upregulated/downregulated, the role of HSF1 in delaying the occurrence of heart failure strengthened/weakened. Next, we used mechanical stretch to establish a pressure-stimulated myocardial hypertrophy model and discovered an increased expression of both HSF1 and ALDH2. When HSF1 was upregulated/downregulated to increase/decrease the expression of myocardial hypertrophy gene beta-MHC, PKC and ALDH2 recorded an increased/decreased expression. When an inhibitor was used to downregulate the expression of PKC in cardiomyocytes, we found that the role of HSF1 in upregulating ALDH2 beta-MHC weakened. These findings suggest that HSF1 can upregulate the expression of ALDH2 via PKC to promote pressure-stimulated myocardial compensatory hypertrophy, which is an important molecular pathway for HSF1 to ameliorate heart failure.
Collapse
|
15
|
Zhang Y, Yonezawa A, Nakagawa S, Imai S, Denda M, Omura T, Nakagawa T, Matsubara K. Cisplatin, rather than oxaliplatin, increases paracellular permeability of LLC-PK1 cells via activating protein kinase C. Drug Metab Pharmacokinet 2020; 35:111-116. [PMID: 31964622 DOI: 10.1016/j.dmpk.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
The clinical use of cisplatin is limited by its adverse events, particularly serious nephrotoxicity. It was clarified that cisplatin is transported by a kidney-specific organic cation transporter (OCT2). OCT2 also mediates the uptake of oxaliplatin into renal proximal tubular cells; however, this agent does not lead nephrotoxicity. In the present study, we carried out comparative experiments with cisplatin and oxaliplatin using porcine kidney LLC-PK1 cell monolayers. In the fluorescein-labeled isothiocyanate-dextran flux assay, the basolateral application of cisplatin, but not oxaliplatin, resulted in an increase in the paracellular permeability of cell monolayers. Even though the cellular accumulation of platinum at 50 μM oxaliplatin could reach the same level at 30 μM cisplatin, oxaliplatin did not induce hyper-permeability in cell monolayers. Cisplatin, but not oxaliplatin, significantly activated PKC. In addition, the combination of PKC inhibitors recovered the increase in paracellular permeability. In conclusion, pharmacodynamic mechanisms via PKC could explain the difference in nephrotoxicity between cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masaya Denda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Graduate School and Faculty of Pharmaceutical Science, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Poudel K, Thapa RK, Gautam M, Ou W, Soe ZC, Gupta B, Ruttala HB, Thuy HN, Dai PC, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102042. [DOI: 10.1016/j.nano.2019.102042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
|
17
|
Conte C, Moret F, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:876-886. [DOI: 10.1016/j.msec.2019.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
|
18
|
Histological features of skin and subcutaneous tissue in patients with breast cancer who have received neoadjuvant chemotherapy and their relationship to post-treatment edema. Breast Cancer 2019; 27:77-84. [PMID: 31346921 DOI: 10.1007/s12282-019-00996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/14/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lymphedema is a major complication of treatment for breast cancer. Although chemotherapy can cause lymphedema, there have been few reports about histological changes in skin and subcutaneous tissue after chemotherapy. The aim of our study was to determine whether chemotherapy affects blood and lymphatic vessels in the skin and subcutaneous fat and to investigate the relationship between these changes and extent of post-chemotherapy edema. METHODS We compared histological findings in skin and subcutaneous fat of mastectomy specimens from 38 patients who had received NAC (neoadjuvant chemotherapy) and 56 who had not (non-NAC) attending our institution from 2007 to 2016. Patients whose tumor may have affected the area examined were excluded. Blood and lymphatic vessels were identified by CD31 and D2-40, respectively. We assessed microvessel density (MVD), lymphatic microvessel density (MLVD), lumen cross-sectional area (LA), and amount of endothelium (AE) in blood and lymphatic vessels. To minimize surgical effects, we measured edema, defined as ≥ 15% thicker dorsal subcutaneous tissue than baseline, on the contralateral side. RESULTS MVD, LA, and AE of blood vessels were greater and MLVD not significantly different in the skin of NAC patients than in that of non-NAC patients. MVD was greater and AE of blood vessels less in subcutaneous fat of NAC patients than in that of non-NAC patients. Patients with edema had significantly less AE of blood vessels in skin than did those without it. CONCLUSIONS These pathological findings can help to identify patients who will develop edema and improve their treatment.
Collapse
|
19
|
Lage R, Cebro-Márquez M, Rodríguez-Mañero M, González-Juanatey JR, Moscoso I. Omentin protects H9c2 cells against docetaxel cardiotoxicity. PLoS One 2019; 14:e0212782. [PMID: 30794687 PMCID: PMC6386316 DOI: 10.1371/journal.pone.0212782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022] Open
Abstract
Background Association between obesity and cardiovascular diseases is well known, however increased susceptibility of obese patients to develop several cancer types is not so commonly known. Current data suggest that poorer overall survival in cancer patients might be associated to non-cancer-related causes such as higher risk of cardiotoxicity in obese patients treated with chemotherapeutic agents. Omentin, a novel adipokine decreased in obesity, is actually in the spotlight due to its favourable effects on inflammation, glucose homeostasis and cardiovascular diseases. Also, recent data showed that in vitro anthracycline-induced cardiomyocyte apoptosis is counteracted by omentin suggesting its cardioprotective role. Objective Our aim was to evaluate omentin effects against docetaxel toxicity. Results Our data indicate that omentin inhibits docetaxel-induced viability loss and that increased viability is associated to decreased caspase-3 expression and cell death. Although omentin reduces NOX4 expression, it failed to reduce docetaxel-induced reactive oxygen species production. Our results indicate that omentin decreases docetaxel-induced endoplasmic reticulum stress, suggesting that cardioprotective role might be associated to ERS inhibition. Conclusion These data suggest that omentin treatment may contribute to decrease susceptibility to DTX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ricardo Lage
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela—Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- * E-mail: (RL); (IM)
| | - María Cebro-Márquez
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela—Santiago de Compostela, Spain
| | - Moisés Rodríguez-Mañero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela—Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela—Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- * E-mail: (RL); (IM)
| |
Collapse
|
20
|
Mikuła-Pietrasik J, Witucka A, Pakuła M, Uruski P, Begier-Krasińska B, Niklas A, Tykarski A, Książek K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell Mol Life Sci 2019; 76:681-697. [PMID: 30382284 PMCID: PMC6514066 DOI: 10.1007/s00018-018-2954-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
One of the most neglected aspects of chemotherapy are changes, and possible consequences of these changes, that occur in normal somatic cells. In this review, we summarize effects of selected drugs used to treat ovarian cancer (platin derivatives-cisplatin and carboplatin; and taxanes-paclitaxel and docetaxel) on cellular metabolism, acquisition of reactive stroma features, cellular senescence, inflammatory reactions, apoptosis, autophagy, mitophagy, oxidative stress, DNA damage, and angiogenesis in various types of normal cells, including fibroblasts, epithelial cells, endothelial cells, and neurons. The activity of these drugs against the normal cells is presented from a broader perspective of their desirable anti-tumoral effects.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Anna Witucka
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Beata Begier-Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
21
|
Maria ATJ, Partouche L, Goulabchand R, Rivière S, Rozier P, Bourgier C, Le Quellec A, Morel J, Noël D, Guilpain P. Intriguing Relationships Between Cancer and Systemic Sclerosis: Role of the Immune System and Other Contributors. Front Immunol 2019; 9:3112. [PMID: 30687318 PMCID: PMC6335319 DOI: 10.3389/fimmu.2018.03112] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder, characterized by multisystem involvement, vasculopathy, and fibrosis. An increased risk of malignancy is observed in SSc (including breast and lung cancers), and in a subgroup of patients with specific autoantibodies (i.e., anti-RNA polymerase III and related autoantibodies), SSc could be a paraneoplastic syndrome and might be directly related to an immune response against cancer. Herein, we reviewed the literature, focusing on the most recent articles, and shed light onto the potential relationship between cancer and scleroderma regarding temporal and immunological dimensions.
Collapse
Affiliation(s)
- Alexandre Thibault Jacques Maria
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Léo Partouche
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Radjiv Goulabchand
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Sophie Rivière
- Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Pauline Rozier
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Céline Bourgier
- Medical School, Montpellier University, Montpellier, France.,Department of Radiation Oncology, INSERM U1194/IRCM, ICM-Val d'Aurelle, Montpellier, France
| | - Alain Le Quellec
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France
| | - Jacques Morel
- Medical School, Montpellier University, Montpellier, France.,Department of Rheumatology, Lapeyronie Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| | - Philippe Guilpain
- Medical School, Montpellier University, Montpellier, France.,Department of Internal Medicine-Multiorganic Diseases, Local Referral Center for Auto-immune Diseases, Saint-Eloi Hospital, Montpellier University, Montpellier, France.,IRMB, INSERM, CHU Montpellier, Montpellier University, Montpellier, France
| |
Collapse
|
22
|
Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:73-79. [DOI: 10.1016/j.jphotobiol.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022]
|
23
|
Hu T, Yang C, Fu M, Yang J, Du R, Ran X, Yin T, Wang G. Cytotoxic effects of docetaxel as a candidate drug of drug-eluting stent on human umbilical vein endothelial cells and the signaling pathway of cell migration inhibition, adhesion delay and shape change. Regen Biomater 2017; 4:167-178. [PMID: 28596914 PMCID: PMC5458539 DOI: 10.1093/rb/rbx010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX), a paclitaxel analogue, can efficiently inhibit proliferation of vascular smooth muscle cells and has broadly been used as an antiangiogenesis drug. However, as a candidate drug of drug-eluting stent, the effects of DTX on human umbilical vein endothelial cells (HUVECs) are still not well understood. Herein, we investigated the effects of DTX on proliferation, apoptosis, adhesion, migration and morphology of HUVECs in vitro. We found that DTX had the cytostatic and cytotoxic effects at low and high concentrations, respectively. DTX could inhibit the proliferation and migration of HUVECs, induce HUVECs apoptosis, delay HUVECs adhesion and decrease spreading area and aspect ratio of individual cells. The signaling pathway that DTX led to the migration inhibition, adhesion delay and shape change of HUVECs is the VE-cadherin mediated integrin β1/FAK/ROCK signaling pathway. The study will provide a theoretical basis for the clinical application of DTX.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chun Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Meiling Fu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Rolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Correspondence address. Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China. Tel: +86(0)23-65112675; Fax: +86(0)23-65112507; E-mail:
| |
Collapse
|
24
|
Docetaxel-Induced Systemic Sclerosis with Internal Organ Involvement Masquerading as Congestive Heart Failure. Case Reports Immunol 2017; 2017:4249157. [PMID: 28265474 PMCID: PMC5317138 DOI: 10.1155/2017/4249157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis, or scleroderma, is a complex medical disorder characterized by limited or diffuse skin thickening with frequent involvement of internal organs such as lungs, gastrointestinal tract, or kidneys. Docetaxel is a chemotherapeutic agent which has been associated with cutaneous side effects. An uncommon cutaneous side effect of docetaxel is scleroderma-like skin changes that extend from limited to diffuse cutaneous systemic sclerosis. Several case reports have been published regarding the association of docetaxel and systemic sclerosis. However, those reports demonstrated the association between docetaxel and scleroderma-like skin changes without internal organ involvement. Here, we report a case of systemic sclerosis with pulmonary arterial hypertension and a microangiopathic kidney involvement induced by docetaxel chemotherapy. After an exhaustive literature review, this could be the first case of docetaxel-induced systemic sclerosis involving internal organs.
Collapse
|
25
|
Meller S, Zipfel L, Gevensleben H, Dietrich J, Ellinger J, Majores M, Stein J, Sailer V, Jung M, Kristiansen G, Dietrich D. CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients. Epigenetics 2016; 11:871-880. [PMID: 27689475 DOI: 10.1080/15592294.2016.1241931] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = -0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01-1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00-1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.
Collapse
Affiliation(s)
- Sebastian Meller
- a University Hospital Bonn, Institute of Pathology , Bonn , Germany
| | - Lisa Zipfel
- a University Hospital Bonn, Institute of Pathology , Bonn , Germany
| | | | - Jörn Dietrich
- b Department of Otolaryngology , Head and Neck Surgery, University Hospital Bonn , Bonn , Germany
| | - Jörg Ellinger
- c Department of Urology , University Hospital Bonn , Bonn , Germany
| | | | - Johannes Stein
- c Department of Urology , University Hospital Bonn , Bonn , Germany
| | - Verena Sailer
- e Department of Pathology and Laboratory Medicine , New York Weill Cornell Medicine of Cornell University , NY , USA.,f Englander Institute for Precision Medicine, Weill Cornell Medicine of Cornell University New York , NY , USA
| | - Maria Jung
- a University Hospital Bonn, Institute of Pathology , Bonn , Germany
| | - Glen Kristiansen
- a University Hospital Bonn, Institute of Pathology , Bonn , Germany
| | - Dimo Dietrich
- a University Hospital Bonn, Institute of Pathology , Bonn , Germany.,b Department of Otolaryngology , Head and Neck Surgery, University Hospital Bonn , Bonn , Germany
| |
Collapse
|