1
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
2
|
Siska W, Schultze AE, Ennulat D, Biddle K, Logan M, Adedeji AO, Arndt T, Aulbach A. Scientific and Regulatory Policy Committee Points to Consider: Integration of Clinical Pathology Data With Anatomic Pathology Data in Nonclinical Toxicology Studies. Vet Clin Pathol 2022; 51:311-329. [PMID: 35975895 DOI: 10.1111/vcp.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Integrating clinical pathology data with anatomic pathology data is a common practice when reporting findings in the context of nonclinical toxicity studies and aids in understanding and communicating the nonclinical safety profile of test articles in development. Appropriate pathology data integration requires knowledge of analyte and tissue biology, species differences, methods of specimen acquisition and analysis, study procedures, and an understanding of the potential causes and effects of a variety of pathophysiologic processes. Neglecting these factors can lead to inappropriate data integration or a missed opportunity to enhance understanding and communication of observed changes. In such cases, nonclinical safety information relevant to human safety risk assessment may be misrepresented or misunderstood. This "Points to Consider" manuscript presents general concepts regarding pathology data integration in nonclinical studies, considerations for avoiding potential oversights and errors in data integration, and focused discussion on topics relevant to data integration for several key organ systems, including liver, kidney, and cardiovascular systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, USA
| | | |
Collapse
|
3
|
Siska W, Schultze AE, Ennulat D, Biddle K, Logan M, Adedeji AO, Arndt T, Aulbach AD. Scientific and Regulatory Policy Committee Points to Consider: Integration of Clinical Pathology Data With Anatomic Pathology Data in Nonclinical Toxicology Studies. Toxicol Pathol 2022; 50:808-826. [DOI: 10.1177/01926233221108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article is temporarily under embargo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, USA
| | | |
Collapse
|
4
|
Agostinucci K, Manfredi TG, Cosmas AC, Vetter FJ, Engle SK. Comparison of ANP and BNP Granular Density in Atria of Rats After Physiological and Pathological Hypertrophy. Toxicol Pathol 2022; 50:497-506. [PMID: 35608026 DOI: 10.1177/01926233221097970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones located in atria granules. Both peptides respond to cardiac pressure and volume dynamics and accordingly serve as translation biomarkers for the clinical treatment of heart failure. Serum ANP and BNP play central secretary roles in blood pressure and cardiac output regulation and have proven utility as differential biomarkers of cardiovascular proficiency and drug-induced maladaptation, yet both peptides are impervious to exercise-induced hypertrophy. We employed immunoelectron microscopy to examine the effects of 28 days of chronic swim exercise or administration of a PPARγ agonist on atrial granules and their stored natriuretic peptides in Sprague Dawley rats. Chronic swimming and drug treatment both resulted in a 15% increase in heart weight compared with controls, with no treatment effects on perinuclear granule area in the left atria (LAs). Drug treatment resulted in larger size granules with greater BNP density in the right atria. Comparing swimming and PPARγ agonist treatment effects on ANP:BNP granule density ratios between atrial chambers revealed a shift toward a greater proportion of ANP than BNP in LAs of swim-trained rats. These data suggest a distinction in the population of ANP and BNP after chronic swim or PPARγ that makes it a novel metric for the differentiation of pathological and physiological hypertrophy.
Collapse
Affiliation(s)
- Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Thomas G Manfredi
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Arthur C Cosmas
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA.,Select Medical Sports Medicine and Outpatient Rehabilitation, West Hartford, Connecticut, USA
| | - Frederick J Vetter
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, USA
| | - Steven K Engle
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Banks E, Grondine M, Bhavsar D, Barry E, Kettle JG, Reddy VP, Brown C, Wang H, Mettetal JT, Collins T, Adeyemi O, Overman R, Lawson D, Harmer AR, Reimer C, Drew L, Packer MJ, Cosulich S, Jones RDO, Shao W, Wilson D, Guichard S, Fawell S, Anjum R. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Sci Transl Med 2021; 12:12/541/eaaz2481. [PMID: 32350132 DOI: 10.1126/scitranslmed.aaz2481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.
Collapse
Affiliation(s)
- Erica Banks
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Michael Grondine
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Deepa Bhavsar
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Evan Barry
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Jason G Kettle
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Crystal Brown
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Haiyun Wang
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Jerome T Mettetal
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Teresa Collins
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Oladipupo Adeyemi
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Ross Overman
- Discovery Sciences, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Deborah Lawson
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Alexander R Harmer
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Corinne Reimer
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Lisa Drew
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | | | | | - Rhys DO Jones
- DMPK, Oncology R&D, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Wenlin Shao
- Projects, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - David Wilson
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Sylvie Guichard
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Stephen Fawell
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA
| | - Rana Anjum
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Boston, MA 02451, USA.
| |
Collapse
|
6
|
Collins T, Gray K, Bista M, Skinner M, Hardy C, Wang H, Mettetal JT, Harmer AR. Quantifying the relationship between inhibition of VEGF receptor 2, drug-induced blood pressure elevation and hypertension. Br J Pharmacol 2018; 175:618-630. [PMID: 29161763 DOI: 10.1111/bph.14103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Several anti-angiogenic cancer drugs that inhibit VEGF receptor (VEGFR) signalling for efficacy are associated with a 15-60% incidence of hypertension. Tyrosine kinase inhibitors (TKIs) that have off-target activity at VEGFR-2 may also cause blood pressure elevation as an undesirable side effect. Therefore, the ability to translate VEGFR-2 off-target potency into blood pressure elevation would be useful in development of novel TKIs. Here, we have sought to quantify the relationship between VEGFR-2 inhibition and blood pressure elevation for a range of kinase inhibitors. EXPERIMENTAL APPROACH Porcine aortic endothelial cells overexpressing VEGFR-2 (PAE) were used to determine IC50 for VEGFR-2 phosphorylation. These IC50 values were compared with published reports of exposure attained during clinical use and the corresponding incidence of all-grade hypertension. Unbound average plasma concentration (Cav,u ) was selected to be the most appropriate pharmacokinetic parameter. The pharmacokinetic-pharmacodynamic (PKPD) relationship for blood pressure elevation was investigated for selected kinase inhibitors, using data derived either from clinical papers or from rat telemetry experiments. KEY RESULTS All-grade hypertension was predominantly observed when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . Furthermore, based on the PKPD analysis, an exposure-dependent blood pressure elevation >1 mmHg was observed only when the Cav,u was >0.1-fold of the VEGFR-2 (PAE) IC50 . CONCLUSIONS AND IMPLICATIONS Taken together, these data show that the risk of blood pressure elevation is proportional to the amount of VEGFR-2 inhibition, and a margin of >10-fold between VEGFR-2 IC50 and Cav,u appears to confer a minimal risk of hypertension.
Collapse
Affiliation(s)
- Teresa Collins
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Kelly Gray
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Michal Bista
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Matt Skinner
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Christopher Hardy
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| | - Haiyun Wang
- AstraZeneca, Gatehouse Park, Waltham, MA, 02451, USA
| | | | - Alexander R Harmer
- AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4, 0WG, UK
| |
Collapse
|
7
|
Kim K, Chini N, Fairchild DG, Engle SK, Reagan WJ, Summers SD, Mirsalis JC. Evaluation of Cardiac Toxicity Biomarkers in Rats from Different Laboratories. Toxicol Pathol 2016; 44:1072-1083. [PMID: 27638646 DOI: 10.1177/0192623316668276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a great need for improved diagnostic and prognostic accuracy of potential cardiac toxicity in drug development. This study reports the evaluation of several commercially available biomarker kits by 3 institutions (SRI, Eli Lilly, and Pfizer) for the discrimination between myocardial degeneration/necrosis and cardiac hypertrophy as well as the assessment of the interlaboratory and interplatform variation in results. Serum concentrations of natriuretic peptides (N-terminal pro-atrial natriuretic peptide [NT-proANP] and N-terminal pro-brain natriuretic peptide [NT-proBNP]), cardiac and skeletal troponins (cTnI, cTnT, and sTnI), myosin light chain 3 (Myl3), and fatty acid binding protein 3 (FABP3) were assessed in rats treated with minoxidil (MNX) and isoproterenol (ISO). MNX caused increased heart-to-body weight ratios and prominent elevations in NT-proANP and NT-proBNP concentrations detected at 24-hr postdose without elevation in troponins, Myl3, or FABP3 and with no abnormal histopathological findings. ISO caused ventricular leukocyte infiltration, myocyte fibrosis, and necrosis with increased concentrations of the natriuretic peptides, cardiac troponins, and Myl3. These results reinforce the advantages of a multimarker strategy in elucidating the underlying cause of cardiac insult and detecting myocardial tissue damage at 24-hr posttreatment. The interlaboratory and interplatform comparison analyses also showed that the data obtained from different laboratories and platforms are highly correlated and reproducible, making these biomarkers widely applicable in preclinical studies.
Collapse
Affiliation(s)
- Kyuri Kim
- 1 SRI International, Menlo Park, California, USA
| | - Naseem Chini
- 1 SRI International, Menlo Park, California, USA
| | | | - Steven K Engle
- 2 Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana, USA
| | - William J Reagan
- 3 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Sandra D Summers
- 3 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | | | | |
Collapse
|