1
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
2
|
Yuan Y, Xu W, Li L, Guo T, Liu B, Xiao J, Yin Y, Zhang X. A Streptococcus pneumoniae endolysin mutant protein ΔA146Ply elicits rapid broad-spectrum mucosal protection in mice via upregulation of GPX4 through TLR4/IRG1/NRF2 to alleviate macrophage ferroptosis. Free Radic Biol Med 2024; 222:344-360. [PMID: 38945457 DOI: 10.1016/j.freeradbiomed.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Innovative solutions for rapid protection against broad-spectrum infections are very important in dealing with complex infection environments. We utilized a functionally inactive mutated endolysin protein of Streptococcus pneumoniae (ΔA146Ply) to immunize mice against pneumonic infections by multidrug-resistant bacteria, Candida albicans and influenza virus type A. ΔA146Ply protection relied on both immunized tissue-resident and monocyte-derived alveolar macrophages and inhibited infection induced ferroptosis that upregulated expression of GPX4 (glutathione peroxidase) in alveolar macrophages. Ferroptosis resistance endowed macrophages with enhanced phagocytosis by inhibiting lipid peroxidation during infection. Moreover, we demonstrated ΔA146Ply upregulated GPX4 through the TLR4/IRG1/NRF2 pathway. ΔA146Ply also induced ferroptosis inhibition and phagocytosis improvement in human monocytes. This mode of action is a novel and potentially prophylactic and rapid broad-spectrum anti-infection mechanism. Our study provides new insights into protective interventions that act by regulating ferroptosis to improve multiple pathogen resistance via GPX4 targeting.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing, 404100, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yibin Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Li L, Li J, Li W, Ma Y, Li S. Spleen derived monocytes regulate pulmonary vascular permeability in Hepatopulmonary syndrome through the OSM-FGF/FGFR1 signaling. Transl Res 2024; 271:93-104. [PMID: 38797433 DOI: 10.1016/j.trsl.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Wendeng Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
4
|
Radbel J, Meshanni JA, Vayas KN, Le-Hoang O, Abramova E, Zhou P, Joseph LB, Laskin JD, Gow AJ, Laskin DL. Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia. Toxicol Sci 2024; 200:299-311. [PMID: 38749002 PMCID: PMC11285192 DOI: 10.1093/toxsci/kfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Oahn Le-Hoang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
5
|
Guttenberg MA, Vose AT, Birukova A, Lewars K, Cumming RI, Albright MC, Mark JI, Salazar CJ, Swaminathan S, Yu Z, Sokolenko YV, Bunyan E, Yaeger MJ, Fessler MB, Que LG, Gowdy KM, Misharin AV, Tighe RM. Tissue-Resident Alveolar Macrophages Reduce Ozone-induced Inflammation via MerTK-mediated Efferocytosis. Am J Respir Cell Mol Biol 2024; 70:493-506. [PMID: 38386777 PMCID: PMC11160417 DOI: 10.1165/rcmb.2023-0390oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at ∼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.
Collapse
Affiliation(s)
- Marissa A. Guttenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Aaron T. Vose
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Anastasiya Birukova
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Kaitlyn Lewars
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - R. Ian Cumming
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Michaela C. Albright
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Jasper I. Mark
- Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Claudia J. Salazar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Zhan Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yuliana V. Sokolenko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Elsie Bunyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio; and
| | - Michael B. Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Loretta G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio; and
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Robert M. Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Han C, Zhai Y, Wang Y, Peng X, Zhang X, Dai B, Leng Y, Zhang Z, Qi S. Intravital imaging of splenic classical monocytes modifying the hepatic CX3CR1 + cells motility to exacerbate liver fibrosis via spleen-liver axis. Theranostics 2024; 14:2210-2231. [PMID: 38505603 PMCID: PMC10945343 DOI: 10.7150/thno.87791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.
Collapse
Affiliation(s)
- Chenlu Han
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Zhai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuke Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuwen Peng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xian Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bolei Dai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Shuhong Qi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
7
|
Li Y, Liu H, Zhao D, Zhang D. Spleen contributes to chronic restraint stress-induced lung injury through splenic CD11b + cells. Int Immunopharmacol 2024; 126:111258. [PMID: 37992443 DOI: 10.1016/j.intimp.2023.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Chronic stress can induce lung injury. The spleen, as the largest peripheral immune organ, plays a crucial role in various lung diseases. Our previous study found that the spleen underwent significant changes during chronic restraint stress (CRS). However, the exact role of the spleen in CRS-induced lung injury remains unclear. In this study, we found that CRS could increase lung index. CRS could lead to alterations of the lungs such as destruction of alveolar wall, thickening of alveolar septa, dilation of pulmonary capillaries, and increased inflammatory cell infiltration. CRS increases the concentration of malondialdehyde (MDA), decreases the level of surfactant protein A (SP-A), and elevates the levels of pro-inflammatory factors (TNF-α, IL-6, and IL-1β) in the lungs. Additionally, CRS could increase the proportions and numbers of CD11b+Ly6ChiLy6G- monocytes in the lung, while cannot alter proportions and numbers of CD3-NK1.1+ NK cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD11b+Ly6G+ neutrophils. Moreover, the levels of inflammatory markers in lung tissues were positively correlated with the proportion of CD11b+Ly6ChiLy6G- monocytes. Interestingly, splenectomy inhibited CRS-induced lung injury and attenuated the alteration in the proportion of CD11b+Ly6ChiLy6G- monocytes in the lungs induced by CRS. Moreover, splenic CD11b+ cells, rather than splenic CD11b- cells, transfused into splenectomized mice, and subsequently exposed to CRS, can cause lung injury. These results suggest that CRS could induce lung injury and CD11b+Ly6ChiLy6G- monocytes aggregation in the lung. The spleen could contribute to CRS-induced lung injury. Furthermore, splenic CD11b+ cells might play an important role in CRS-induced lung injury.
Collapse
Affiliation(s)
- Yu Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Hailing Liu
- Department of Clinical Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danwen Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danjie Zhang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Guttenberg M, Vose A, Birukova A, Lewars K, Cumming R, Albright M, Mark J, Salazar C, Swaminathan S, Yu Z, Sokolenko Y, Bunyan E, Yaeger M, Fessler M, Que L, Gowdy K, Misharin A, Tighe R. Tissue-resident alveolar macrophages reduce O 3-induced inflammation via MerTK mediated efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565865. [PMID: 37986982 PMCID: PMC10659406 DOI: 10.1101/2023.11.06.565865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Lung inflammation, caused by acute exposure to ozone (O3) - one of the six criteria air pollutants - is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung and their number increases following O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. Here, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage tracing experiments showed that 12, 24, and 72 h after exposure to O3 (2 ppm) for 3h all AMØs were tissue-resident origin. Similarly, in humans exposed to FA and O3 (200 ppb) for 135 minutes, we did not observe ~21h post-exposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØ demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK - a key receptor involved in efferocytosis - also resulted in impaired clearance of apoptotic neutrophils followed O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.
Collapse
Affiliation(s)
- M.A. Guttenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - A.T. Vose
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - A. Birukova
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - K. Lewars
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - R.I. Cumming
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - M.C. Albright
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - J.I. Mark
- Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C.J. Salazar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - S. Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL
| | - Z. Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL
| | - Yu.V. Sokolenko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL
| | - E. Bunyan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL
| | - M.J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH
| | - M.B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - L.G. Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| | - K.M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH
| | - A.V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL
| | - R.M. Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
9
|
Jackson TW, House JS, Henriquez AR, Schladweiler MC, Jackson KM, Fisher AA, Snow SJ, Alewel DI, Motsinger-Reif AA, Kodavanti UP. Multi-tissue transcriptomic and serum metabolomic assessment reveals systemic implications of acute ozone-induced stress response in male Wistar Kyoto rats. Metabolomics 2023; 19:81. [PMID: 37690105 DOI: 10.1007/s11306-023-02043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Air pollutant exposures have been linked to systemic disease; however, the underlying mechanisms between responses of the target tissue and systemic effects are poorly understood. A prototypic inducer of stress, ozone causes respiratory and systemic multiorgan effects through activation of a neuroendocrine stress response. The goal of this study was to assess transcriptomic signatures of multiple tissues and serum metabolomics to understand how neuroendocrine and adrenal-derived stress hormones contribute to multiorgan health outcomes. Male Wistar Kyoto rats (12-13 weeks old) were exposed to filtered air or 0.8 ppm ozone for 4-hours, and blood/tissues were collected immediately post-exposure. Each tissue had distinct expression profiles at baseline. Ozone changed 1,640 genes in lung, 274 in hypothalamus, 2,516 in adrenals, 1,333 in liver, 1,242 in adipose, and 5,102 in muscle (adjusted p-value < 0.1, absolute fold-change > 50%). Serum metabolomic analysis identified 863 metabolites, of which 447 were significantly altered in ozone-exposed rats (adjusted p-value < 0.1, absolute fold change > 20%). A total of 6 genes were differentially expressed in all 6 tissues. Glucocorticoid signaling, hypoxia, and GPCR signaling were commonly changed, but ozone induced tissue-specific changes in oxidative stress, immune processes, and metabolic pathways. Genes upregulated by TNF-mediated NFkB signaling were differentially expressed in all ozone-exposed tissues, but those defining inflammatory response were tissue-specific. Upstream predictor analysis identified common mediators of effects including glucocorticoids, although the specific genes responsible for these predictors varied by tissue. Metabolomic analysis showed major changes in lipids, amino acids, and metabolites linked to the gut microbiome, concordant with transcriptional changes identified through pathway analysis within liver, muscle, and adipose tissues. The distribution of receptors and transcriptional mechanisms underlying the ozone-induced stress response are tissue-specific and involve induction of unique gene networks and metabolic phenotypes, but the shared initiating triggers converge into shared pathway-level responses. This multi-tissue transcriptomic analysis, combined with circulating metabolomic assessment, allows characterization of the systemic inhaled pollutant-induced stress response.
Collapse
Affiliation(s)
- Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andres R Henriquez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Sam J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- ICF, Durham, NC, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Allison A Motsinger-Reif
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
10
|
Mazumder MHH, Gandhi J, Majumder N, Wang L, Cumming RI, Stradtman S, Velayutham M, Hathaway QA, Shannahan J, Hu G, Nurkiewicz TR, Tighe RM, Kelley EE, Hussain S. Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone. Part Fibre Toxicol 2023; 20:15. [PMID: 37085867 PMCID: PMC10122302 DOI: 10.1186/s12989-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Jasleen Gandhi
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Nairrita Majumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Lei Wang
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert Ian Cumming
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Murugesan Velayutham
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Quincy A Hathaway
- Heart and Vascular Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gangqing Hu
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
11
|
Malaviya R, Gardner CR, Rancourt RC, Smith LC, Abramova EV, Vayas KN, Gow AJ, Laskin JD, Laskin DL. Lung injury and oxidative stress induced by inhaled chlorine in mice is associated with proinflammatory activation of macrophages and altered bioenergetics. Toxicol Appl Pharmacol 2023; 461:116388. [PMID: 36690086 PMCID: PMC9960611 DOI: 10.1016/j.taap.2023.116388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA.
| |
Collapse
|
12
|
Kim JH, Hong SH, Moon NL, Kang DR. Effects of Exposure Duration and Exposure Levels of Ambient Air Pollutants on the Risk of Polycystic Ovarian Syndrome: A 2015-2019 Korean Population-Based Cohort Study. TOXICS 2022; 10:542. [PMID: 36136507 PMCID: PMC9501187 DOI: 10.3390/toxics10090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to ambient air pollution is associated with an increased risk of menstrual disorders and infertility. This study examined the relationships between the levels and duration of air pollution exposure and the risk of polycystic ovarian syndrome (PCOS) using Korean population-based cohort data (2015-2019). Real-time data on PM10, PM2.5, O3, CO, SO2, and NO2 were provided by the Korean Ministry of Environment. The average monthly air pollutant concentration from 1 January 2014 to 31 December 2018 was analyzed. To assess individual-level exposure to air pollutants, a spatial prediction model and an area-averaging approach were used. In total, 237,582 PCOS cases were analyzed. The annual age-adjusted PCOS incidence was 6.70, 8.28, 9.73, 11.58, and 11.97% from 2015-2019, respectively. The PCOS risk increased 1.29-1.32, 1.43-1.52, and 1.32-fold following exposure to the 2-year and 3-year average levels of PM2.5, O3, and NO2, respectively, compared to their 1-year average levels. The PCOS risk increased 1.75-fold (95% confidence interval: 1.66-1.85) in the fourth-quartile for the NO2 level. Increased SO2 and CO levels in the second- and third-quartiles were also associated with an increased PCOS risk. Exposure to air pollutants thus increased the risk for PCOS in the Korean population.
Collapse
Affiliation(s)
- Ju-Hee Kim
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea
| | - Se-Hwa Hong
- Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Na-Lae Moon
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| |
Collapse
|
13
|
Wang F, Chen Q, Zhan Y, Yang H, Zhang A, Ling X, Zhang H, Zhou W, Zou P, Sun L, Huang L, Chen H, Ao L, Liu J, Cao J, Zhou N. Acute effects of short-term exposure to ambient air pollution on reproductive hormones in young males of the MARHCS study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145691. [PMID: 33611002 DOI: 10.1016/j.scitotenv.2021.145691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which is associated with male reproductive health. However, it is unknown the acute effects of ambient air pollutants exposure on male reproductive hormones. The current study, we measured serum levels of reproductive hormone in 2030 blood samples gathered from The Male Reproductive Health in Chongqing College Students (MARHCS) cohort study. We derived a full coverage of ambient air pollutant (PM10, PM2.5, SO2, NO2, CO and O3) concentrations by employing machine learning algorithms, and used a mixed-effect model to estimate single-day and cumulative effects of air pollutants exposure on serum reproductive hormones. Our results showed that (1) PM10 and PM2.5 concentrations were positively associated with estradiol (E2) in both single and cumulative lag days, but were negatively associated with the ratio of Testosterone/E2 (the T/E2 ratio). NO2 was positively associated with estradiol at lag day 2 (95% CI: 0.290, 0.881; corrected P = 0.048) and lag 0-2 days (95% CI: 0.523, 1.337; corrected P = 0.003), with progesterone (P) at lag day 2 and lag day 3 (corrected P < 0.05). There was also a positive association between CO exposure and progesterone at lag day 2. (2) SO2 was inversely associated with E2 at lag day 3, 4 and lag 0-4 days, and progesterone at lag day 0, 1, 2 and lag 0-1, 0-2, 0-4 days, but positively associated with the T/E2 ratio at lag day 3, 4 and lag 0-4 days (corrected P < 0.05). O3 exposure was negatively associated with E2 at lag day 3 (95% CI: -0.216, -0.074, corrected P = 0.03). (3) No significant associations were found between the cumulative daily average air pollutant exposure of CO, O3 and hormone outcomes. This study suggests that short-term exposure to air pollutants may thus alter reproductive hormone levels, especially on serum estradiol, progesterone levels and the T/E2 ratio.
Collapse
Affiliation(s)
- Furong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Zhang
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenzheng Zhou
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
14
|
Migliaccio CT, Hamilton RF, Shaw PK, Rhoderick JF, Deb S, Bhargava R, Harkema JR, Holian A. Respiratory and systemic impacts following MWCNT inhalation in B6C3F1/N mice. Part Fibre Toxicol 2021; 18:16. [PMID: 33771183 PMCID: PMC7995731 DOI: 10.1186/s12989-021-00408-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/17/2021] [Indexed: 01/14/2023] Open
Abstract
Background A very pure multi-walled carbon nanotube (MWCNT) that was shown to have very low toxicity in vitro, was evaluated for lung and systemic effects and distribution following inhalation exposure. Methods B6C3F1/N mice were exposed to varying doses (0, 0.06, 0.2, and 0.6 mg/m3) of the (99.1% carbon) MWCNT by inhalation for 30 days (excluding weekends). Ten days following the last exposure, the lungs and spleen were harvested and processed for histology and immune cell population assessment. In addition, lung lavage cells and fluid were analyzed. Stimulated Raman scattering (SRS) was used to identify particles in the lungs, spleen, kidneys, liver, mediastinal and brachial lymph nodes, and olfactory bulb. Splenic tissue sections were stained with hematoxylin and eosin (H&E) for light microscopic histopathology assessment. Blood plasma was analyzed for cytokines and cathepsins. A section of the spleen was processed for RNA isolation and relative gene expression for 84 inflammation-related cytokines/chemokines. Results Following MWCNT exposure, particles were clearly evident in the lungs, spleens, lymph nodes and olfactory bulbs, (but not livers or kidneys) of exposed mice in a dose-dependent manner. Examination of the lavaged lung cells was unremarkable with no significant inflammation indicated at all particle doses. In contrast, histological examination of the spleen indicated the presence of apoptotic bodies within T cells regions of the white pulp area. Isolated splenic leukocytes had significant changes in various cells including an increased number of proinflammatory CD11b+Ly6C+ splenic cells. The gene expression studies confirmed this observation as several inflammation-related genes were upregulated particularly in the high dose exposure (0.6 mg/m3). Blood plasma evaluations showed a systemic down-regulation of inflammatory cytokines and a dose-dependent up-regulation of lysosomal cathepsins. Conclusions The findings in the lungs were consistent with our hypothesis that this MWCNT exposure would result in minimal lung inflammation and injury. However, the low toxicity of the MWCNT to lung macrophages may have contributed to enhanced migration of the MWCNT to the spleen through the lymph nodes, resulting in splenic toxicity and systemic changes in inflammatory mediators. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00408-z.
Collapse
Affiliation(s)
- Christopher T Migliaccio
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Pamela K Shaw
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Joseph F Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sanghamitra Deb
- Department of Chemistry and Biochemistry, Alabama Analytical Research Center, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rohit Bhargava
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
15
|
Abstract
ABSTRACT Macrophage, as an integral component of the immune system and the first responder to local damage, is on the front line of defense against infection. Over the past century, the prevailing view of macrophage origin states that all macrophage populations resided in tissues are terminally differentiated and replenished by monocytes from bone-marrow progenitors. Nonetheless, this theory has been reformed by ground-breaking discoveries from the past decades. It is now believed that tissue-resident macrophages (TRMs) are originated from the embryonic precursors and seeded in tissue prenatally. They can replenish via self-renewal throughout the lifespan. Indeed, recent studies have demonstrated that tissue-resident macrophages should not be classified by the over-simplified macrophage polarization (M1/M2) dogma during inflammation. Moreover, multiple lines of evidence have indicated that tissue-resident macrophages play critical roles in maintaining tissue homeostasis and facilitating tissue repair through controlling infection and resolving inflammation. In this review, we summarize the properties of resident macrophages in the lung, spleen, and heart, and further highlight the impact of TRM populations on inflammation control and tissue repair. We also discuss the potential role of local proliferation in maintaining a physiologically stable TRM pool in response to acute inflammation.
Collapse
Affiliation(s)
- Xingjiang Mu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | |
Collapse
|
16
|
Sectm1a Facilitates Protection against Inflammation-Induced Organ Damage through Promoting TRM Self-Renewal. Mol Ther 2020; 29:1294-1311. [PMID: 33279722 DOI: 10.1016/j.ymthe.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-resident macrophages (TRMs) are sentinel cells for maintaining tissue homeostasis and organ function. In this study, we discovered that lipopolysaccharide (LPS) administration dramatically reduced TRM populations and suppressed their self-renewal capacities in multiple organs. Using loss- and gain-of-function approaches, we define Sectm1a as a novel regulator of TRM self-renewal. Specifically, at the earlier stage of endotoxemia, Sectm1a deficiency exaggerated acute inflammation-induced reduction of TRM numbers in multiple organs by suppressing their proliferation, which was associated with more infiltrations of inflammatory monocytes/neutrophils and more serious organ damage. By contrast, administration of recombinant Sectm1a enhanced TRM populations and improved animal survival upon endotoxin challenge. Mechanistically, we identified that Sectm1a-induced upregulation in the self-renewal capacity of TRM is dependent on GITR-activated T helper cell expansion and cytokine production. Meanwhile, we found that TRMs may play an important role in protecting local vascular integrity during endotoxemia. Our study demonstrates that Sectm1a contributes to stabling TRM populations through maintaining their self-renewal capacities, which benefits the host immune response to acute inflammation. Therefore, Sectm1a may serve as a new therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
17
|
Patial S, Saini Y. Lung macrophages: current understanding of their roles in Ozone-induced lung diseases. Crit Rev Toxicol 2020; 50:310-323. [PMID: 32458707 DOI: 10.1080/10408444.2020.1762537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through the National Ambient Air Quality Standards (NAAQS), the Clean Air Act of the United States outlines acceptable levels of six different air pollutants considered harmful to humans and the environment. Included in this list is ozone (O3), a highly reactive oxidant gas, respiratory health hazard, and common environmental air pollutant at ground level. The respiratory health effects due to O3 exposure are often associated with molecular and cellular perturbations in the respiratory tract. Periodic review of NAAQS requires comprehensive scientific evaluation of the public health effects of these pollutants, which is formulated through integrated science assessment (ISA) of the most policy-relevant scientific literature. This review focuses on the protective and pathogenic effects of macrophages in the O3-exposed respiratory tract, with emphasis on mouse model-based toxicological studies. Critical findings from 39 studies containing the words O3, macrophage, mice, and lung within the full text were assessed. While some of these studies highlight the presence of disease-relevant pathogenic macrophages in the airspaces, others emphasize a protective role for macrophages in O3-induced lung diseases. Moreover, a comprehensive list of currently known macrophage-specific roles in O3-induced lung diseases is included in this review and the significant knowledge gaps that still exist in the field are outlined. In conclusion, there is a vital need in this field for additional policy-relevant scientific information, including mechanistic studies to further define the role of macrophages in response to O3.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Dye JA, Ledbetter AD, Hargrove MM, Richards JE, Kodavanti UP. Exacerbation of ozone-induced pulmonary and systemic effects by β 2-adrenergic and/or glucocorticoid receptor agonist/s. Sci Rep 2019; 9:17925. [PMID: 31784596 PMCID: PMC6884479 DOI: 10.1038/s41598-019-54269-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/10/2019] [Indexed: 12/16/2022] Open
Abstract
Agonists of β2 adrenergic receptors (β2AR) and glucocorticoid receptors (GR) are prescribed to treat pulmonary diseases. Since ozone effects are mediated through the activation of AR and GR, we hypothesized that the treatment of rats with relevant therapeutic doses of long acting β2AR agonist (LABA; clenbuterol; CLEN) and/or GR agonist (dexamethasone; DEX) would exacerbate ozone-induced pulmonary and systemic changes. In the first study, male 12-week-old Wistar-Kyoto rats were injected intraperitoneally with vehicle (saline), CLEN (0.004 or 0.02 mg/kg), or DEX (0.02 or 0.1 mg/kg). Since dual therapy is commonly used, in the second study, rats received either saline or combined CLEN + DEX (each at 0.005 or 0.02 mg/kg) one day prior to and on both days of exposure (air or 0.8ppm ozone, 4 hr/day x 2-days). In air-exposed rats CLEN, DEX or CLEN + DEX did not induce lung injury or inflammation, however DEX and CLEN + DEX decreased circulating lymphocytes, spleen and thymus weights, increased free fatty acids (FFA) and produced hyperglycemia and glucose intolerance. Ozone exposure of vehicle-treated rats increased bronchoalveolar lavage fluid protein, albumin, neutrophils, IL-6 and TNF-α. Ozone decreased circulating lymphocytes, increased FFA, and induced hypeerglycemia and glucose intolerance. Drug treatment did not reverse ozone-induced ventillatory changes, however, lung effects (protein and albumin leakage, inflammation, and IL-6 increase) were exacerbated by CLEN and CLEN + DEX pre-treatment in a dose-dependent manner (CLEN > CLEN + DEX). Systemic effects induced by DEX and CLEN + DEX but not CLEN in air-exposed rats were analogous to and more pronounced than those induced by ozone. These data suggest that adverse air pollution effects might be exacerbated in people receiving LABA or LABA plus glucocorticoids.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, Tennessee, United States of America
| | | | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Colette N Miller
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, Tennessee, United States of America
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Allen D Ledbetter
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Marie M Hargrove
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, Tennessee, United States of America
| | - Judy E Richards
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America.
| |
Collapse
|
19
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicol Sci 2019; 164:9-20. [PMID: 29846720 DOI: 10.1093/toxsci/kfy129] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Air pollutant exposures are linked to cardiopulmonary diseases, diabetes, metabolic syndrome, neurobehavioral conditions, and reproductive abnormalities. Significant effort is invested in understanding how pollutants encountered by the lung might induce effects in distant organs. The role of circulating mediators has been predicted; however, their origin and identity have not been confirmed. New evidence has emerged which implicates the role of neuroendocrine sympathetic-adrenal-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA) stress axes in mediating a wide array of systemic and pulmonary effects. Our recent studies using ozone exposure as a prototypical air pollutant demonstrate that increases in circulating adrenal-derived stress hormones (epinephrine and cortisol/corticosterone) contribute to lung injury/inflammation and metabolic effects in the liver, pancreas, adipose, and muscle tissues. When stress hormones are depleted by adrenalectomy in rats, most ozone effects including lung injury/inflammation are diminished. Animals treated with antagonists for adrenergic and glucocorticoid receptors show inhibition of the pulmonary and systemic effects of ozone, whereas treatment with agonists restore and exacerbate the ozone-induced injury/inflammation phenotype, implying the role of neuroendocrine activation. The neuroendocrine system is critical for normal homeostasis and allostatic activation; however, chronic exposure to stressors may lead to increases in allostatic load. The emerging mechanisms by which circulating mediators are released and are responsible for producing multiorgan effects of air pollutants insists upon a paradigm shift in the field of air pollution and health. Moreover, since these neuroendocrine responses are linked to both chemical and nonchemical stressors, the interactive influence of air pollutants, lifestyle, and environmental factors requires further study.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina, 27711
| | - Daniel L Costa
- Emeritus, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
21
|
Snow SJ, Cheng WY, Henriquez A, Hodge M, Bass V, Nelson GM, Carswell G, Richards JE, Schladweiler MC, Ledbetter AD, Chorley B, Gowdy KM, Tong H, Kodavanti UP. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil. Toxicol Sci 2019; 163:57-69. [PMID: 29329427 DOI: 10.1093/toxsci/kfy003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wan-Yun Cheng
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Myles Hodge
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Virgina Bass
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Gail M Nelson
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Gleta Carswell
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy E Richards
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Allen D Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Brian Chorley
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Haiyan Tong
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| |
Collapse
|
22
|
Natanov R, Gueler F, Falk CS, Kühn C, Maus U, Boyle EC, Siemeni T, Knoefel AK, Cebotari S, Haverich A, Madrahimov N. Blood cytokine expression correlates with early multi-organ damage in a mouse model of moderate hypothermia with circulatory arrest using cardiopulmonary bypass. PLoS One 2018; 13:e0205437. [PMID: 30308065 PMCID: PMC6181365 DOI: 10.1371/journal.pone.0205437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiopulmonary bypass (CPB) with moderate hypothermic cardiac arrest (MHCA) is essential for prolonged complex procedures in cardiac surgery and is associated with postoperative complications. Although cytokine release provoked through MHCA under CPB plays a pivotal role in postoperative organ damage, the pathomechanisms are unclear. Here, we investigated the cytokine release pattern and histological organ damage after MHCA using a recently described mouse CPB model. Eight BALB/c mice underwent 60 minutes of circulatory arrest under CPB, were successively rewarmed and reperfused. Blood cytokine concentrations and liver and kidney function parameters were measured and histological changes to these organs were compared to control animals. Our results showed a marked increase in proinflammatory cytokines and histological changes in the kidney, lung, and liver after CPB. Furthermore, clinical chemistry showed signs of hemolysis and acute kidney injury. These results suggest early onset of solid organ injury which correlates with increased leukocyte infiltration. A better understanding of the interplay between pro-inflammatory cytokine activation and solid organ injury in this model of CBP with MHCA will inform strategies to reduce organ damage during cardiac surgeries in the clinic.
Collapse
Affiliation(s)
- Ruslan Natanov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Christian Kühn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Ulrich Maus
- Department of Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Erin C. Boyle
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Thierry Siemeni
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Ann-Katrin Knoefel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Nodir Madrahimov
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
23
|
Hsiao HM, Fernandez R, Tanaka S, Li W, Spahn JH, Chiu S, Akbarpour M, Ruiz-Perez D, Wu Q, Turam C, Scozzi D, Takahashi T, Luehmann HP, Puri V, Budinger GS, Krupnick AS, Misharin AV, Lavine KJ, Liu Y, Gelman AE, Bharat A, Kreisel D. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. J Clin Invest 2018; 128:2833-2847. [PMID: 29781811 PMCID: PMC6025976 DOI: 10.1172/jci98436] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized from the host spleen, and splenectomy attenuated the recruitment of classical monocytes as well as the entry of neutrophils into injured lung tissue, which was associated with improved graft function. Neutrophil extravasation was mediated by MyD88-dependent IL-1β production by graft-infiltrating classical monocytes, which downregulated the expression of the tight junction-associated protein ZO-2 in pulmonary vascular endothelial cells. Thus, we have uncovered a crucial role for classical monocytes, mobilized from the spleen, in mediating neutrophil extravasation, with potential implications for targeting of recipient classical monocytes to ameliorate pulmonary ischemia-reperfusion injury in the clinic.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ramiro Fernandez
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Satona Tanaka
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jessica H. Spahn
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen Chiu
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Mahzad Akbarpour
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Daniel Ruiz-Perez
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qiang Wu
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Cem Turam
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hannah P. Luehmann
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Varun Puri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
24
|
van Alem CMA, Boonstra M, Prins J, Bezhaeva T, van Essen MF, Ruben JM, Vahrmeijer AL, van der Veer EP, de Fijter JW, Reinders ME, Meijer O, Metselaar JM, van Kooten C, Rotmans JI. Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia–reperfusion injury in the rat. Nephrol Dial Transplant 2017; 33:44-53. [DOI: 10.1093/ndt/gfx204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
|