1
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
2
|
Wang D, Yu Z, Yao R, Zhang J, Cui W, Dai J, Li J, Qian H, Zhao X. Quercetin alleviates depressive-like behavior by modulating acetyl-H3K9 mediated ferroptosis pathway in hypothalamus of perimenopausal depression rat model. Biomed Pharmacother 2024; 179:117369. [PMID: 39216452 DOI: 10.1016/j.biopha.2024.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Perimenopausal depression is a subtype of depression and is prevalent among perimenopausal women, which has brought a heavy burden to family and society. The pathogenesis of perimenopausal depression is still unclear, which affects the prevention and treatment of perimenopausal depression to a certain extent. Quercetin is a flavonoid compound, and has estrogenic activity and pharmacological effects such as antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated whether quercetin improved perimenopausal depression-like behaviors and potential mechanism. The results demonstrated that quercetin could alleviate the depression-like behaviors in perimenopausal depression rat model, inhibit astrocyte activation, improve ferroptosis-associated mitochondrial damage (such as mitochondrial pyknosis and mitochondrial cristae reduction) in hypothalamus, increase the expressions of histone 3 lysine 9 acetylation (acetyl-H3K9), ferroptosis-associated protein including glutathione peroxidase 4 (GPX4) and Xc- antiporter (SLC7A11), and reduce the expressions of endoplasmic reticulum stress-related proteins including inositol-requiring enzyme 1 (IRE1α), phosphorylated IRE1α (p-IRE1α), X-box binding protein 1 (XBP1) and glucose-regulated protein 78 (GRP78) in hypothalamus of perimenopausal depression rat model. Furtherly, in vitro study indicated that quercetin could restore histone acetylase (HAT)/histone deacetylase (HDAC) homeostasis through binding to estrogen receptors and increase the expression of acetyl-H3K9, inhibiting ferroptosis through IRE1α/XBP1 pathway in astrocytes of hypothalamus. Our findings demonstrated that acetyl-H3K9 is a crucial target in development of perimenopausal depression, and quercetin exhibited antidepressant effects through modulating acetyl-H3K9 mediated ferroptosis in perimenopausal depression. Quercetin might be the prevention and adjuvant treatment strategy of perimenopausal depression.
Collapse
Affiliation(s)
- Dan Wang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ziran Yu
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ranqi Yao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jingnan Zhang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Wenqi Cui
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jiaohua Dai
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jian Li
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Heng Qian
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiujuan Zhao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
3
|
Gao L, Zhang S, Zhao Z, Zhao Q, Yang T, Zeng Q, Zhang Y, Li X, Huang Z, Duan A, Luo Q, Liu Z. Role of the Systemic Inflammatory Response Index in Predicting Disease Severity and Prognosis in Idiopathic Pulmonary Arterial Hypertension. J Inflamm Res 2024; 17:447-460. [PMID: 38282710 PMCID: PMC10812137 DOI: 10.2147/jir.s434720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Mounting evidence indicates a possible connection between the systemic inflammatory response index (SIRI) and the prognosis of heart failure, but its role in idiopathic pulmonary arterial hypertension (IPAH) is not well understood. This study aimed to investigate the relationship between SIRI and variables such as functional ability, echocardiography results, hemodynamic measurements, and long-term outcomes in patients with IPAH. Methods The study included 426 consecutive IPAH patients who underwent right heart catheterization at Fuwai Hospital from January 2013 to December 2020. SIRI was calculated using composite inflammation indicators from routine blood tests. The main outcome measure was clinical deterioration. Spearman correlation coefficients were used to assess associations between SIRI and indicators of IPAH severity. Receiver operating characteristic (ROC) curve analysis was conducted to determine the optimal SIRI threshold and predictive ability. Kaplan-Meier analysis and Cox proportional hazard models were used to examine the relationship between SIRI and clinical deterioration. Results SIRI showed positive associations with indicators such as N-terminal pro-brain natriuretic peptide, right ventricular end-diastolic diameter, pericardial effusion, mean pulmonary arterial pressure, and pulmonary vascular resistance. Conversely, SIRI had inverse relationships with 6-minute walking distance and left ventricular end-diastolic diameter. Kaplan-Meier curves revealed a significantly higher rate of clinical deterioration in individuals with SIRI > 0.741 compared to those with SIRI ≤ 0.741 (P < 0.001). Adjusted Cox analysis showed SIRI remained an independent predictor of clinical worsening (hazard ratio 1.366, 95% confidence interval 1.073-1.738, P = 0.011). ROC analysis demonstrated SIRI provided additional predictive value beyond the risk assessment score of the European Society of Cardiology/European Respiratory Society. Discussion In summary, SIRI could predict the severity and prognosis of IPAH independently. It was associated with various indicators of IPAH severity and was a significant predictor of clinical deterioration. SIRI also offered additional predictive value beyond existing risk assessment scores.
Collapse
Affiliation(s)
- Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Yang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qixian Zeng
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Meshanni JA, Lee JM, Vayas KN, Sun R, Jiang C, Guo GL, Gow AJ, Laskin JD, Laskin DL. Suppression of Lung Oxidative Stress, Inflammation, and Fibrosis following Nitrogen Mustard Exposure by the Selective Farnesoid X Receptor Agonist Obeticholic Acid. J Pharmacol Exp Ther 2024; 388:586-595. [PMID: 37188530 PMCID: PMC10801770 DOI: 10.1124/jpet.123.001557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jordan M Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Rachel Sun
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Chenghui Jiang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| |
Collapse
|
5
|
Satyamitra MM, Andres DK, Bergmann JN, Hoffman CM, Hogdahl T, Homer MJ, Hu TC, Rios CI, Yeung DT, DiCarlo AL. Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures: Overlapping science in radiation and sulfur mustard injuries to lung and skin. Disaster Med Public Health Prep 2023; 17:e552. [PMID: 37852927 PMCID: PMC10843005 DOI: 10.1017/dmp.2023.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | | | - Julie N. Bergmann
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Corey M. Hoffman
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | | | - Mary J. Homer
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Tom C. Hu
- Chemical Medical Countermeasures Program, BARDA
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - David T. Yeung
- Chemical Countermeasures Research Program (CCRP), NIAID, NIH
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| |
Collapse
|
6
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
7
|
Taylor S, Murray A, Francis M, Abramova E, Guo C, Laskin DL, Gow AJ. Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury. Toxicol Appl Pharmacol 2022; 457:116281. [PMID: 36244437 PMCID: PMC10250783 DOI: 10.1016/j.taap.2022.116281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 μM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.
Collapse
Affiliation(s)
- Sheryse Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Mary Francis
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
8
|
Zhang Y, Lim D, Cai Z, Peng J, Jia B, Chu G, Zhang F, Dong C, Feng Z. Valproic acid counteracts polycyclic aromatic hydrocarbons (PAHs)-induced tumorigenic effects by regulating the polarization of macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113779. [PMID: 35751934 DOI: 10.1016/j.ecoenv.2022.113779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common persistent organic pollutants that are carcinogenic, teratogenic and mutagenic, causing a variety of harm to human health. In this study, we investigated the mechanism of how valproic acid (VPA) interferes with the carcinogenesis of PAHs protect normal tissues via the regulation of macrophages' function. Using the established model of transformed malignant breast cancer by 7,12-dimethylbenz[a]anthracene (DMBA), a representative PAH carcinogen, we discovered VPA induces the polarization of macrophages toward the M1 phenotype in the tumor tissues, facilitates the expression of pro-inflammatory cytokines such as IFN-γ, IL-12 and TNF-α, activates CD8+ T cells to secret Granzyme B thus to promote the apoptosis of tumor cells and suppresses the viability of vascular endothelial cells in tissue stroma of tumor. Surprisingly, VPA selectively induces macrophages to polarize towards the M2 phenotype in normal tissues and promotes the expression of anti-inflammatory cytokines such as IL-10 to enhance cell proliferation. Additionally, at the cellular level, VPA can directly regulate the polarization of macrophages to affect the growth of vascular endothelial cells by simulating the living conditions of tumor and normal cells. Collectively, VPA exerts an interventional effect on tumor growth and a protective effect on normal tissues by regulation of selective macrophages' polarization in their microenvironment.
Collapse
Affiliation(s)
- Yisha Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Junxuan Peng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Beidi Jia
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Guoliang Chu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
9
|
Sun F, Huang T, Shi J, Wei T, Zhang H. Effect of Valproic Acid on NLR Family Pyrin Domain Containing 1/3 (NLRP1/3) Inflammasome in Rats with Acute Spinal Cord Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study assesses valproic acid’s effect on NLRP1/3 inflammasome in rats with acute spinal cord injury (SCI). SD rats were clamped by aneurysm clips to establish SCI model followed by analysis of functional recovery by BBB score, degree of inflammatory infiltration, by H&E
staining, NLRP1/NLRP3 and P2X7 level by western blot, IL-1β and IL-18 level by ELISA, blood spinal cord barrier by EVANS blue method. After SCI, the lower limb motor function of rats decreased and recovered after valproic acid treatment (P < 0.05). Inflammatory cell infiltration
of SCI group increased and decreased after treatment. After SCI, NLRP1/3 level increased and P2X7 protein level elevated which were reversed after valproic acid treatment (P < 0.05). In rats with SCI, IL-1β level in spinal cord was higher than sham operation and lower
after treatment (P < 0.05) without difference of IL-18 between injury group and treatment group (P > 0.05). In addition, fluorescence was higher in injury group than sham operation group and lower in valproic acid injection group than injury group. In conclusion, Valproic
acid can promote motor function recovery in rats after SCI and inhibit inflammasome 1 and 3 expression, thereby inhibiting the maturation and release of IL-1β, and reducing P2X7 level after SCI.
Collapse
Affiliation(s)
- Feng Sun
- Department of Orthopaedic Surgery, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang, 150088, China
| | - Tianwen Huang
- Department of Orthopaedic Surgery, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang, 150088, China
| | - Jianhui Shi
- Department of Orthopaedic Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, 150036, China
| | - Tianli Wei
- Department of Orthopaedic Surgery, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang, 150088, China
| | - Haiwei Zhang
- Department of Imaging, General Hospital of General Administration of Agriculture and Reclamation, Harbin, Heilongjiang, 150088, China
| |
Collapse
|
10
|
Li M, Jiang H, Chen S, Ma Y. GATA binding protein 1 recruits histone deacetylase 2 to the promoter region of nuclear receptor binding protein 2 to affect the tumor microenvironment and malignancy of thyroid carcinoma. Bioengineered 2022; 13:11320-11341. [PMID: 35491849 PMCID: PMC9278442 DOI: 10.1080/21655979.2022.2068921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) and activated angiogenesis in thyroid carcinoma (TC) are critical for tumor growth and metastasis. Nuclear receptor binding protein 2 (NRBP2) has been suggested as a tumor suppressor. This study examines the function of NRBP2 in the progression of TC and the regulatory mechanism. By analyzing bioinformatic tools including GSE165724 dataset and the Cancer Genome Atlas system, we predicted NRBP2 as a poorly expressed gene in TC. Decreased NRBP2 expression was detected in TC tumor tissues and cells. Poor expression of NRBP2 was linked to unfavorable prognosis of patients. GATA binding protein 1 (GATA1) was found as a negative regulator of NRBP2. It recruited histone deacetylase2 (HDAC2) to the NRBP2 promoter to trigger histone deacetylation. NRBP2 overexpression suppressed growth of TC cells, and it reduced expression of TME markers, M2 polarization of macrophages, and angiogenesis in TC. Similar results were reproduced in vivo in nude mice. However, the anti-oncogenic roles of NRBP2 were blocked after further overexpression of GATA1 or HDAC2. In summary, this study demonstrates that GATA1 recruits HDAC2 to the NRBP2 promoter and enhances the TME and angiogenesis in TC cells.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Shengjiang Chen
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Yujin Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|
11
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
12
|
Li H, Rosas L, Li Z, Bian Z, Li X, Choi K, Cai C, Zhou X, Tan T, Bergdall V, Whitson B, Davis I, Ma J. MG53 attenuates nitrogen mustard-induced acute lung injury. J Cell Mol Med 2022; 26:1886-1895. [PMID: 35199443 PMCID: PMC8980905 DOI: 10.1111/jcmm.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/24/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Nitrogen mustard (NM) is an alkylating vesicant that causes severe pulmonary injury. Currently, there are no effective means to counteract vesicant‐induced lung injury. MG53 is a vital component of cell membrane repair and lung protection. Here, we show that mice with ablation of MG53 are more susceptible to NM‐induced lung injury than the wild‐type mice. Treatment of wild‐type mice with exogenous recombinant human MG53 (rhMG53) protein ameliorates NM‐induced lung injury by restoring arterial blood oxygen level, by improving dynamic lung compliance and by reducing airway resistance. Exposure of lung epithelial and endothelial cells to NM leads to intracellular oxidative stress that compromises the intrinsic cell membrane repair function of MG53. Exogenous rhMG53 protein applied to the culture medium protects lung epithelial and endothelial cells from NM‐induced membrane injury and oxidative stress, and enhances survival of the cells. Additionally, we show that loss of MG53 leads to increased vulnerability of macrophages to vesicant‐induced cell death. Overall, these findings support the therapeutic potential of rhMG53 to counteract vesicant‐induced lung injury.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Lucia Rosas
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Zehua Bian
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kyounghan Choi
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bryan Whitson
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ian Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
Cai Z, Lim D, Liu G, Chen C, Jin L, Duan W, Ding C, Sun Q, Peng J, Dong C, Zhang F, Feng Z. Valproic Acid-Like Compounds Enhance and Prolong the Radiotherapy Effect on Breast Cancer by Activating and Maintaining Anti-Tumor Immune Function. Front Immunol 2021; 12:646384. [PMID: 34054811 PMCID: PMC8149798 DOI: 10.3389/fimmu.2021.646384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Inadequate sustained immune activation and tumor recurrence are major limitations of radiotherapy (RT), sustained and targeted activation of the tumor microenvironment can overcome this obstacle. Here, by two models of a primary rat breast cancer and cell co-culture, we demonstrated that valproic acid (VPA) and its derivative (HPTA) are effective immune activators for RT to inhibit tumor growth by inducing myeloid-derived macrophages and polarizing them toward the M1 phenotype, thus elevate the expression of cytokines such as IL-12, IL-6, IFN-γ and TNF-α during the early stage of the combination treatment. Meanwhile, activated CD8+ T cells increased, angiogenesis of tumors is inhibited, and the vasculature becomes sparse. Furthermore, it was suggested that VPA/HPTA can enhance the effects of RT via macrophage-mediated and macrophage-CD8+ T cell-mediated anti-tumor immunity. The combination of VPA/HPTA and RT treatment slowed the growth of tumors and prolong the anti-tumor effect by continuously maintaining the activated immune response. These are promising findings for the development of new effective, low-cost concurrent cancer therapy.
Collapse
Affiliation(s)
- Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liya Jin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhua Duan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxia Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingjie Sun
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junxuan Peng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Venosa A, Smith LC, Gow AJ, Zarbl H, Laskin JD, Laskin DL. Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicol Appl Pharmacol 2021; 423:115569. [PMID: 33971176 DOI: 10.1016/j.taap.2021.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Activated macrophages have been implicated in lung injury and fibrosis induced by the cytotoxic alkylating agent, nitrogen mustard (NM). Herein, we determined if macrophage activation is associated with histone modifications and altered miRNA expression. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in increases in phosphorylation of H2A.X in lung macrophages at 1 d and 3 d post-exposure. This DNA damage response was accompanied by methylation of histone (H) 3 lysine (K) 4 and acetylation of H3K9, marks of transcriptional activation, and methylation of H3K36 and H3K9, marks associated with transcriptional repression. Increases in histone acetyl transferase and histone deacetylase were also observed in macrophages 1 d and 28 d post-NM exposure. PCR array analysis of miRNAs (miR)s involved in inflammation and fibrosis revealed unique and overlapping expression profiles in macrophages isolated 1, 3, 7, and 28 d post-NM. An IPA Core Analysis of predicted mRNA targets of differentially expressed miRNAs identified significant enrichment of Diseases and Functions related to cell cycle arrest, apoptosis, cell movement, cell adhesion, lipid metabolism, and inflammation 1 d and 28 d post NM. miRNA-mRNA interaction network analysis revealed highly connected miRNAs representing key upstream regulators of mRNAs involved in significantly enriched pathways including miR-34c-5p and miR-27a-3p at 1 d post NM and miR-125b-5p, miR-16-5p, miR-30c-5p, miR-19b-3p and miR-148b-3p at 28 d post NM. Collectively, these data show that NM promotes histone remodeling and alterations in miRNA expression linked to lung macrophage responses during inflammatory injury and fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - L Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Radbel J, Laskin DL, Laskin JD, Kipen HM. Disease-modifying treatment of chemical threat agent-induced acute lung injury. Ann N Y Acad Sci 2020; 1480:14-29. [PMID: 32726497 DOI: 10.1111/nyas.14438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid lung pathology induced by exposure to chemical warfare agents, including vesicants, phosgene, chlorine, and ricin. In this review, we describe the pathology associated with the development of ARDS in humans and experimental models of acute lung injury following animal exposure to these high-priority threat agents. Potential future approaches to disease-modifying treatment used in preclinical animal studies, including antioxidants, anti-inflammatories, biologics, and mesenchymal stem cells, are also described. As respiratory pathologies, including ARDS, are the major cause of morbidity and mortality following exposure to chemical threat agents, understanding mechanisms of disease pathogenesis is key to the development of efficacious therapeutics beyond the primary intervention principle, which remains mechanical ventilation.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Howard M Kipen
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Smith LC, Venosa A, Gow AJ, Laskin JD, Laskin DL. Transcriptional profiling of lung macrophages during pulmonary injury induced by nitrogen mustard. Ann N Y Acad Sci 2020; 1480:146-154. [PMID: 32767459 DOI: 10.1111/nyas.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Nitrogen mustard (NM) and sulfur mustard are cytotoxic alkylating agents that cause severe and progressive damage to the respiratory tract. Evidence indicates that macrophages play a key role in the acute inflammatory phase and the later resolution/profibrotic phase of the pathogenic response. These diverse roles are mediated by inflammatory macrophages broadly classified as M1 proinflammatory and M2 anti-inflammatory that sequentially accumulate in the lung in response to injury. The goal of the present study was to identify signaling mechanisms contributing to macrophage activation in response to mustards. To accomplish this, we used RNA sequencing to analyze the gene expression profiles of lung macrophages isolated 1 and 28 days after intratracheal exposure of rats to NM (0.125 mg/kg) or phosphate-buffered saline control. We identified 641 and 792 differentially expressed genes 1 and 28 days post-NM exposure, respectively. These genes are primarily involved in processes related to cell movement and are regulated by cytokines, including tumor necrosis factor-α, interferon-γ, and interleukin-1β. Some of the most significantly enriched canonical pathways included STAT3 and NF-κB signaling. These cytokines and pathways may represent potential targets for therapeutic intervention to mitigate mustard-induced lung toxicity.
Collapse
Affiliation(s)
- L Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
18
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
20
|
Li F, Zhao H, Li G, Zhang S, Wang R, Tao Z, Zheng Y, Han Z, Liu P, Ma Q, Luo Y. Intravenous antagomiR-494 lessens brain-infiltrating neutrophils by increasing HDAC2-mediated repression of multiple MMPs in experimental stroke. FASEB J 2020; 34:6934-6949. [PMID: 32239566 DOI: 10.1096/fj.201903127r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Neutrophil infiltration and phenotypic transformation are believed to contribute to neuronal damage in ischemic stroke. Emerging evidence suggests that histone deacetylase 2 (HDAC2) is an epigenetic regulator of inflammatory cells. Here, we aimed to investigate whether microRNA-494 (miR-494) affects HDAC2-mediated neutrophil infiltration and phenotypic shift. MiR-494 levels in neutrophils from acute ischemic stroke (AIS) patients were detected by real-time PCR. Chromatin Immunoprecipitation (ChIP)-Seq was performed to clarify which genes are the binding targets of HDAC2. Endothelial cells and cortical neurons were subjected to oxygen-glucose deprivation (OGD), transwell assay was conducted to examine neutrophil migration through endothelial cells, and neuronal injury was examined after stimulating with supernatant from antagomiR-494-treated neutrophils. C57BL/6J mice were subjected to transient middle cerebral artery occlusion (MCAO) and antagomiR-494 was injected through tail vein immediately after reperfusion, and neutrophil infiltration and phenotypic shift was examined. We found that the expression of miR-494 in neutrophils was significantly increased in AIS patients. HDAC2 targeted multiple matrix metalloproteinases (MMPs) and Fc-gamma receptor III (CD16) genes in neutrophils of AIS patients. Furthermore, antagomiR-494 repressed expression of multiple MMPs genes, including MMP7, MMP10, MMP13, and MMP16, which reduced the number of brain-infiltrating neutrophils by regulating HDAC2. AntagomiR-494 could also exert its neuroprotective role through inhibiting the shift of neutrophils toward pro-inflammatory N1 phenotype in vivo and in vitro. Taken together, miR-494 may serve as an alternative predictive biomarker of the outcome of AIS patients, and antagomiR-494 treatment decreases the expression of multiple MMPs and the infiltration of neutrophils and inhibits the shift of neutrophils into N1 phenotype partly by targeting HDAC2.
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Sadeghi S, Mosaffa N, Hashemi SM, Mehdi Naghizadeh M, Ghazanfari T. The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog. Int Immunopharmacol 2019; 80:105879. [PMID: 31767545 DOI: 10.1016/j.intimp.2019.105879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Sulfur Mustard (SM) is one of the most lethal chemicals with major complications manifested in the lungs. Although the pathogenesis behind SM-induced lung injury still remains poorly understood, prolonged activation and the imbalance of two major macrophage populations (M1 and M2) have been suggested to be involved. Here, we tried to investigate the effectiveness of adipose-derived mesenchymal stem cells (AD-MSC) on long-term lesions induced by CEES, an SM analog. The modulation of pulmonary immune cells and alveolar macrophage phenotype alteration was studied in the animal model used. METHODS Histopathological changes were investigated in the lungs and analysis of surface markers of alveolar macrophages as well as their cytokine expression in the BAL fluid was carried out by flow cytometry and ELISA, respectively. RESULTS Treatment of mice with AD-MSC after intraperitoneal administration of CEES (10 mg/kg) reduces progressive histopathologic changes in the lung. Flow cytometric analysis of isolated alveolar macrophages in the bronchoalveolar lavage showed that the accumulation of both M1 and M2 macrophages in response to CEES was reduced by MSC administration. AD-MSCs caused a marked reduction in the CD86- and CD206-expressing macrophages compared to the untreated groups. The modulating effect of AD-MSCs in the M1-subset was much more significant compared to M2. These findings suggest that AD-MSCs understand their environment and restore the balance in disorders associated with Th1 or Th2 imbalance. Our results indicate that MSCs may represent an effective approach to repair lung injury induced by mustards.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
22
|
Cui SN, Chen ZY, Yang XB, Chen L, Yang YY, Pan SW, Wang YX, Xu JQ, Zhou T, Xiao HR, Qin L, Yuan SY, Shang Y. Trichostatin A modulates the macrophage phenotype by enhancing autophagy to reduce inflammation during polymicrobial sepsis. Int Immunopharmacol 2019; 77:105973. [PMID: 31677992 DOI: 10.1016/j.intimp.2019.105973] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Sepsis is a syndrome of life-threatening organ dysfunction caused by dysregulated host responses to infection. Macrophage polarization is a key process involved in the pathogenesis of sepsis. Recent evidence has demonstrated that autophagy participates in the regulation of macrophage polarization in different phases of inflammation. Here, we investigated whether trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the macrophage M2 phenotype by enhancing autophagy to counteract excessive inflammation in a cecal ligation and puncture (CLP) mouse model. TSA stimulation increased the proportions of M2 marker (CD206, CD124 and CD23)-labeled RAW264.7 macrophages. Furthermore, with increasing TSA doses, autophagy was enhanced gradually. Interestingly, the autophagy activator rapamycin (Rap), also known as an mTOR inhibitor, unexpectedly decreased the proportions of M2 marker-labeled macrophages. However, TSA treatment reversed the Rap-induced decreases in CD206-labeled macrophages. Next, we stimulated different groups of RAW264.7 cells with the autophagy inhibitors MHY1485 or 3-methyladenine (3-MA). Inhibition of autophagy at any stage in the process suppressed TSA-induced macrophage M2 polarization, but the effect was not associated with mTOR activity. In vivo, TSA administration promoted peritoneal macrophage M2 polarization, increased LC3 II expression, attenuated sepsis-induced organ (lung, liver and kidney) injury, and altered systemic inflammatory cytokine secretion. However, 3-MA abolished the protective effects of TSA in CLP mice and decreased the number of M2 peritoneal macrophages. Therefore, TSA promotes the macrophage M2 phenotype by enhancing autophagy to reduce systemic inflammation and ultimately improves the survival of mice with polymicrobial sepsis.
Collapse
Affiliation(s)
- Shu-Nan Cui
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Yuan Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Rong Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Sun P, Zhang SJ, Maksim S, Yao YF, Liu HM, Du J. Epigenetic Modification in Macrophages: A Promising Target for Tumor and Inflammation-associated Disease Therapy. Curr Top Med Chem 2019; 19:1350-1362. [PMID: 31215380 DOI: 10.2174/1568026619666190619143706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.
Collapse
Affiliation(s)
- Pei Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Shu-Jing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Semenov Maksim
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Yong-Fang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Juan Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
25
|
de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 2018; 9:20908-20927. [PMID: 29755698 PMCID: PMC5945509 DOI: 10.18632/oncotarget.24556] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
The progression of cancer is a result of not only the growth of the malignant cells but also the behavior of other components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are key components of the TME that influence tumor growth and disease progression. TAMs can either inhibit or support tumor growth depending on their polarization to classically-activated macrophages (M1s) or alternatively-activated macrophages (M2s), respectively. Epigenetic regulation plays a significant role in determining this polarization and manipulating the epigenetic regulation in macrophages would provide a means for selectively targeting M2s thereby eliminating tumor-supporting TAMs while sparing tumor-inhibiting M1 TAMs. Many pharmacologic modulators of epigenetic enzymes are currently used clinically and could be repurposed for treating tumors with high TAM infiltrate. While much research involving epigenetic enzymes and their modulators has been performed in M1s, significantly less is known about the epigenetic regulation of M2s. This review highlights the field’s current knowledge of key epigenetic enzymes and their pharmacologic modulators known to influence macrophage polarization.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|