Solabre Valois L, Wilkinson KA, Nakamura Y, Henley JM. Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons.
Neurotoxicology 2020;
78:80-87. [PMID:
32088326 PMCID:
PMC7225749 DOI:
10.1016/j.neuro.2020.02.009]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Botulinum toxin A (BoNT/A) is a potent neurotoxin that acts primarily by silencing synaptic transmission by blocking neurotransmitter release. BoNT/A comprises a light chain (LC/A) intracellular protease and a heavy chain (HC/A) composed of a receptor binding domain (HCC/A) and a translocation domain (HCN/A) that mediates cell entry. Following entry into the neuron, the disulphide bond linking the two peptide chains is reduced to release the LC/A. To gain better insight into the trafficking and fate of BoNT/A before dissociation we have used a catalytically inactive, non-toxic full-length BoNT/A(0) mutant. Our data confirm that BoNT/A(0) enters cortical neurons both in an activity-dependent manner and via a pathway dependent on fibroblast growth factor receptor 3 (Fgfr3) signalling. We demonstrate that both dynamin-dependent endocytosis and lipid rafts are involved in BoNT/A internalisation and that full-length BoNT/A(0) traffics to early endosomes. Furthermore, while a proportion of BoNT/A remains stable in neurons for 3 days, BoNT/A degradation is primarily mediated by the proteasome. Finally, we demonstrate that a fraction of the endocytosed full-length BoNT/A(0) is capable of exiting the cell to intoxicate other neurons. Together, our data shed new light on the entry routes, trafficking and degradation of BoNT/A, and confirm that trafficking properties previously described for the isolated HCC/A receptor binding domain of are also applicable to the intact, full-length toxin.
Collapse