1
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
2
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
3
|
Liu Z, Qiang Y, Shan S, Wang S, Liu Z, Yang Y, Huang Z, Song M, Zhao X, Song F. Aberrant mitochondrial aggregation of TDP-43 activated mitochondrial unfolded protein response and contributed to recovery of acetaminophen induced acute liver injury. Toxicol Res (Camb) 2024; 13:tfae008. [PMID: 38283824 PMCID: PMC10811519 DOI: 10.1093/toxres/tfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.
Collapse
Affiliation(s)
- Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Alghusen IM, Carman MS, Wilkins H, Ephrame SJ, Qiang A, Dias WB, Fedosyuk H, Denson AR, Swerdlow RH, Slawson C. O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4. Front Aging Neurosci 2023; 15:1326127. [PMID: 38192280 PMCID: PMC10773771 DOI: 10.3389/fnagi.2023.1326127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Accumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimer's disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2α results in the translation of ATF4. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses. Results We show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimer's Disease mice model. The same results are seen in a human in vitro model of AD. Conclusion Together, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amy Qiang
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wagner B. Dias
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Robarts DR, Kotulkar M, Paine-Cabrera D, Venneman KK, Hanover JA, Zachara NE, Slawson C, Apte U. The essential role of O-GlcNAcylation in hepatic differentiation. Hepatol Commun 2023; 7:e0283. [PMID: 37930118 PMCID: PMC10629742 DOI: 10.1097/hc9.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase, which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and HCC. METHODS Single-cell RNA-sequencing (RNA-seq) was used to investigate hepatocyte differentiation in hepatocyte-specific O-GlcNAc transferase-knockout (OGT-KO) mice with decreased hepatic O-GlcNAcylation and in O-GlcNAcase-KO mice with increased O-GlcNAcylation in hepatocytes. Patients HCC samples and the diethylnitrosamine-induced HCC model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. RESULTS Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation, characterized by dysregulation of glycogen storage and glucose production. O-GlcNAc transferase-KO mice exacerbated diethylnitrosamine-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, O-GlcNAcase -KO mice with increased hepatic O-GlcNAcylation inhibited diethylnitrosamine-induced HCC. A progressive loss of O-GlcNAcylation was observed in patients with HCC. CONCLUSIONS Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Robarts DR, Kotulkar M, Paine-Cabrera D, Venneman KK, Hanover JA, Zachara NE, Slawson C, Apte U. The Essential Role of O-GlcNAcylation in Hepatic Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528884. [PMID: 36824917 PMCID: PMC9949138 DOI: 10.1101/2023.02.16.528884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Background & Aims O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase (OGT), which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and hepatocellular carcinoma. Methods Single-cell RNA-sequencing was used to investigate hepatocyte differentiation in hepatocyte-specific OGT-KO mice with increased hepatic O-GlcNAcylation and in OGA-KO mice with decreased O-GlcNAcylation in hepatocytes. HCC patient samples and the DEN-induced hepatocellular carcinoma (HCC) model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer. Results Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation characterized by dysregulation of glycogen storage and glucose production. OGT-KO mice exacerbated DEN-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, OGA-KO mice with increased hepatic O-GlcNAcylation inhibited DEN-induced HCC. A progressive loss of O-GlcNAcylation was observed in HCC patients. Conclusions Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, NIDDK, NIH, Bethesda, MD, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Emerging Role of Protein O-GlcNAcylation in Liver Metabolism: Implications for Diabetes and NAFLD. Int J Mol Sci 2023; 24:ijms24032142. [PMID: 36768465 PMCID: PMC9916810 DOI: 10.3390/ijms24032142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
O-linked b-N-acetyl-glucosaminylation (O-GlcNAcylation) is one of the most common post-translational modifications of proteins, and is established by modifying the serine or threonine residues of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc signaling is considered a critical nutrient sensor, and affects numerous proteins involved in cellular metabolic processes. O-GlcNAcylation modulates protein functions in different patterns, including protein stabilization, enzymatic activity, transcriptional activity, and protein interactions. Disrupted O-GlcNAcylation is associated with an abnormal metabolic state, and may result in metabolic disorders. As the liver is the center of nutrient metabolism, this review provides a brief description of the features of the O-GlcNAc signaling pathway, and summarizes the regulatory functions and underlying molecular mechanisms of O-GlcNAcylation in liver metabolism. Finally, this review highlights the role of O-GlcNAcylation in liver-associated diseases, such as diabetes and nonalcoholic fatty liver disease (NAFLD). We hope this review not only benefits the understanding of O-GlcNAc biology, but also provides new insights for treatments against liver-associated metabolic disorders.
Collapse
|
8
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
9
|
Robarts DR, McGreal SR, Umbaugh DS, Parkes WS, Kotulkar M, Abernathy S, Lee N, Jaeschke H, Gunewardena S, Whelan SA, Hanover JA, Zachara NE, Slawson C, Apte U. Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cell Mol Gastroenterol Hepatol 2022; 13:1510-1529. [PMID: 35093590 PMCID: PMC9043307 DOI: 10.1016/j.jcmgh.2022.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The liver has a unique capacity to regenerate after injury in a highly orchestrated and regulated manner. Here, we report that O-GlcNAcylation, an intracellular post-translational modification regulated by 2 enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a critical termination signal for liver regeneration following partial hepatectomy (PHX). METHODS We studied liver regeneration after PHX on hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-GlcNAcylation, respectively. RESULTS OGA-KO mice had normal regeneration, but the OGT-KO mice exhibited substantial defects in termination of liver regeneration with increased liver injury, sustained cell proliferation resulting in significant hepatomegaly, hepatic dysplasia, and appearance of small nodules at 28 days after PHX. This was accompanied by a sustained increase in expression of cyclins along with significant induction in pro-inflammatory and pro-fibrotic gene expression in the OGT-KO livers. RNA-sequencing studies revealed inactivation of hepatocyte nuclear 4 alpha (HNF4α), the master regulator of hepatic differentiation and a known termination signal, in OGT-KO mice at 28 days after PHX, which was confirmed by both Western blot and immunohistochemistry analysis. Furthermore, a significant decrease in HNFα target genes was observed in OGT-KO mice, indicating a lack of hepatocyte differentiation following decreased hepatic O-GlcNAcylation. Immunoprecipitation experiments revealed HNF4α is O-GlcNAcylated in normal differentiated hepatocytes. CONCLUSIONS These studies show that O-GlcNAcylation plays a critical role in the termination of liver regeneration via regulation of HNF4α in hepatocytes.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - Wendena S Parkes
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - Sarah Abernathy
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas
| | | | - Stephen A Whelan
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - John A Hanover
- Laboratory of Cell Biochemistry and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, Kansas City, Kansas.
| |
Collapse
|
10
|
Poudel S, Cabrera DP, Bhushan B, Manley MW, Gunewardena S, Jaeschke H, Apte U. Hepatocyte-Specific Deletion of Yes-Associated Protein Improves Recovery From Acetaminophen-Induced Acute Liver Injury. Toxicol Sci 2021; 184:276-285. [PMID: 34546377 PMCID: PMC8633918 DOI: 10.1093/toxsci/kfab115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the major cause of acute liver failure (ALF) in the Western world with very limited treatment options. Previous studies from our groups and others have shown that timely activation of liver regeneration is a critical determinant of transplant-free survival of APAP-induced ALF patients. Here, we report that hepatocyte-specific deletion of Yes-associated protein (Yap), the downstream mediator of the Hippo Kinase signaling pathway results in faster recovery from APAP-induced acute liver injury. Initial studies performed with male C57BL/6J mice showed a rapid activation of Yap and its target genes within first 24 h after APAP administration. Treatment of hepatocyte-specific Yap knockout (Yap-KO) mice with 300 mg/kg APAP resulted in equal initial liver injury but a significantly accelerated recovery in Yap-KO mice. The recovery was accompanied by significantly rapid hepatocyte proliferation supported by faster activation of Wnt/β-catenin pathway. Furthermore, Yap-KO mice had significantly earlier and higher pro-regenerative inflammatory response following APAP overdose. Global gene expression analysis indicated that Yap-KO mice had a robust activation of transcription factors involved in response to endoplasmic reticulum stress (XBP1) and maintaining hepatocyte differentiation (HNF4α). In conclusion, these data indicate that inhibition of Yap in hepatocytes results in rapid recovery from APAP overdose due to an earlier activation of liver regeneration.
Collapse
Affiliation(s)
- Samikshya Poudel
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Diego Paine Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Bharat Bhushan
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael W Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
11
|
Li L, Shan S, Kang K, Zhang C, Kou R, Song F. The cross-talk of NLRP3 inflammasome activation and necroptotic hepatocyte death in acetaminophen-induced mice acute liver injury. Hum Exp Toxicol 2021; 40:673-684. [PMID: 33021112 DOI: 10.1177/0960327120961158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Overdose acetaminophen (APAP) can result in severe liver injury, which is responsible for nearly half of drug-induced liver injury in western countries. Previous studies have found that there existed massive hepatocellular necrosis and severe inflammatory response in APAP-induced liver injury. However, the mechanistic linkage between necroptosis and NLRP3 inflammasome pathway in APAP-induced hepatotoxicity remains poorly understood. In order to investigate the relationship between inflammation and hepatocytes death in APAP hepatotoxicity, a time-course model for APAP hepatotoxicity in C57/BL6 mice was established by intraperitoneal (i.p) injection of 300 mg/kg APAP in this study. The activity of serum enzymes and pathological changes of APAP-treated mice were evaluated, and the critical molecules in necroptosis and NF-κB-NLRP3 inflammasome signaling pathway were determined by immunoblot and immunofluorescence analysis. The results demonstrated that APAP overdose resulted in a severe liver injury. Furthermore, the expression of critical molecules in NLRP3 inflammasome and necroptosis pathways peaked at 12-24 h, and then was decreased gradually, which is consistent with the pattern of pathological injury induced by APAP. Our further investigation found that the level of IL-1β in mouse liver was closely correlated with the level of phosphorylated MLKL following exposure to APAP. Furthermore, inhibition of necroptosis with necrostatin-1 significantly suppressed the activation of NLRP3 inflammasome signaling. Taken together, our results highlighted that the cross-talk between necroptosis and NLRP3 inflammasome played a critical role for promoting APAP-induced liver injury. Inhibition of the interaction of inflammation and necroptosis by pharmaceutical methods may represent a promising therapeutic strategy for APAP-induced liver injury.
Collapse
Affiliation(s)
- L Li
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - S Shan
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - K Kang
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - C Zhang
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - R Kou
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - F Song
- Department of Toxicology, School of Public Health, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Mol Cell Proteomics 2021; 20:100069. [PMID: 33716169 PMCID: PMC8079276 DOI: 10.1016/j.mcpro.2021.100069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Collapse
Affiliation(s)
- Marissa Martinez
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Foghorn Therapeutics, Cambridge, Massachusetts, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Simion Kreimer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Currently at the Advanced Clinical Biosystems Institute, Smidt Heart institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Natov
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Ginkgo Bioworks, Massachusetts, United States
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| |
Collapse
|
13
|
Flax J, Wilkins HM, Miller R, Griffith S, Cork GK, Qiang A, Thompson J, Swerdlow RH, Slawson C. OGA Inhibition Alters Energetics and Nutrient Sensing in Alzheimer's Disease Cytoplasmic Hybrids. J Alzheimers Dis 2020; 78:1743-1753. [PMID: 33285636 DOI: 10.3233/jad-200996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) features reductions in key bioenergetic fluxes and perturbed mitochondrial function. Cytoplasmic hybrids (cybrids) generated through the transfer of AD subject mitochondria to mtDNA-depleted SH-SY5Y neuroblastoma cells recapitulate some of these features in an in vitro setting. OBJECTIVE For this study, we used the AD cybrid model to assess the impact of a nutrient-excess like-state via increasing O-GlcNAcylation on whole cell and mitochondrial homeostasis. METHODS We induced increased O-GlcNAc by treating AD and control cybrid cell lines with Thiamet G (TMG), an inhibitor of the O-GlcNAcase enzyme that mediates removal of the nutrient-dependent O-GlcNAc modification. RESULTS Relative to control cybrid cell lines, AD cybrid lines showed a blunted response to TMG-induced O-GlcNAcylation. At baseline, AD cybrid cell line mitochondria showed partial activation of several proteins that help maintain bioenergetic homeostasis such as AMP-Regulated Kinase suggesting that AD mitochondria initiate a state of nutrient stress promoting energetic compensation; however, this compensation reduces the capacity of cells to respond to additional nutrient-related stresses such as TMG treatment. Also, TMG caused disruptions in acetylation and Sirtuin 3 expression, while lowing total energetic output of the cell. CONCLUSION Together, these findings suggest that modulation of O-GlcNAc is essential for proper energetic function of the mitochondria, and AD mitochondrial capacity to handle nutrient-excess is limited.
Collapse
Affiliation(s)
- Jarrod Flax
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Wilkins
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reegan Miller
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sarah Griffith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gentry K Cork
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amy Qiang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
16
|
Zhang X, Guo L, Zhang X, Xu L, Tian Y, Fan Z, Wei H, Zhang J, Ren F. GLT25D2 Is Critical for Inflammatory Immune Response to Promote Acetaminophen-Induced Hepatotoxicity by Autophagy Pathway. Front Pharmacol 2020; 11:01187. [PMID: 33071774 PMCID: PMC7530273 DOI: 10.3389/fphar.2020.01187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose induces hepatocyte necrosis and causes liver hepatotoxicity. Currently, the role of galactosyltransferase in APAP-induced liver injury is still unclear. This study assessed the contribution of the GLT25D2 gene, a kind of collagen galactosyltransferase, to the development of APAP-induced liver injury. This study found that the expression of GLT25D2 markedly increased first and then decreased in the liver of mice treated with APAP, however, it downregulated in the liver of APAP overdose-patients compared with normal controls. Knockout of GLT25D2 significantly ameliorated the liver injury, meanwhile, it downregulated the proinflammatory cytokines (IL-6, TNF-α) and chemokines (CXCL-10, MIG and CXCL-1) levels, however, and upregulated the anti-inflammatory cytokines (IL-22, IL-10) levels. Mechanistic explorations showed that (1) GLT25D2 knockout promoted autophagy pathway; and (2) the GLT25D2 knockout-induced autophagy selected to clear damaged mitochondria in APAP-induced liver injury by mitophagy; and (3) the autophagy intervention by Atg 7 siRNA cancelled liver protection by knockout of GLT25D2 through regulating liver inflammation. In conclusion, our study proves that the upregulated expression of GLT25D2 decreased autophagy contributing to APAP-induced hepatotoxicity by mediating the inflammatory immune regulatory mechanism.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lele Guo
- Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
18
|
Li H, Yang Y, Qi X, Zhou X, Ren WX, Deng M, Wu J, Lü M, Liang S, Teichmann AT. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples. Anal Chim Acta 2020; 1117:18-24. [PMID: 32408950 DOI: 10.1016/j.aca.2020.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to develop a novel and practical fluorescent method for GSH detection in complex biological samples. To this end, a series of coumarin-based fluorescent probes was designed and synthesized using various aliphatic halogens as the sensing group. By using a new evaluation method of GSH/Cys/Hcy coexisting conditions, the probe with chloropropionate (CBF3) showed a high selectivity, excellent sensitivity, good stability for GSH detection. The reaction mechanism is proposed as nucleophilic substitution/cyclization and intramolecular charge transfer (ICT), which was confirmed by LC-MS and NMR analysis, as well as density functional theory calculations. In addition, CBF3 was demonstrated to be competent not only for the quantitative detection of GSH in real serum samples, but also for sensing GSH changes in different oxidative stress models in living cells and nematodes. This study showed a practical strategy for constructing GSH-specific fluorescent probes, and provided a sensitive tool for real-time sensing of GSH in real biological samples. The findings would greatly facilitate further investigations on GSH-associated clinical diagnosis and biomedical studies.
Collapse
Affiliation(s)
- Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youzhe Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaogang Zhou
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Wen Xiu Ren
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianming Wu
- The Pharmacy School of Southwest Medical University, Luzhou, China.
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Pharmacy School of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
19
|
Li ZQ, Wang LL, Zhou J, Zheng X, Jiang Y, Li P, Li HJ. Integration of transcriptomics and metabolomics profiling reveals the metabolic pathways affected in dictamnine-induced hepatotoxicity in mice. J Proteomics 2020; 213:103603. [DOI: 10.1016/j.jprot.2019.103603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
20
|
Ahmed RG. Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:705-714. [PMID: 30760194 DOI: 10.2174/1871530319666190212165603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of the study was to examine the impact of neonatal acetaminophen (APAP; paracetamol) administrations on the thyroid-liver axis in male Wistar rats. METHODS APAP (100 or 350mg/kg) was orally administered to neonates from Postnatal Day (PND) 20 to 40. RESULTS Both APAP doses elicited a substantial increase in serum TSH, albumin, AST, ALT, and ALP values, and a profound decrease in serum FT4 and FT3 values at PND 40 relative to those in the control group. Additionally, the hypothyroid state in both APAP-treated groups may increase the histopathological variations in the neonatal liver, such as destructive degeneration, fibrosis, fatty degeneration, fibroblast proliferation, haemorrhage, oedema, and vacuolar degeneration, at PND 40. Moreover, in the APAP groups, a marked depression was recorded in the t-SH and GSH levels and GPx and CAT activities at PND 40 in the neonatal liver compared to those in the control group. However, the levels of hepatic LPO, H2O2, and NO were increased in both APAP-treated groups at PND 40. All previous alterations were dose- dependent. CONCLUSION Neonatal APAP caused a hypothyroidism and disturbed hepatic cellular components by increasing prooxidant markers and decreasing antioxidant markers, causing hepatotoxicity. Thus, neonatal administrations of APAP may act as a neonatal thyroid-liver disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Zoology Department, Division of Anatomy and Embryology, Faculty of Science; Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019; 4:127709. [PMID: 31672932 DOI: 10.1172/jci.insight.127709] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase-KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology and
| | - Min-Dian Li
- Department of Cellular and Molecular Physiology and
| | - Ruonan Yin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuyang Liu
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rui Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Physiology and Neurobiology and.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology and.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anton M Bennett
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | | | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology and.,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Honokiol alleviates acetaminophen-induced hepatotoxicity via decreasing generation of acetaminophen-protein adducts in liver. Life Sci 2019; 230:97-103. [DOI: 10.1016/j.lfs.2019.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
|
23
|
Zhou LT, Romar R, Pavone ME, Soriano-Úbeda C, Zhang J, Slawson C, Duncan FE. Disruption of O-GlcNAc homeostasis during mammalian oocyte meiotic maturation impacts fertilization. Mol Reprod Dev 2019; 86:543-557. [PMID: 30793403 DOI: 10.1002/mrd.23131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O-GlcNAcylation-the addition of a single sugar residue (O-linked β-N-acetylglucosamine) on proteins-is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O-GlcNAcylation is mediated by O-GlcNAc transferase (OGT), which adds O-GlcNAc onto proteins, and O-GlcNAcase (OGA), which removes it. Here we investigated O-GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O-GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O-GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O-GlcNAc function, we disrupted O-GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet-G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O-GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O-GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.
Collapse
Affiliation(s)
- Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - John Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical School, Kansas City, Kansas
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
24
|
Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:719-729. [PMID: 30653954 DOI: 10.1016/j.ajpath.2018.12.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol; APAP) overdose is the most common cause of acute liver failure in the Western world, with limited treatment opportunities. For years, research on APAP overdose has been focused on investigating the mechanisms of hepatotoxicity, with limited success in advancing therapeutic strategies. Acute liver injury after any insult, including APAP overdose, is followed by compensatory liver regeneration, which promotes recovery and is a crucial determinant of the final outcome. Liver regeneration after APAP-induced liver injury is dose dependent and impaired after severe APAP overdose. Although robust regenerative response is associated with spontaneous recovery and survival, impaired regeneration results in faster progression of injury and death after APAP overdose. APAP hepatotoxicity-induced liver regeneration involves a complex time- and dose-dependent interplay of several signaling mediators, including growth factors, cytokines, angiogenic factors, and other mitogenic pathways. Compared with the liver injury, which is established before most patients seek medical attention and has proved difficult to manipulate, liver regeneration can be potentially modulated even in late-stage APAP-induced acute liver failure. Despite recent efforts to study the mechanisms of liver regeneration after APAP-induced liver injury, more comprehensive research in this area is required, especially regarding factors that contribute to impaired regenerative response, to develop novel regenerative therapies for APAP-induced acute liver failure.
Collapse
|
25
|
Shen Y, Czaja MJ. A Novel Mechanism of Starvation-Stimulated Hepatic Autophagy: Calcium-Induced O-GlcNAc-Dependent Signaling. Hepatology 2019; 69:446-448. [PMID: 30070371 PMCID: PMC6325011 DOI: 10.1002/hep.30118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Shen
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Mark J Czaja
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
26
|
Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 24:molecules24010131. [PMID: 30602693 PMCID: PMC6337302 DOI: 10.3390/molecules24010131] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Baicalein (BAI), one of the main components of Scutellaria baicalensis Georgi, possesses numerous pharmacological properties, including anti-cancer, anti-oxidative, anti-virus and anti-bacterial activities. The purpose of this study was to evaluate the hepatoprotective effect of baicalein against acetaminophen (APAP)-exposed liver injury in mice, and elucidate the underlying hepatoprotective mechanism. Baicalein pretreatment significantly alleviated the elevation of IL-6, IL-1β and TNF-α in serum and hepatic in a dose-dependent manner. It also dose-dependently reduced the hepatic malondialdehyde (MDA) concentration, as well as the depletion of hepatic superoxide dismutase (SOD), hepatic glutathione (GSH) and hepatic catalase (CAT). Moreover, pretreatment with baicalein significantly ameliorated APAP-exposed liver damage and histological hepatocyte changes. Baicalein also relieved APAP-induced autophagy by regulating AKT/mTOR pathway, LC3B and P62 expression. Furthermore, the hepatoprotective effect of baicalein to APAP-induced liver injury involved in Jak2/Stat3 and MAPK signaling pathway. Taken together, our findings suggested that baicalein exhibits the ability to prevent liver from APAP-induced liver injury and provided an underlying molecular basis for potential applications of baicalein to cure liver injuries.
Collapse
|
27
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|