1
|
Setiya A, Jani V, Sonavane U, Joshi R. MolToxPred: small molecule toxicity prediction using machine learning approach. RSC Adv 2024; 14:4201-4220. [PMID: 38292268 PMCID: PMC10826801 DOI: 10.1039/d3ra07322j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Different types of chemicals and products may exhibit various health risks when administered into the human body. For toxicity reasons, the number of new drugs entering the market through the conventional drug development process has been reduced over the years. However, with the advent of big data and artificial intelligence, machine learning techniques have emerged as a potential solution for predicting toxicity and ensuring efficient drug development and chemical safety. An ML model for toxicity prediction can reduce experimental costs and time while addressing ethical concerns by drastically reducing the need for animals and clinical trials. Herein, MolToxPred, an ML-based tool, has been developed using a stacked model approach to predict the potential toxicity of small molecules and metabolites. The stacked model consists of random forest, multi-layer perceptron, and LightGBM as base classifiers and Logistic Regression as the meta classifier. For training and validation purposes, a comprehensive set of toxic and non-toxic molecules is curated. Different structural and physicochemical-based features in the form of molecular descriptors and fingerprints were employed. MolToxPred utilizes a comprehensive feature selection process and optimizes its hyperparameters through Bayesian optimization with stratified 5-fold cross-validation. In the evaluation phase, MolToxPred achieved an AUROC of 87.76% on the test set and 88.84% on an external validation set. The McNemar test was used as the post-hoc test to determine if the stacked models' performance was significantly different compared to the base learners. The developed stacked model outperformed its base classifiers and an existing tool in the literature, reaffirming its better performance. The hypothesis is that the incorporation of a diverse set of data, the subsequent feature selection, and a stacked ensemble approach give MolToxPred the edge over other methods. In addition to this, an attempt has been made to identify structural alerts responsible for endpoints of the Tox21 data to determine the association of a molecule with a plausible downstream pathway of action. MolToxPred may be helpful for drug discovery and regulatory pipelines in pharmaceutical and other industries for in silico toxicity prediction of small molecule candidates.
Collapse
Affiliation(s)
- Anjali Setiya
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Vinod Jani
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Uddhavesh Sonavane
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Rajendra Joshi
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| |
Collapse
|
2
|
Wu W, Qian J, Liang C, Yang J, Ge G, Zhou Q, Guan X. GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation. Chem Res Toxicol 2023; 36:1717-1730. [PMID: 37839069 DOI: 10.1021/acs.chemrestox.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Drug-induced liver injury (DILI) is a significant cause of drug failure and withdrawal due to liver damage. Accurate prediction of hepatotoxic compounds is crucial for safe drug development. Several DILI prediction models have been published, but they are built on different data sets, making it difficult to compare model performance. Moreover, most existing models are based on molecular fingerprints or descriptors, neglecting molecular geometric properties and lacking interpretability. To address these limitations, we developed GeoDILI, an interpretable graph neural network that uses a molecular geometric representation. First, we utilized a geometry-based pretrained molecular representation and optimized it on the DILI data set to improve predictive performance. Second, we leveraged gradient information to obtain high-precision atomic-level weights and deduce the dominant substructure. We benchmarked GeoDILI against recently published DILI prediction models, as well as popular GNN models and fingerprint-based machine learning models using the same data set, showing superior predictive performance of our proposed model. We applied the interpretable method in the DILI data set and derived seven precise and mechanistically elucidated structural alerts. Overall, GeoDILI provides a promising approach for accurate and interpretable DILI prediction with potential applications in drug discovery and safety assessment. The data and source code are available at GitHub repository (https://github.com/CSU-QJY/GeoDILI).
Collapse
Affiliation(s)
- Wenxuan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayu Qian
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Changjie Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingya Yang
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingping Zhou
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Iftkhar S, de Sá AGC, Velloso JPL, Aljarf R, Pires DEV, Ascher DB. cardioToxCSM: A Web Server for Predicting Cardiotoxicity of Small Molecules. J Chem Inf Model 2022; 62:4827-4836. [PMID: 36219164 DOI: 10.1021/acs.jcim.2c00822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of novel, safe, and effective drugs to treat human diseases is a challenging venture, with toxicity being one of the main sources of attrition at later stages of development. Failure due to toxicity incurs a significant increase in costs and time to market, with multiple drugs being withdrawn from the market due to their adverse effects. Cardiotoxicity, for instance, was responsible for the failure of drugs such as fenspiride, propoxyphene, and valdecoxib. While significant effort has been dedicated to mitigate this issue by developing computational approaches that aim to identify molecules likely to be toxic, including quantitative structure-activity relationship models and machine learning methods, current approaches present limited performance and interpretability. To overcome these, we propose a new web-based computational method, cardioToxCSM, which can predict six types of cardiac toxicity outcomes, including arrhythmia, cardiac failure, heart block, hERG toxicity, hypertension, and myocardial infarction, efficiently and accurately. cardioToxCSM was developed using the concept of graph-based signatures, molecular descriptors, toxicophore matchings, and molecular fingerprints, leveraging explainable machine learning, and was validated internally via different cross validation schemes and externally via low-redundancy blind sets. The models presented robust performances with areas under ROC curves of up to 0.898 on 5-fold cross-validation, consistent with metrics on blind tests. Additionally, our models provide interpretation of the predictions by identifying whether substructures that are commonly enriched in toxic compounds were present. We believe cardioToxCSM will provide valuable insight into the potential cardiotoxicity of small molecules early on drug screening efforts. The method is made freely available as a web server at https://biosig.lab.uq.edu.au/cardiotoxcsm.
Collapse
Affiliation(s)
- Saba Iftkhar
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Alex G C de Sá
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.,Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville 3010, Victoria, Australia
| | - João P L Velloso
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Raghad Aljarf
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.,Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Douglas E V Pires
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Parkville 3052, Victoria, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.,Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
4
|
Hua Y, Cui X, Liu B, Shi Y, Guo H, Zhang R, Li X. SApredictor: An Expert System for Screening Chemicals Against Structural Alerts. Front Chem 2022; 10:916614. [PMID: 35910729 PMCID: PMC9326022 DOI: 10.3389/fchem.2022.916614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be “black box”, which bring about poor interpretability. In the present study, we focused on the identification and collection of structural alerts (SAs) responsible for a series of important toxicity endpoints. Then, we carried out effective storage of these structural alerts and developed a web-server named SApredictor (www.sapredictor.cn) for screening chemicals against structural alerts. People can quickly estimate the toxicity of chemicals with SApredictor, and the specific key substructures which cause the chemical toxicity will be intuitively displayed to provide valuable information for the structural optimization by medicinal chemists.
Collapse
Affiliation(s)
- Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinping Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Xiao Li, , , orcid.org/0000-0002-1148-9898
| |
Collapse
|
5
|
Caballero Alfonso AY, Mora Lagares L, Novic M, Benfenati E, Kumar A. Exploration of structural requirements for azole chemicals towards human aromatase CYP19A1 activity: Classification modeling, structure-activity relationships and read-across study. Toxicol In Vitro 2022; 81:105332. [PMID: 35176449 DOI: 10.1016/j.tiv.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023]
Abstract
Human aromatase, also called CYP19A1, plays a major role in the conversion of androgens into estrogens. Inhibition of aromatase is an important target for estrogen receptor (ER)-responsive breast cancer therapy. Use of azole compounds as aromatase inhibitors is widespread despite their low selectivity. A toxicological evaluation of commonly used azole-based drugs and agrochemicals with respect to CYP19A1is currently requested by the European Union- Registration, Evaluation, Authorization and Restriction of Chemicals (EU-REACH) regulations due to their potential as endocrine disruptors. In this connection, identification of structural alerts (SAs) is an effective strategy for the toxicological assessment and safe drug design. The present study describes the identification of SAs of azole-based chemicals as guiding experts to predict the aromatase activity. Total 21 SAs associated with aromatase activity were extracted from dataset of 326 azole-based drugs/chemicals obtained from Tox21 library. A cross-validated classification model having high accuracy (error rate 5%) was proposed which can precisely classify azole chemicals into active/inactive toward aromatase. In addition, mechanistic details and toxicological properties (agonism/antagonism) of azoles with respect to aromatase were explored by comparing active and inactive chemicals using structure-activity relationships (SAR). Lastly, few structural alerts were applied to form chemical categories for read-across applications.
Collapse
Affiliation(s)
- Ana Y Caballero Alfonso
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Liadys Mora Lagares
- Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novic
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche "Mario Negri"-IRCCS, Milano, Italy
| | - Anil Kumar
- Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
6
|
Shi Y, Hua Y, Wang B, Zhang R, Li X. In Silico Prediction and Insights Into the Structural Basis of Drug Induced Nephrotoxicity. Front Pharmacol 2022; 12:793332. [PMID: 35082675 PMCID: PMC8785686 DOI: 10.3389/fphar.2021.793332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Drug induced nephrotoxicity is a major clinical challenge, and it is always associated with higher costs for the pharmaceutical industry and due to detection during the late stages of drug development. It is desirable for improving the health outcomes for patients to distinguish nephrotoxic structures at an early stage of drug development. In this study, we focused on in silico prediction and insights into the structural basis of drug induced nephrotoxicity, based on reliable data on human nephrotoxicity. We collected 565 diverse chemical structures, including 287 nephrotoxic drugs on humans in the real world, and 278 non-nephrotoxic approved drugs. Several different machine learning and deep learning algorithms were employed for in silico model building. Then, a consensus model was developed based on three best individual models (RFR_QNPR, XGBOOST_QNPR, and CNF). The consensus model performed much better than individual models on internal validation and it achieved prediction accuracy of 86.24% external validation. The results of analysis of molecular properties differences between nephrotoxic and non-nephrotoxic structures indicated that several key molecular properties differ significantly, including molecular weight (MW), molecular polar surface area (MPSA), AlogP, number of hydrogen bond acceptors (nHBA), molecular solubility (LogS), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). These molecular properties may be able to play an important part in the identification of nephrotoxic chemicals. Finally, 87 structural alerts for chemical nephrotoxicity were mined with f-score and positive rate analysis of substructures from Klekota-Roth fingerprint (KRFP). These structural alerts can well identify nephrotoxic drug structures in the data set. The in silico models and the structural alerts could be freely accessed via https://ochem.eu/article/140251 and http://www.sapredictor.cn, respectively. We hope the results should provide useful tools for early nephrotoxicity estimation in drug development.
Collapse
Affiliation(s)
- Yinping Shi
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yuqing Hua
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Pharmacy, Shandong First Medical University, Tai'an, China
| | - Baobao Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruiqiu Zhang
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Pharmacy, Shandong First Medical University, Tai'an, China
| | - Xiao Li
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
7
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
8
|
Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MDM, Blanco Díaz GD, Cima Cabal MD, Moreno Rojas JM, López Sánchez JI. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Efrén Pérez Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Raquel Rodríguez Solana
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - Mariano González García
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Del Mar García Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Gerardo David Blanco Díaz
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - José Manuel Moreno Rojas
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - José Ignacio López Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| |
Collapse
|
9
|
Tang W, Chen J, Hong H. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training. CHEMOSPHERE 2020; 253:126768. [PMID: 32464767 DOI: 10.1016/j.chemosphere.2020.126768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Humans and animals may be exposed to tens of thousands of natural and synthetic chemicals during their lifespan. It is difficult to assess risk for all the chemicals with experimental toxicity tests. An alternative approach is to use computational toxicology methods such as quantitative structure-activity relationship (QSAR) modeling. Mitochondrial toxicity is involved in many diseases such as cancer, neurodegeneration, type 2 diabetes, cardiovascular diseases and autoimmune diseases. Thus, it is important to rapidly and efficiently identify chemicals with mitochondrial toxicity. In this study, five machine learning algorithms and twelve types of molecular fingerprints were employed to generate QSAR discriminant models for mitochondrial toxicity. A threshold moving method was adopted to resolve the imbalance issue in the training data. Consensus of the models by an averaging probability strategy improved prediction performance. The best model has correct classification rates of 81.8% and 88.3% in ten-fold cross validation and external validation, respectively. Substructures such as phenol, carboxylic acid, nitro and arylchloride were found informative through analysis of information gain and frequency of substructures. The results demonstrate that resolving imbalance in training and building consensus models can improve classification rates for mitochondrial toxicity prediction.
Collapse
Affiliation(s)
- Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
10
|
Melnikov F, Geohagen BC, Gavin T, LoPachin RM, Anastas PT, Coish P, Herr DW. Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. Neurotoxicology 2020; 79:95-103. [PMID: 32380191 DOI: 10.1016/j.neuro.2020.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Xenobiotic electrophiles can form covalent adducts that may impair protein function, damage DNA, and may lead a range of adverse effects. Cumulative neurotoxicity is one adverse effect that has been linked to covalent protein binding as a Molecular Initiating Event (MIE). This paper describes a mechanistic in silico chemical screening approach for neurotoxicity based on Hard and Soft Acids and Bases (HSAB) theory. We evaluated the applicability of HSAB-based electrophilicity screening protocol for neurotoxicity on 19 positive and 19 negative reference chemicals. These reference chemicals were identified from the literature, using available information on mechanisms of neurotoxicity whenever possible. In silico screening was based on structural alerts for protein binding motifs and electrophilicity index in the range of known neurotoxicants. The approach demonstrated both a high positive prediction rate (82-90 %) and specificity (90 %). The overall sensitivity was relatively lower (47 %). However, when predicting the toxicity of chemicals known or suspected of acting via non-specific adduct formation mechanism, the HSAB approach identified 7/8 (sensitivity 88 %) of positive control chemicals correctly. Consequently, the HSAB-based screening is a promising approach of identifying possible neurotoxins with adduct formation molecular initiating events. While the approach must be expanded over time to capture a wider range of MIEs involved in neurotoxicity, the mechanistic nature of the screen allows users to flag chemicals for possible adduct formation MIEs. Thus, the HSAB based toxicity screening is a promising strategy for toxicity assessment and chemical prioritization in neurotoxicology and other health endpoints that involve adduct formation.
Collapse
Affiliation(s)
- Fjodor Melnikov
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY, 10467, United States.
| | - Terrence Gavin
- Department of Chemistry, Iona College, 402 North Avenue, New Rochelle, NY, 10804, United States.
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY, 10467, United States.
| | - Paul T Anastas
- School of Forestry and Environmental Science, School of Public Health, Yale University, New Haven, CT 06511, United States.
| | - Phillip Coish
- School of Forestry and Environmental Science, Yale University, New Haven, CT 06511, United States.
| | - David W Herr
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
11
|
Yang H, Lou C, Li W, Liu G, Tang Y. Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery. Chem Res Toxicol 2020; 33:1312-1322. [DOI: 10.1021/acs.chemrestox.0c00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chaofeng Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|