1
|
Neri F, Takajjart SN, Lerner CA, Desprez PY, Schilling B, Campisi J, Gerencser AA. A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers. GeroScience 2024; 46:4185-4202. [PMID: 38869711 PMCID: PMC11336018 DOI: 10.1007/s11357-024-01167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-β-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-β-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
Collapse
Affiliation(s)
- Francesco Neri
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | | - Chad A Lerner
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA, USA
- California Pacific Medical Center, San Francisco, CA, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, USA.
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Neri F, Takajjart SN, Lerner CA, Desprez PY, Schilling B, Campisi J, Gerencser AA. A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573123. [PMID: 38187756 PMCID: PMC10769423 DOI: 10.1101/2023.12.22.573123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by i) quantifying colorimetric SA-β-Gal via optical density; ii) implementing staining background controls; iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-β-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
Collapse
Affiliation(s)
- Francesco Neri
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | | | | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA, USA
- California Pacific Medical Center, San Francisco, CA, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | |
Collapse
|
3
|
Zhou H, Zhou L, Li B, Yue R. Anti-cyclooxygenase, anti-glycation, and anti-skin aging effect of Dendrobium officinale flowers’ aqueous extract and its phytochemical validation in aging. Front Immunol 2023; 14:1095848. [PMID: 37006297 PMCID: PMC10064984 DOI: 10.3389/fimmu.2023.1095848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionDendrobium officinale Kimura et Migo (D. officinale) , widely called as “life-saving immortal grass” by Chinese folk, is a scarce and endangered species. The edible stems of D. officinale have been extensively studied for active chemical components and various bioactivities. However, few studies have reported the well-being beneficial effects of D. officinale flowers (DOF). Therefore, the present study aimed to investigate the in vitro biological potency of its aqueous extract and screen its active components.MethodsAntioxidant tests, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the ferric reducing ability of plasma (FRAP), and intracellular reactive oxygen species (ROS) level analyses in primary human epidermal keratinocytes, anti-cyclooxygenase2 (COX-2) assay, anti-glycation assay (both fluorescent AGEs formation in a BSA fructose/glucose system and glycation cell assay), and anti-aging assay (quantification of collagen types I and III, and SA-β-gal staining assay) were conducted to determine the potential biological effects of DOF extracts and its major compounds. Ultra-performance liquid chromatography-electrospray ionisation-quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS/MS) was performed to investigate the composition of DOF extracts. Online antioxidant post-column bioassay tests were applied to rapidly screen major antioxidants in DOF extracts.Results and discussionThe aqueous extract of D. officinale flowers was found to have potential antioxidant capacity, anti-cyclooxygenase2 (COX-2) effect, anti-glycation potency, and anti-aging effects. A total of 34 compounds were identified using UPLC-ESI-QTOF-MS/MS. Online ABTS radical analysis demonstrated that 1-O-caffeoyl-β-D-glucoside, vicenin-2, luteolin-6-C-β-D-xyloside-8-C-β--D-glucoside, quercetin-3-O-sophoroside, rutin, isoquercitrin, and quercetin 3-O-(6″-O-malonyl)-β-D-glucoside are the major potential antioxidants. In addition, all selected 16 compounds exerted significant ABTS radical scavenging ability and effective AGE suppressive activities. However, only certain compounds, such as rutin and isoquercitrin, displayed selective and significant antioxidant abilities, as shown by DPPH and FRAP, as well as potent COX-2 inhibitory capacity, whereas the remaining compounds displayed relatively weak or no effects. This indicates that specific components contributed to different functionalities. Our findings justified that DOF and its active compound targeted related enzymes and highlighted their potential application in anti-aging.
Collapse
Affiliation(s)
- Huiji Zhou
- Amway (Shanghai) Innovation and Science Co., Ltd, Shanghai, China
| | - Luxian Zhou
- Shanghai Archgene Biotechnology Co., Ltd, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Innovation and Science Co., Ltd, Shanghai, China
- Amway (China) Botanical R&D Center, Wuxi, China
- *Correspondence: Bo Li, ; Rongcai Yue,
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Bo Li, ; Rongcai Yue,
| |
Collapse
|
4
|
Shang D, Hong Y, Xie W, Tu Z, Xu J. Interleukin-1β Drives Cellular Senescence of Rat Astrocytes Induced by Oligomerized Amyloid β Peptide and Oxidative Stress. Front Neurol 2020; 11:929. [PMID: 33013631 PMCID: PMC7493674 DOI: 10.3389/fneur.2020.00929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the leading cause of dementia. With no reliable treatment that delays or reverses the progress of AD, effective medical drugs, and interventions for AD treatment are in urgent need. Clinical success for patients thus relies on gaining a clearer understanding of AD pathogenesis to feed the development of novel and potent therapy strategies. It is well-established that inflammatory processes are involved in the pathology of AD, and recent studies implicated senescence of glial cells as an important player in the progression of AD. Methods: We did a preliminary screen in rat astrocytes for the five most abundant inflammatory factors in neuroinflammation, namely IL-1β, IL-6, IL-8, TGF-β1, and TNF-α, and found that IL-1β could efficiently induce cellular senescence. After that, SA-β-gal staining, immunofluorescence, ELISA, qRT-PCR, and immunoblotting were used to explore the underlying mechanism through which IL-1β mediates cellular senescence of rat astrocytes. Results: IL-1β-induced cellular senescence of rat astrocytes was accompanied by increased total and phosphorylated tau. Further experiments showed that both oligomerized amyloid β (Aβ) and H2O2 treatment can induce cellular senescence in rat astrocytes and increase the production and secretion of IL-1β from these cells. Subsequent mechanistic study revealed that activation of NLRP3 mediates Aβ and H2O2-induced maturation and secretion of IL-1β. Conclusion: Our results suggest that IL-1β mediates senescence in rat astrocytes induced by several common adverse stimuli in AD, implicating IL-1β and NLRP3 as valuable diagnostic biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yin Hong
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wangwang Xie
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Viel T, Chinta S, Rane A, Chamoli M, Buck H, Andersen J. Microdose lithium reduces cellular senescence in human astrocytes - a potential pharmacotherapy for COVID-19? Aging (Albany NY) 2020; 12:10035-10040. [PMID: 32534451 PMCID: PMC7346079 DOI: 10.18632/aging.103449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Cell senescence is a process that causes growth arrest and the release of a senescence associated secretory phenotype (SASP), characterized by secretion of chemokines, cytokines, cell growth factors and metalloproteases, leading to a tissue condition that may precipitate cancers and neurodegenerative processes. With the recent pandemic of coronavirus, senolytic drugs are being considered as possible therapeutic tools to reduce the virulence of SARS-CoV-2. In the last few years, our research group showed that lithium carbonate at microdose levels was able to stabilize memory and change neuropathological characteristics of Alzheimer’s disease (AD). In the present work, we present evidence that low-dose lithium can reduce the SASP of human iPSCs-derived astrocytes following acute treatment, suggesting that microdose lithium could protect cells from senescence and development of aging-related conditions. With the present findings, a perspective of the potential use of low-dose lithium in old patients from the “high risk group” for COVID-19 (with hypertension, diabetes and chronic obstructive pulmonary disease) is presented.
Collapse
Affiliation(s)
- Tania Viel
- Laboratory of Neuropharmacology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Shankar Chinta
- Touro University California, Vallejo, CA 94592, USA.,Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Hudson Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Julie Andersen
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|