1
|
Kuang Q, He C, Huang H, Jiang H. Multi-omic analysis on the molecular mechanisms of rapid growth in 'Deqin' alfalfa after space mutagenesis. BMC PLANT BIOLOGY 2025; 25:34. [PMID: 39780091 PMCID: PMC11715107 DOI: 10.1186/s12870-025-06060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored. RESULTS Comparative analyses of transcriptomics, proteomics, and hormone profiles were conducted in root, stem, and leaf tissues of both mutant and non-mutagenic materials. Targeted plant hormone showed notable increases in the levels of 3-indolebutyric, indole-3-acetic, and 3-indolepropionic acids in the mutant, with percentage increases of 33.55%, 32.49%, and 30.39%, respectively. Zeatin-riboside and dihydrozeatin riboside levels increased by 164.92% and 25.86%, while giberellin (GA) 7, GA3, and GA1 levels increased by 219.52%, 68.74%, and 40.98%. Non-mutagenic materials sprayed with exogenous 3-indolebutyric acid, zeatin-riboside, and GA7 exhibited significant growth acceleration. Transcriptomics identified 49,095 annotated genes, with 2,009, 1,889, and 1,760 upregulated and 2,082, 2,035, and 1,499 downregulated in the leaves, stems, and roots, respectively. Twenty-two genes related to plant hormone biosynthesis showed significant alterations. Screening through weighted correlation network analysis revealed ten candidate genes, four of which were associated with photosynthesis and starch and sucrose metabolism. Integrated analysis of targeted plant hormone metabolomics and transcriptomics indicated that plant hormone signal transduction played a crucial role. Proteomics revealed 479 differentially accumulated proteins, of which 174 were upregulated and 305 were downregulated. Integrated proteomics and transcriptomics showed that photosynthesis, starch and sucrose metabolism, carbon metabolism, and carbon fixation in photosynthetic organisms promoted the rapid growth of the mutants. By integrating multi-omics data, we elucidated the synergistic effects of pathways such as hormone signal transduction and tryptophan metabolism on the rapid growth of the mutants. CONCLUSION This study demonstrated the significance of plant hormones in the rapid growth of the mutants and identified key genes and metabolic pathways. Our findings provide valuable information for the genetic improvement of alfalfa varieties and serve as a reference for achieving rapid growth in other plants.
Collapse
Affiliation(s)
- Qian Kuang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chenggang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Heping Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hua Jiang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Wang S, Lou Y, Qi H, Li H, Di X, Sun H, Gao Z. BZR1 targets steroid 22-alpha hydroxylase 4 to negatively regulates cell elongation in bamboo. Int J Biol Macromol 2024; 289:138832. [PMID: 39694354 DOI: 10.1016/j.ijbiomac.2024.138832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Moso bamboo is renowned for its exceptional growth rate, driven by rapid cell proliferation and elongation in culm internodes. This study uncovers the novel role of brassinosteroids (BRs) in regulating bamboo shoot growth, revealing a previously unknown negative correlation between BR levels and growth rates. Notably, we identify BRASSINAZOLE RESISTANT1 (BZR1) acts as a key transcription factor in BR signaling, governing the expression of genes involved in BR biosynthesis and growth. Specifically, we elucidate the interactions between PeBZR1s and the promoter of steroid 22-alpha hydroxylase gene (PeDWF4) encoding a critical enzyme of BR metabolism. Our findings show that the transcriptional expression levels of PeBZR1-4, PeBZR1-5, and PeBZR1-7 positively correlated with BRs content. Furthermore, all three can bind to the BRRE motif on the PeDWF4 gene promoter, thereby suppressing PeDWF4 expression. Additionally, we demonstration that knockdown of PeDWF4 in bamboo through planta gene editing results in shorter epidermal cells and reduced expression of cell elongation genes. Conversely, Arabidopsis overexpressing PeDWF4 exhibited enhanced cell elongation and larger leaves. These findings reveal PeBZR1-4, PeBZR1-5, and PeBZR1-7 as negative regulators of cell elongation through PeDWF4 inhibition. This discovery not only advances our understanding of BR-mediated regulatory mechanisms underlying the rapid growth of bamboo but also opens new approaches for future research, particularly in applying these insights to develop innovative strategies in bamboo targeted breeding and biotechnology to optimize growth characteristics.
Collapse
Affiliation(s)
- Sining Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yongfeng Lou
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Haole Qi
- Inner Mongolia Agricultural University, Hohhot 010000, China
| | - Hui Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Xiaolin Di
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China.
| |
Collapse
|
3
|
Tan J, Xuan X, Su S, Jiao Y, Guo H, Zhang Z. Comprehensive analysis of the CPP gene family in Moso bamboo: insights into their role in rapid shoot growth. BMC Genomics 2024; 25:1173. [PMID: 39627725 PMCID: PMC11613906 DOI: 10.1186/s12864-024-11084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
Cysteine-rich polycomb-like proteins (CPPs), pivotal transcription factors crucial for evolution of plants from germination to maturity, and adaptation to environmental stresses, have not yet been characterized within the context of Moso bamboo. The CPP gene family of Moso bamboo was identified through bioinformatics, and the structural and functional attributes of the gene, including its physicochemical properties, evolutionary relationships, and gene-protein structures, were revealed. Additionally, the current study also offers valuable information on the patterns of gene expression in bamboo shoots during the period of accelerated development. The results show that the Moso bamboo genome contains 17 CPP members. Molecular phylogenetic relationships indicated that CPPs could be divided into three subfamilies and that CPP members of the same subfamily shared similar gene structures, motifs and conserved structural domains. The covariance analysis showed that the covariance between CPP and Oryza sativa was higher than that between Arabidopsis. Protein homology modeling showed that CPP proteins contain the DNA-binding domain of typical transcription factors. Transcriptomic data analysis revealed that CPP gene expression differs between tissues and organs. CPP could be regulated in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). The qRT-PCR experiments demonstrated that CPP was crucial in the initial and fast expansion of bamboo shoots. Additionally, gene ontology (GO), KEGG enrichment and CPP regulatory network map analyses revealed multiple functional annotations of PeCPP-regulated downstream target genes. The results of this study will not only lay the foundation for further exploration of the detailed biological functions of CPP genes in the growth and development of Moso bamboo, but also establish the groundwork for future genetic enhancement of fast-growing forest trees.
Collapse
Affiliation(s)
- Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Xueyun Xuan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Shiying Su
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
4
|
Mansoor S, Hamid S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv 2024; 77:108447. [PMID: 39251098 DOI: 10.1016/j.biotechadv.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
The burgeoning field of bioinformatics has seen a surge in computational tools tailored for omics data analysis driven by the heterogeneous and high-dimensional nature of omics data. In biomedical and plant science research multi-omics data has become pivotal for predictive analytics in the era of big data necessitating sophisticated computational methodologies. This review explores a diverse array of computational approaches which play crucial role in processing, normalizing, integrating, and analyzing omics data. Notable methods such similarity-based methods, network-based approaches, correlation-based methods, Bayesian methods, fusion-based methods and multivariate techniques among others are discussed in detail, each offering unique functionalities to address the complexities of multi-omics data. Furthermore, this review underscores the significance of computational tools in advancing our understanding of data and their transformative impact on research.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Thai Thanh Tuan
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea; Multimedia Communications Laboratory, University of Information Technology, Ho Chi Minh city 70000, Vietnam; Multimedia Communications Laboratory, Vietnam National University, Ho Chi Minh city 70000, Vietnam
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea.
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
5
|
Zou LH, Zhu B, Chen Y, Lu Y, Ramkrishnan M, Xu C, Zhou X, Ding Y, Cho J, Zhou M. Genetic and epigenetic reprogramming in response to internal and external cues by induced transposon mobilization in Moso bamboo. THE NEW PHYTOLOGIST 2024; 244:1916-1930. [PMID: 39238152 DOI: 10.1111/nph.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.
Collapse
Affiliation(s)
- Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bailiang Zhu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaxin Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaping Lu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Muthusamy Ramkrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chao Xu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yiqian Ding
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
6
|
Sun H, Li H, Huang M, Gao Z. Expression and function analysis of phenylalanine ammonia-lyase genes involved in Bamboo lignin biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14444. [PMID: 39005134 DOI: 10.1111/ppl.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Bamboo, renowned as the fastest-growing plant globally, matures within an astonishingly short period of 40-50 days from shoots, reaching heights of 10-20 meters. Moreover, it can be harvested for various uses within 3-5 years. Bamboo exhibits exceptional mechanical properties, characterized by high hardness and flexibility, largely attributed to its lignin content. Phenylalanine ammonia-lyase (PAL) catalyzes the crucial initial step in lignin biosynthesis, but its precise role in bamboo lignification processes remains elusive. Thus, elucidating the functions of PAL genes in bamboo lignification processes is imperative for understanding its rapid growth and mechanical strength. Here, we systematically identified and classified PAL genes in Moso bamboo, ensuring nomenclature consistency across prior studies. Subsequently, we evaluated PAL gene expression profiles using publicly available transcriptome data. The downregulation of PePALs expression in Moso bamboo through in planta gene editing resulted in a decrease in PAL activity and a subsequent reduction in lignin content. In contrast, overexpression of PePAL led to enhanced PAL activity and an increase in lignin content. These findings highlight the critical role of PAL in the lignin biosynthesis process of Moso bamboo, which will help to unravel the mechanism underpinning bamboo's rapid growth and mechanical strength, with a specific emphasis on elucidating the functions of PAL genes.
Collapse
Affiliation(s)
- Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya, China
| | - Hui Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| | - Mei Huang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
7
|
Zhang Q, Chu X, Gao Z, Ding Y, Que F, Ahmad Z, Yu F, Ramakrishnan M, Wei Q. Culm Morphological Analysis in Moso Bamboo Reveals the Negative Regulation of Internode Diameter and Thickness by Monthly Precipitation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1484. [PMID: 38891293 PMCID: PMC11175016 DOI: 10.3390/plants13111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The neglect of Moso bamboo's phenotype variations hinders its broader utilization, despite its high economic value globally. Thus, this study investigated the morphological variations of 16 Moso bamboo populations. The analysis revealed the culm heights ranging from 9.67 m to 17.5 m, with average heights under the first branch ranging from 4.91 m to 7.67 m. The total internode numbers under the first branch varied from 17 to 36, with internode lengths spanning 2.9 cm to 46.4 cm, diameters ranging from 5.10 cm to 17.2 cm, and wall thicknesses from 3.20 mm to 33.3 mm, indicating distinct attributes among the populations. Furthermore, strong positive correlations were observed between the internode diameter, thickness, length, and volume. The coefficient of variation of height under the first branch showed strong positive correlations with several parameters, indicating variability in their contribution to the total culm height. A regression analysis revealed patterns of covariation among the culm parameters, highlighting their influence on the culm height and structural characteristics. Both the diameter and thickness significantly contribute to the internode volume and culm height, and the culm parameters tend to either increase or decrease together, influencing the culm height. Moreover, this study also identified a significant negative correlation between monthly precipitation and the internode diameter and thickness, especially during December and January, impacting the primary thickening growth and, consequently, the internode size.
Collapse
Affiliation(s)
- Qianwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Xue Chu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Zhipeng Gao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Feng Que
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China;
| |
Collapse
|
8
|
Jiao Y, Tan J, Guo H, Huang B, Ying Y, Ramakrishnan M, Zhang Z. Genome-wide analysis of the KNOX gene family in Moso bamboo: insights into their role in promoting the rapid shoot growth. BMC PLANT BIOLOGY 2024; 24:213. [PMID: 38528453 DOI: 10.1186/s12870-024-04883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.
Collapse
Affiliation(s)
- Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Bin Huang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yeqing Ying
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Guo L, Chen T, Chu X, Sun K, Yu F, Que F, Ahmad Z, Wei Q, Ramakrishnan M. Anatomical and Transcriptome Analyses of Moso Bamboo Culm Neck Growth: Unveiling Key Insights. PLANTS (BASEL, SWITZERLAND) 2023; 12:3478. [PMID: 37836218 PMCID: PMC10574802 DOI: 10.3390/plants12193478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The Moso bamboo culm neck, connected with the rhizome and the shoot bud, is an important hub for connecting and transporting the aboveground and belowground systems of bamboo for the shoot bud development and rapid growth. Our previous study revealed that the culm neck generally undergoes six different developmental stages (CNS1-CNS6), according to the primary thickening growth of the underground shoot bud. However, the molecular mechanism of the culm neck development remains unknown. The present study focused on the developmental process of the CNS3-CNS5 stages, representing the early, middle, and late elongation stages, respectively. These stages are densely packed with vascular tissues and consist of epidermis, hypodermis, cortex, and ground tissue. Unlike the hollow structure of the culms, the culm necks are solid structures. As the culm neck continues to grow, the lignin deposition increases noticeably, contributing to its progressive strengthening. For the transcriptome analysis, a total of 161,160 transcripts with an average length of 2373 were obtained from these stages using both PacBio and Illumina sequencing. A total of 92.2% of the reads mapped to the Moso bamboo reference genome. Further analysis identified a total of 5524 novel genes and revealed a dynamic transcriptome. Secondary-metabolism- and transport-related genes were upregulated particularly with the growth of the culm neck. Further analysis revealed the molecular processes of lignin accumulation in the culm neck, which include differentially expressed genes (DEGs) related to cell wall loosening and remodeling and secondary metabolism. Moreover, the upregulations of transcription factors such as MYBH and RSM in the MYB family play crucial roles during critical transitions in the culm neck development, such as changes in the angle between the rhizome and the culm neck. Our new findings provide essential insights into the cellular roadmaps, transcriptional networks, and key genes involved in the culm neck development.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Tianguo Chen
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Xue Chu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Sun
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fen Yu
- Changzhou Agricultural Technology Extension Center, Changzhou 213000, China
| | - Feng Que
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Wang Y, Wang H, Wang H, Zhou R, Wu J, Zhang Z, Jin Y, Li T, Kohnen MV, Liu X, Wei W, Chen K, Gao Y, Ding J, Zhang H, Liu B, Lin C, Gu L. Multi-omics of Circular RNAs and Their Responses to Hormones in Moso Bamboo (Phyllostachys edulis). GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:866-885. [PMID: 36805531 PMCID: PMC10787125 DOI: 10.1016/j.gpb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.
Collapse
Affiliation(s)
- Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruifan Zhou
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zekun Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yandong Jin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiazhi Ding
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Li L, Zhou B, Liu D, Wu H, Shi Q, Lin S, Yao W. Transcriptomic Complexity of Culm Growth and Development in Different Types of Moso Bamboo. Int J Mol Sci 2023; 24:ijms24087425. [PMID: 37108588 PMCID: PMC10138756 DOI: 10.3390/ijms24087425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Moso bamboo is capable of both sexual and asexual reproduction during natural growth, resulting in four distinct types of culms: the bamboo shoot-culm, the seedling stem, the leptomorph rhizome, and a long-ignored culm-the outward-rhizome. Sometimes, when the outward rhizomes break through the soil, they continue to grow longitudinally and develop into a new individual. However, the roles of alternative transcription start sites (aTSS) or termination sites (aTTS) as well as alternative splicing (AS) have not been comprehensively studied for their development. To re-annotate the moso bamboo genome and identify genome-wide aTSS, aTTS, and AS in growing culms, we utilized single-molecule long-read sequencing technology. In total, 169,433 non-redundant isoforms and 14,840 new gene loci were identified. Among 1311 lncRNAs, most of which showed a positive correlation with their target mRNAs, one-third of these IncRNAs were preferentially expressed in winter bamboo shoots. In addition, the predominant AS type observed in moso bamboo was intron retention, while aTSS and aTTS events occurred more frequently than AS. Notably, most genes with AS events were also accompanied by aTSS and aTTS events. Outward rhizome growth in moso bamboo was associated with a significant increase in intron retention, possibly due to changes in the growth environment. As different types of moso bamboo culms grow and develop, a significant number of isoforms undergo changes in their conserved domains due to the regulation of aTSS, aTTS, and AS. As a result, these isoforms may play different roles than their original functions. These isoforms then performed different functions from their original roles, contributing to the transcriptomic complexity of moso bamboo. Overall, this study provided a comprehensive overview of the transcriptomic changes underlying different types of moso bamboo culm growth and development.
Collapse
Affiliation(s)
- Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Binao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Dong Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Xianyang 712100, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Li T, Wang H, Zhang Y, Wang H, Zhang Z, Liu X, Zhang Z, Liu K, Yang D, Zhang H, Gu L. Comprehensive profiling of epigenetic modifications in fast-growing Moso bamboo shoots. PLANT PHYSIOLOGY 2023; 191:1017-1035. [PMID: 36417282 PMCID: PMC9922427 DOI: 10.1093/plphys/kiac525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
The fast growth of Moso bamboo (Phyllostachys edulis) shoots is caused by the rapid elongation of each internode. However, the key underlying cellular processes and epigenetic mechanisms remain largely unexplored. We used microscopy and multi-omics approaches to investigate two regions (bottom and middle) of the 18th internode from shoots of two different heights (2 and 4 m). We observed that internode cells become longer, and that lignin biosynthesis and glycosyltransferase family 43 (GT43) genes are substantially upregulated with shoot height. Nanopore direct RNA sequencing (DRS) revealed a higher N6-methyladenine (m6A) modification rate in 2-m shoots than in 4-m shoots. In addition, different specific m6A modification sites were enriched at different growth stages. Global DNA methylation profiling indicated that DNA methylation levels are higher in 4-m shoots than in 2-m shoots. We also detected shorter poly(A) tail lengths (PALs) in 4-m shoots compared with 2-m shoots. Genes showing differential PAL were mainly enriched in the functional terms of protein translation and vesicle fusion. An association analysis between PALs and DNA methylation strongly suggested that gene body CG methylation levels are positively associated with PAL. This study provides valuable information to better understand post-transcriptional regulations responsible for fast-growing shoots in Moso bamboo.
Collapse
Affiliation(s)
- Tao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuqing Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zekun Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Rao J, Huang Z, Chen Z, Liu H, Zhang X, Cen X, Wang X, Wu J, Miao Y, Ren Y. Identification and expression profiles of xylogen-like arabinogalactan protein (XYLP) gene family in Phyllostachys edulis in different developmental tissues and under various abiotic stresses. Int J Biol Macromol 2023; 227:1098-1118. [PMID: 36462591 DOI: 10.1016/j.ijbiomac.2022.11.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Xylogen-like arabinogalactan protein (XYLP) is an atypical lipid transport protein. In this study, 23 Phyllostachys edulis XYLPs were identified, and their proteins contain characteristic structures of AGP and nsLTP domain. All PeXYLPs can be divided into four clades, and their genes were unevenly distributed on 11 chromosome scaffolds. Collinear analysis revealed that segmental duplication was the main driver for PeXYLP family expansion. The cis-acting elements presented in the promoter are involved in various regulations of PeXYLPs expression. G.O. annotation revealed that PeXYLPs are mainly interested in lipid transport and synthesis and primarily function at the plasma membrane. Transcriptome analysis revealed that PeXYLPs were spatiotemporally expressed and displayed significant variability during various tissue development. Besides that, some PeXYLPs also respond to multiple phytohormones and abiotic stresses. By semi-quantitative RT-PCR, the response of some PeXYLPs to MeJA was confirmed, and the proteins were shown to localize to the plasma membrane mainly. WGCNA in defined regions of fast-growing bamboo shoots revealed that 5 PeXYLPs in 4 gene co-expression modules showed a positive module-trait relationship with three fast-growing regions. This systematic analysis of the PeXYLP family will provide a foundation for further insight into the functions of individual PeXYLP in a specific tissue or organ development, phytohormone perception, and stress responses in the future.
Collapse
Affiliation(s)
- Jialin Rao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihong Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxian Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongfei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuexiang Cen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaowei Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Liu C, Duan Y, Zhou Q, Wang Y, Gao Y, Kan H, Hu J. A classification method of gastric cancer subtype based on residual graph convolution network. Front Genet 2023; 13:1090394. [PMID: 36685956 PMCID: PMC9845413 DOI: 10.3389/fgene.2022.1090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Clinical diagnosis and treatment of tumors are greatly complicated by their heterogeneity, and the subtype classification of cancer frequently plays a significant role in the subsequent treatment of tumors. Presently, the majority of studies rely far too heavily on gene expression data, omitting the enormous power of multi-omics fusion data and the potential for patient similarities. Method: In this study, we created a gastric cancer subtype classification model called RRGCN based on residual graph convolutional network (GCN) using multi-omics fusion data and patient similarity network. Given the multi-omics data's high dimensionality, we built an artificial neural network Autoencoder (AE) to reduce the dimensionality of the data and extract hidden layer features. The model is then built using the feature data. In addition, we computed the correlation between patients using the Pearson correlation coefficient, and this relationship between patients forms the edge of the graph structure. Four graph convolutional network layers and two residual networks with skip connections make up RRGCN, which reduces the amount of information lost during transmission between layers and prevents model degradation. Results: The results show that RRGCN significantly outperforms other classification methods with an accuracy as high as 0.87 when compared to four other traditional machine learning methods and deep learning models. Conclusion: In terms of subtype classification, RRGCN excels in all areas and has the potential to offer fresh perspectives on disease mechanisms and disease progression. It has the potential to be used for a broader range of disorders and to aid in clinical diagnosis.
Collapse
Affiliation(s)
- Can Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China
| | - Yuchen Duan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qingqing Zhou
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yongkang Wang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China
| | - Yong Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China
| | - Jili Hu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China
| |
Collapse
|
15
|
Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Sci Rep 2022; 12:19362. [PMID: 36371524 PMCID: PMC9653414 DOI: 10.1038/s41598-022-24070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mycelium-bound composites (MBCs) are materials obtained by growing fungi on a ligno-cellulosic substrate which have various applications in packaging, furniture, and construction industries. MBCs are particularly interesting as they are sustainable materials that can integrate into a circular economy model. Indeed, they can be subsequently grown, used, degraded, and re-grown. Integrating in a meaningful biocycle for our society therefore demands that MBCs fulfil antagonistic qualities which are to be at the same time durable and biodegradable. In this study, we conduct experiments using MBCs made from the fungus species Pleurotus ostreatus grown on bamboo microfibers substrate. By measuring the variations of the mechanical properties with time, we provide an experimental demonstration of a biocycle for such composites for in-door applications. We found that the biocycle can be as short as 5 months and that the use of sustainable coatings is critical to increase the durability of the composites while maintaining biodegradability. Although there are many scenarios of biocycles possible, this study shows a tangible proof-of-concept example and paves the way for optimization of the duration of each phase in the biocycle depending on the intended application and resource availability.
Collapse
|
16
|
Chen M, Guo L, Ramakrishnan M, Fei Z, Vinod KK, Ding Y, Jiao C, Gao Z, Zha R, Wang C, Gao Z, Yu F, Ren G, Wei Q. Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. THE PLANT CELL 2022; 34:3577-3610. [PMID: 35766883 PMCID: PMC9516176 DOI: 10.1093/plcell/koac193] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 05/09/2023]
Abstract
Moso bamboo (Phyllostachys edulis) shows remarkably rapid growth (114.5 cm/day), but the underlying biological mechanisms remain unclear. After examining more than 12,750 internodes from more than 510 culms from 17 Moso populations, we identified internode 18 as a representative internode for rapid growth. This internode includes a 2-cm cell division zone (DZ), a cell elongation zone up to 12 cm, and a secondary cell wall (SCW) thickening zone. These zones elongated 11.8 cm, produced approximately 570,000,000 cells, and deposited ∼28 mg g-1 dry weight (DW) lignin and ∼44 mg g-1 DW cellulose daily, far exceeding vegetative growth observed in other plants. We used anatomical, mathematical, physiological, and genomic data to characterize development and transcriptional networks during rapid growth in internode 18. Our results suggest that (1) gibberellin may directly trigger the rapid growth of Moso shoots, (2) decreased cytokinin and increased auxin accumulation may trigger cell DZ elongation, and (3) abscisic acid and mechanical pressure may stimulate rapid SCW thickening via MYB83L. We conclude that internode length involves a possible tradeoff mediated by mechanical pressure caused by rapid growth, possibly influenced by environmental temperature and regulated by genes related to cell division and elongation. Our results provide insight into the rapid growth of Moso bamboo.
Collapse
Affiliation(s)
- Ming Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Kunnummal K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ruofei Zha
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi 330045, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
17
|
Niu LZ, Xu W, Ma PF, Guo ZH, Li DZ. Single-base methylome analysis reveals dynamic changes of genome-wide DNA methylation associated with rapid stem growth of woody bamboos. PLANTA 2022; 256:53. [PMID: 35913571 DOI: 10.1007/s00425-022-03962-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) of woody bamboos were obviously decreased, which might regulate the internode elongation during rapid shoot growth, while CHH methylation was strongly associated with shoot developmental time or age. DNA methylation plays a critical role in the regulation of plant growth and development. Woody bamboos have a unique trait of rapid stem growth resulted from internode elongation at the shooting period. However, it is still unclear whether DNA methylation significantly controls the bamboo rapid stem growth. Here we present whole-genome DNA methylation profiles of the paleotropical woody bamboo Bonia amplexicaulis at five newly defined stages of shoot growth, named ST1-ST5. We found that CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) were significantly lower than in the incubation (ST1) and plateau stages (ST5). The changes in methylation levels mainly occurred in flanking regions of genes and gene body regions, and 23647 differentially methylated regions (DMRs) were identified between ST1 and rapid shoot growth stages (ST2-ST4). Combined with transcriptome analysis, we found that DMR-related genes enriched in the auxin and jasmonic acid (JA) signal transduction, and other pathways closely related to plant growth. Intriguingly, CHH methylation was not involved in the rapid shoot growth, but strongly associated with shoot developmental time by gradually accumulating in transposable elements (TEs) regions. Overall, our results reveal the importance of DNA methylation in regulating the bamboo rapid shoot growth and suggest a role of DNA methylation associated with development time or age in woody bamboos.
Collapse
Affiliation(s)
- Liang-Zhong Niu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Li J, Liu Z, Gao C, Miao Y, Cui K. Overexpression of DsEXLA2 gene from Dendrocalamus sinicus accelerates the plant growth rate of Arabidopsis. PHYTOCHEMISTRY 2022; 199:113178. [PMID: 35385712 DOI: 10.1016/j.phytochem.2022.113178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Expansins play crucial roles in cell wall loosening and a range of life activities involving cell wall modification. Nevertheless, the biological functions of expansin genes during fast growth of bamboo remain unclear. In this study, Dendrocalamus sinicus, the largest and fastest growing bamboo species in the world, was used as the research material, and the full length of DsEXLA2 was cloned. Bioinformatics analysis revealed that DsEXLA2 contained expansin family typical domains (DPBB_1 and Pollen_allerg_1, CDRC motif) and amino acid sequence was highly conserved among different species. The expression level of DsEXLA2 increased from top section to basal section in different internodes. Subcellular localization verified that DsEXLA2 protein was located in the cell wall. Further genetic transformation studies in Arabidopsis indicated that compared with the wild type, DsEXLA2 overexpressed transgenic plants exhibited higher plant height, thicker stem, larger leaf, and less epidermal hair number and smaller stomatal aperture in the prophase and metaphase of growth. In addition, the cellulose content in the stem of transgenic plants was increased, and cell wall was thickened significantly. Moreover, a total of 1656 differentially expressed genes (DEGs) were identified by RNA-seq. The upregulated genes were predominantly enriched in the plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, lipid metabolism and amino acid metabolism, while the downregulated genes were mainly enriched in energy metabolism, carbohydrate metabolism, plant hormone signal transduction and ribosome. These data implied that overexpression of DsEXLA2 gene accelerates the plant growth rate of Arabidopsis. This study is helpful to reveal the molecular mechanism of DsEXLA2 in culm growth and development of D. sinicus, and to understand the rapid growth of bamboos.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Zirui Liu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Chengjie Gao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Yingchun Miao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China
| | - Kai Cui
- State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.
| |
Collapse
|
19
|
Que F, Liu Q, Zha R, Xiong A, Wei Q. Genome-Wide Identification, Expansion, and Evolution Analysis of Homeobox Gene Family Reveals TALE Genes Important for Secondary Cell Wall Biosynthesis in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms23084112. [PMID: 35456930 PMCID: PMC9032839 DOI: 10.3390/ijms23084112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
The TALE gene family is a subfamily of the homeobox gene family and has been implicated in regulating plant secondary growth. However, reports about the evolutionary history and function of the TALE gene family in bamboo are limited. Here, the homeobox gene families of moso bamboo Olyra latifolia and Bonia amplexicaulis were identified and compared. Many duplication events and obvious expansions were found in the TALE family of woody bamboo. PhTALEs were found to have high syntenies with TALE genes in rice. Through gene co-expression analysis and quantitative real-time PCR analysis, the candidate PhTALEs were thought to be involved in regulating secondary cell wall development of moso bamboo during the fast-growing stage. Among these candidate PhTALEs, orthologs of OsKNAT7, OSH15, and SH5 in moso bamboo may regulate xylan synthesis by regulating the expression of IRX-like genes. These results suggested that PhTALEs may participate in the secondary cell wall deposition in internodes during the fast-growing stage of moso bamboo. The expansion of the TALE gene family may be implicated in the increased lignification of woody bamboo when divergent from herbaceous bamboos.
Collapse
Affiliation(s)
- Feng Que
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (F.Q.); (Q.L.); (R.Z.)
| | - Qingnan Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (F.Q.); (Q.L.); (R.Z.)
| | - Ruofei Zha
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (F.Q.); (Q.L.); (R.Z.)
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (A.X.); (Q.W.)
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (F.Q.); (Q.L.); (R.Z.)
- Correspondence: (A.X.); (Q.W.)
| |
Collapse
|
20
|
Total and Mitochondrial Transcriptomic and Proteomic Insights into Regulation of Bioenergetic Processes for Shoot Fast-Growth Initiation in Moso Bamboo. Cells 2022; 11:cells11071240. [PMID: 35406802 PMCID: PMC8997719 DOI: 10.3390/cells11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
As a fast-growing, woody grass plant, Moso bamboo (Phyllostachys edulis) can supply edible shoots, building materials, fibrous raw material, raw materials for crafts and furniture and so on within a relatively short time. Rapid growth of Moso bamboo occurs after the young bamboo shoots are covered with a shell and emerge from the ground. However, the molecular reactions of bioenergetic processes essential for fast growth remain undefined. Herein, total and mitochondrial transcriptomes and proteomes were compared between spring and winter shoots. Numerous key genes and proteins responsible for energy metabolism were significantly upregulated in spring shoots, including those involved in starch and sucrose catabolism, glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, significant decreases in starch and soluble sugar, higher ATP content and higher rates of respiration and glycolysis were identified in spring shoots. Further, the upregulated genes and proteins related to mitochondrial fission significantly increased the number of mitochondria, indirectly promoting intracellular energy metabolism. Moreover, enhanced alternate-oxidase and uncoupled-protein pathways in winter shoots showed that an efficient energy-dissipating system was important for winter shoots to adapt to the low-temperature environment. Heterologous expression of PeAOX1b in Arabidopsis significantly affected seedling growth and enhanced cold-stress tolerance. Overall, this study highlights the power of comparing total and mitochondrial omics and integrating physiochemical data to understand how bamboo initiates fast growth through modulating bioenergetic processes.
Collapse
|
21
|
Metabolic Pathways Involved in the Drought Stress Response of Nitraria tangutorum as Revealed by Transcriptome Analysis. FORESTS 2022. [DOI: 10.3390/f13040509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought resistance in plants is controlled by multiple genes. To identify the genes that mediate drought stress responses and to assess the associated metabolic pathways in the desert shrub Nitraria tangutorum, we conducted a transcriptome analysis of plants under control (maximum field capacity) and drought (20% of the maximum field capacity) conditions. We analyzed differentially expressed genes (DEGs) of N. tangutorum and their enrichment in the KEGG metabolic pathways database, and explored the molecular biological mechanisms underlying the answer to its drought tolerance. Between the control and drought groups, 119 classified metabolic pathways annotated 3047 DEGs in the KEGG database. For drought tolerance, nitrate reductase (NR) gene expression was downregulated, indicating that NR activity was decreased to improve drought tolerance. In ammonium assimilation, drought stress inhibited glutamine formation. Protochlorophyllide reductase (1.3.1.33) expression was upregulated to promote chlorophyll a synthesis, whereas divinyl reductase (1.3.1.75) expression was downregulated to inhibit chlorophyll-ester a synthesis. The expression of the chlorophyll synthase (2.5.1.62) gene was downregulated, which affected the synthesis of chlorophyll a and b. Overall, drought stress appeared to improve the ability to convert chlorophyll b into chlorophyll a. Our data serve as a theoretical foundation for further elucidating the growth regulatory mechanism of desert xerophytes, thereby facilitating the development and cultivation of new, drought-resistant genotypes for the purpose of improving desert ecosystems.
Collapse
|
22
|
Gao Z, Guo L, Ramakrishnan M, Xiang Y, Jiao C, Jiang J, Vinod KK, Fei Z, Que F, Ding Y, Yu F, Chen T, Wei Q. Cellular and molecular characterizations of the irregular internode division zone formation of a slow-growing bamboo variant. TREE PHYSIOLOGY 2022; 42:570-584. [PMID: 34633049 DOI: 10.1093/treephys/tpab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 05/16/2023]
Abstract
The key molecular mechanisms underlying the sectionalized growth within bamboo or other grass internodes remain largely unknown. Here, we genetically and morphologically compared the culm and rhizome internode division zones (DZs) of a slow-growing bamboo variant (sgv) having dwarf internodes, with those of the corresponding wild type (WT). Histological analysis discovers that the sgv has an irregular internode DZ. However, the shoot apical meristems in height, width, outside shape, cell number and cell width of the sgv and the WT were all similar. The DZ irregularities first appeared post apical meristem development, in 1-mm sgv rhizome internodes. Thus, the sgv is a DZ irregularity bamboo variant, which has been first reported in bamboo according to our investigation. Transcriptome sequencing analysis finds that a number of cell wall biogenesis and cell division-related genes are dramatically downregulated in the sgv DZ. Interestingly, both transcriptomic and brassinosteroid (BR) contents detection, as well as quantitative real-time PCR analyses show that these irregularities have resulted from the BR signaling pathway defects. Brassinosteroid defect might also cause the erect leaves and branches as well as the irregular epidermis of the sgv. These results suggest that BR signaling pathway plays critical roles in bamboo internode DZ and leaf development from a mutant perspective and also explain the upstream mechanisms causing the dwarf internode of the sgv bamboo.
Collapse
Affiliation(s)
- Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Yu Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaweng Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Kunnummal K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Sahyadri Ave New Delhi, 110012, India
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Feng Que
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| | - Tianguo Chen
- Changzhou Agricultural Technology Extension Center, 289-1 Changjiang Middle Road, Changzhou, Jiangsu 213000, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road Nanjing, Jiangsu 210037, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, College of Forestry, 1101 Zhimin Road, Nanchang, Jiangxi 330045, China
| |
Collapse
|
23
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
24
|
Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R, Zhou M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC PLANT BIOLOGY 2021; 21:585. [PMID: 34886797 PMCID: PMC8656106 DOI: 10.1186/s12870-021-03339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Collapse
Affiliation(s)
- Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | | | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Kim Yrjala
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
25
|
Li Z, Wang X, Yang K, Zhu C, Yuan T, Wang J, Li Y, Gao Z. Identification and expression analysis of the glycosyltransferase GT43 family members in bamboo reveal their potential function in xylan biosynthesis during rapid growth. BMC Genomics 2021; 22:867. [PMID: 34856932 PMCID: PMC8638195 DOI: 10.1186/s12864-021-08192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Xylan is one of the most abundant hemicelluloses and can crosslink cellulose and lignin to increase the stability of cell walls. A number of genes encoding glycosyltransferases play vital roles in xylan biosynthesis in plants, such as those of the GT43 family. However, little is known about glycosyltransferases in bamboo, especially woody bamboo which is a good substitute for timber. Results A total of 17 GT43 genes (PeGT43–1 ~ PeGT43–17) were identified in the genome of moso bamboo (Phyllostachys edulis), which belong to three subfamilies with specific motifs. The phylogenetic and collinearity analyses showed that PeGT43s may have undergone gene duplication, as a result of collinearity found in 12 pairs of PeGT43s, and between 17 PeGT43s and 10 OsGT43s. A set of cis-acting elements such as hormones, abiotic stress response and MYB binding elements were found in the promoter of PeGT43s. PeGT43s were expressed differently in 26 tissues, among which the highest expression level was found in the shoots, especially in the rapid elongation zone and nodes. The genes coexpressed with PeGT43s were annotated as associated with polysaccharide metabolism and cell wall biosynthesis. qRT–PCR results showed that the coexpressed genes had similar expression patterns with a significant increase in 4.0 m shoots and a peak in 6.0 m shoots during fast growth. In addition, the xylan content and structural polysaccharide staining intensity in bamboo shoots showed a strong positive correlation with the expression of PeGT43s. Yeast one-hybrid assays demonstrated that PeMYB35 could recognize the 5′ UTR/promoter of PeGT43–5 by binding to the SMRE cis-elements. Conclusions PeGT43s were found to be adapted to the requirement of xylan biosynthesis during rapid cell elongation and cell wall accumulation, as evidenced by the expression profile of PeGT43s and the rate of xylan accumulation in bamboo shoots. Yeast one-hybrid analysis suggested that PeMYB35 might be involved in xylan biosynthesis by regulating the expression of PeGT43–5 by binding to its 5′ UTR/promoter. Our study provides a comprehensive understanding of PeGT43s in moso bamboo and lays a foundation for further functional analysis of PeGT43s for xylan biosynthesis during rapid growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08192-y.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xinyue Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Jiongliang Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ying Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
26
|
Jin G, Ma PF, Wu X, Gu L, Long M, Zhang C, Li DZ. New Genes Interacted with Recent Whole Genome Duplicates in the Fast Stem Growth of Bamboos. Mol Biol Evol 2021; 38:5752-5768. [PMID: 34581782 PMCID: PMC8662795 DOI: 10.1093/molbev/msab288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As drivers of evolutionary innovations, new genes allow organisms to explore new niches. However, clear examples of this process remain scarce. Bamboos, the unique grass lineage diversifying into the forest, have evolved with a key innovation of fast growth of woody stem, reaching up to 1 m/day. Here, we identify 1,622 bamboo-specific orphan genes that appeared in recent 46 million years, and 19 of them evolved from noncoding ancestral sequences with entire de novo origination process reconstructed. The new genes evolved gradually in exon−intron structure, protein length, expression specificity, and evolutionary constraint. These new genes, whether or not from de novo origination, are dominantly expressed in the rapidly developing shoots, and make transcriptomes of shoots the youngest among various bamboo tissues, rather than reproductive tissue in other plants. Additionally, the particularity of bamboo shoots has also been shaped by recent whole-genome duplicates (WGDs), which evolved divergent expression patterns from ancestral states. New genes and WGDs have been evolutionarily recruited into coexpression networks to underline fast-growing trait of bamboo shoot. Our study highlights the importance of interactions between new genes and genome duplicates in generating morphological innovation.
Collapse
Affiliation(s)
- Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopei Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
27
|
Wang J, Hou Y, Wang Y, Zhao H. Integrative lncRNA landscape reveals lncRNA-coding gene networks in the secondary cell wall biosynthesis pathway of moso bamboo (Phyllostachys edulis). BMC Genomics 2021; 22:638. [PMID: 34479506 PMCID: PMC8417995 DOI: 10.1186/s12864-021-07953-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background LncRNAs are extensively involved in plant biological processes. However, the lack of a comprehensive lncRNA landscape in moso bamboo has hindered the molecular study of lncRNAs. Moreover, the role of lncRNAs in secondary cell wall (SCW) biosynthesis of moso bamboo is elusive. Results For comprehensively identifying lncRNA throughout moso bamboo genome, we collected 231 RNA-Seq datasets, 1 Iso-Seq dataset, and 1 full-length cDNA dataset. We used a machine learning approach to improve the pipeline of lncRNA identification and functional annotation based on previous studies and identified 37,009 lncRNAs in moso bamboo. Then, we established a network of potential lncRNA-coding gene for SCW biosynthesis and identified SCW-related lncRNAs. We also proposed that a mechanism exists in bamboo to direct phenylpropanoid intermediates to lignin or flavonoids biosynthesis through the PAL/4CL/C4H genes. In addition, we identified 4 flavonoids and 1 lignin-preferred genes in the PAL/4CL/C4H gene families, which gained implications in molecular breeding. Conclusions We provided a comprehensive landscape of lncRNAs in moso bamboo. Through analyses, we identified SCW-related lncRNAs and improved our understanding of lignin and flavonoids biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07953-z.
Collapse
Affiliation(s)
- Jiongliang Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Yinguang Hou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Yu Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China.
| |
Collapse
|
28
|
Wang KL, Zhang Y, Zhang HM, Lin XC, Xia R, Song L, Wu AM. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode. THE NEW PHYTOLOGIST 2021; 231:2215-2230. [PMID: 34101835 DOI: 10.1111/nph.17542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is a fast-growing species with uneven growth and lignification from lower to upper segments within one internode. MicroRNAs (miRNAs) play a vital role in post-transcriptional regulation in plants. However, how miRNAs regulate fast growth in bamboo internodes is poorly understood. In this study, one moso bamboo internode was divided during early rapid growth into four segments called F4 (bottom) to F1 (upper) and these were then analysed for transcriptomes, miRNAs and degradomes. The F4 segment had a higher number of actively dividing cells as well as a higher content of auxin (IAA), cytokinin (CK) and gibberellin (GA) compared with the F1 segment. RNA-seq analysis showed DNA replication and cell division-associated genes highly expressed in F4 rather than in F1. In total, 63 miRNAs (DEMs) were identified as differentially expressed between F4 and F1. The degradome and the transcriptome indicated that many downstream transcription factors and hormonal responses genes were modulated by DEMs. Several miR-target interactions were further validated by tobacco co-infiltration. Our findings give new insights into miRNA-mediated regulatory pathways in bamboo, and will contribute to a comprehensive understanding of the molecular mechanisms governing rapid growth.
Collapse
Affiliation(s)
- Kai-Li Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin-Chun Lin
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Rui Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lili Song
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
29
|
Ma R, Huang B, Huang Z, Zhang Z. Genome-wide identification and analysis of the YABBY gene family in Moso Bamboo ( Phyllostachys edulis (Carrière) J. Houz). PeerJ 2021; 9:e11780. [PMID: 34327057 PMCID: PMC8310622 DOI: 10.7717/peerj.11780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The YABBY gene family is a family of small zinc finger transcription factors associated with plant morphogenesis, growth, and development. In particular, it is closely related to the development of polarity in the lateral organs of plants. Despite being studied extensively in many plant species, there is little information on genome-wide characterization of this gene family in Moso bamboo. METHODS In the present study, we identified 16 PeYABBY genes, which were unequally distributed on 11 chromosomes, through genome-wide analysis of high-quality genome sequences of M oso bamboo by bioinformatics tools and biotechnological tools. Gene expression under hormone stress conditions was verified by quantitative real-time PCR (qRT-PCR) experiments. RESULTS Based on peptide sequences and similarity of exon-intron structures, we classified the PeYABBY genes into four subfamilies. Analysis of putative cis-acting elements in promoters of these genes revealed that PeYABBYs contained a large number of hormone-responsive and stress-responsive elements. Expression analysis showed that they were expressed at a high level in Moso bamboo panicles, rhizomes, and leaves. Expression patterns of putative PeYABBY genes in different organs and hormone-treated were analyzed using RNA-seq data, results showed that some PeYABBY genes were responsive to gibberellin (GA) and abscisic acid (ABA), indicating that they may play an important role in plant hormone responses. Gene Ontology (GO) analyses of YABBY proteins indicated that they may be involved in many developmental processes, particularly high level of enrichment seen in plant leaf development. In summary, our results provide a comprehensive genome-wide study of the YABBY gene family in bamboos, which could be useful for further detailed studies of the function and evolution of the YABBY genes, and to provide a fundamental basis for the study of YABBY in Gramineae for resistance to stress and hormonal stress.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Hangzhou, Lin’an, China
- School of Forestry and Biotechnology, ZhejiangA&F University, Zhejiang, Lin’an, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Hangzhou, Lin’an, China
- School of Forestry and Biotechnology, ZhejiangA&F University, Zhejiang, Lin’an, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Hangzhou, Lin’an, China
- School of Forestry and Biotechnology, ZhejiangA&F University, Zhejiang, Lin’an, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Hangzhou, Lin’an, China
- School of Forestry and Biotechnology, ZhejiangA&F University, Zhejiang, Lin’an, China
| |
Collapse
|
30
|
Ma R, Chen J, Huang B, Huang Z, Zhang Z. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. BMC Genomics 2021; 22:533. [PMID: 34256690 PMCID: PMC8276415 DOI: 10.1186/s12864-021-07821-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The BBX (B-box) family are zinc finger protein (ZFP) transcription factors that play an essential role in plant growth, development and response to abiotic stresses. Although BBX genes have been characterized in many model organisms, genome-wide identification of the BBX family genes have not yet been reported in Moso bamboo (Phyllostachys edulis), and the biological functions of this family remain unknown. RESULT In the present study, we identified 27 BBX genes in the genome of Moso bamboo, and analysis of their conserved motifs and multiple sequence alignments revealed that they all shared highly similar structures. Additionally, phylogenetic and homology analyses indicated that PeBBX genes were divided into three clusters, with whole-genome duplication (WGD) events having facilitated the expansion of this gene family. Light-responsive and stress-related cis-elements were identified by analyzing cis-elements in the promoters of all PeBBX genes. Short time-series expression miner (STEM) analysis revealed that the PeBBX genes had spatiotemporal-specific expression patterns and were likely involved in the growth and development of bamboo shoots. We further explored the downstream target genes of PeBBXs, and GO/KEGG enrichment analysis predicted multiple functions of BBX target genes, including those encoding enzymes involved in plant photosynthesis, pyruvate metabolism and glycolysis/gluconeogenesis. CONCLUSIONS In conclusion, we analyzed the PeBBX genes at multiple different levels, which will contribute to further studies of the BBX family and provide valuable information for the functional validation of this family.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
31
|
Cui F, Yang Y, Ye M, Wei W, Huang W, Wu Y, Jiao X, Ye X, Zhou S, Hu Z, Zhang Y, Gui R, Wu W, Yrjälä K, Overmyer K, Liu S. Case study of a rhizosphere microbiome assay on a bamboo rhizome with excessive shoots. FORESTRY RESEARCH 2021; 1:10. [PMID: 39524517 PMCID: PMC11524271 DOI: 10.48130/fr-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/07/2021] [Indexed: 11/16/2024]
Abstract
Young moso bamboo shoots are a popular seasonal food and an important source of income for farmers, with value for cultivation estimated at $30,000 per hectare. Bamboo also has great environmental importance and its unique physiology is of scientific interest. A rare and valuable phenomenon has recently appeared where a large number of adjacent buds within a single moso bamboo rhizome have grown into shoots. Although of practical importance for the production of edible shoots, such occurrences have not been scientifically studied, due to their rarity. Analysis of collected reports from enhanced shoot production events in China showed no evidence that enhanced shoot development was heritable. We report the analysis of the rhizosphere microbiome from a rhizome with 18 shoots, compared to rhizomes having one or no shoots as controls. The community of prokaryotes, but not fungi, correlated with the shoot number. Burkholderia was the most abundant genus, which was negatively correlated with rhizome shoot number, while Clostridia and Ktedonobacteria were positively correlated. Two Burkholderia strains were isolated and their plant-growth promoting activity was tested. The isolated Burkholderia strains attenuated the growth of bamboo seedlings. These data provide the first study on excessive shoot development in bamboo, which will facilitate hypothesis building for future studies.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Yifan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Mengyuan Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenqian Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Ying Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Xiaoxue Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Shutong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yinhai Zhang
- Weifang Inspection and Testing Center, Weifang 261100, China
| | - Renyi Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and the Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Hangzhou, China
| |
Collapse
|
32
|
Wang K, Wu Y, Ye M, Yang Y, Asiegbu FO, Overmyer K, Liu S, Cui F. Comparative Genomics Reveals Potential Mechanisms of Plant Beneficial Effects of a Novel Bamboo-Endophytic Bacterial Isolate Paraburkholderia sacchari Suichang626. Front Microbiol 2021; 12:686998. [PMID: 34220778 PMCID: PMC8250432 DOI: 10.3389/fmicb.2021.686998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Plant-beneficial microbes have drawn wide attention due to their potential application as bio-control agents and bio-fertilizers. Moso bamboo, which is among the monocots with the highest growth rate, lives perennially with abundant microbes that may benefit annually growing crops. Genome information of moso bamboo associated bacteria remains underexplored. We isolated and identified a novel Paraburkholderia strain Suichang626 from moso bamboo roots. Growth promoting effects of Suichang626 on both moso bamboo and seedlings of the model dicot Arabidopsis thaliana were documented in laboratory conditions. To gain insight into the genetic basis of this growth promotion effect, we sequenced the genome of Suichang626. Evidenced by genome-wide phylogeny data, we propose that Suichang626 is a novel strain of Paraburkholderia sacchari. Gene homologs encoding biosynthesis of the plant growth-promoting chemicals, acetoin and 2,3-butanediol, were identified in the genome of Suichang626. Comparative genomics was further performed with plant-beneficial and plant/animal pathogenic species of Paraburkholderia and Burkholderia. Genes related to volatile organic compounds, nitrogen fixation, and auxin biosynthesis were discovered specifically in the plant growth-promoting species of both genera.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.,Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ying Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Mengyuan Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yifan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fred O Asiegbu
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
33
|
Lan Y, Wu L, Wu M, Liu H, Gao Y, Zhang K, Xiang Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. PHYSIOLOGIA PLANTARUM 2021; 172:91-105. [PMID: 33280114 DOI: 10.1111/ppl.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis), a high-value bamboo used to produce food (young shoots), building, and industrial goods. To explore key candidate genes regulating signal transduction and metabolic processes during the initiation of stem elongation in moso bamboo, a transcriptome analysis of the shoots during three successive early elongation stages was performed. From cluster and differential expression analyses, 2984 differentially expressed genes (DEGs) were selected for an enrichment analysis. The DEGs were significantly enriched in the plant hormone signal transduction, sugar and starch metabolism, and energy metabolism pathways. Consequently, the DEG expression patterns of these pathways were analyzed, and the plant endogenous hormone and carbon metabolite (including sucrose, total soluble sugar, and starch) contents for each growth stage, of the shoot, were determined. The cytokinin-signaling pathway was continuously active in the three successive elongation stages, in which several cytokinin-signaling genes played indispensable roles. Additionally, many key DEGs regulating sugar, starch metabolism, and energy conversion, which are actively involved in energy production and substrate synthesis during the continuous growth of the shoots, were found. In summary, our study lays a foundation for understanding the mechanisms of moso bamboo growth and provides useful gene resources for breeding through genetic engineering.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Ma X, Zhao H, Yan H, Sheng M, Cao Y, Yang K, Xu H, Xu W, Gao Z, Su Z. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Comput Struct Biotechnol J 2021; 19:2708-2718. [PMID: 34093986 PMCID: PMC8131310 DOI: 10.1016/j.csbj.2021.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Bamboo, one of the most crucial nontimber forest resources worldwide, has the capacity for rapid growth. In recent years, the genome of moso bamboo (Phyllostachys edulis) has been decoded, and a large amount of transcriptome data has been published. In this study, we generated the genome-wide profiles of the histone modification H3K4me3 in leaf, stem, and root tissues of bamboo. The trends in the distribution patterns were similar to those in rice. We developed a processing pipeline for predicting novel transcripts to refine the structural annotation of the genome using H3K4me3 ChIP-seq data and 29 RNA-seq datasets. As a result, 12,460 novel transcripts were predicted in the bamboo genome. Compared with the transcripts in the newly released version 2.0 of the bamboo genome, these novel transcripts are tissue-specific and shorter, and most have a single exon. Some representative novel transcripts were validated by semiquantitative RT-PCR and qRT-PCR analyses. Furthermore, we put these novel transcripts back into the ChIP-seq analysis pipeline and discovered that the percentages of H3K4me3 in genic elements were increased. Overall, this work integrated transcriptomic data and epigenomic data to refine the annotation of the genome in order to discover more functional genes and study bamboo growth and development, and the application of this predicted pipeline may help refine the structural annotation of the genome in other species.
Collapse
Affiliation(s)
- Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hao Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Ma R, Huang B, Chen J, Huang Z, Yu P, Ruan S, Zhang Z. Genome-wide identification and expression analysis of dirigent-jacalin genes from plant chimeric lectins in Moso bamboo (Phyllostachys edulis). PLoS One 2021; 16:e0248318. [PMID: 33724993 PMCID: PMC7963094 DOI: 10.1371/journal.pone.0248318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
Dirigent-jacalin (D-J) genes belong to the plant chimeric lectin family, and play vital roles in plant growth and resistance to abiotic and biotic stresses. To explore the functions of the D-J family in the growth and development of Moso bamboo (Phyllostachys edulis), their physicochemical properties, phylogenetic relationships, gene and protein structures, and expression patterns were analyzed in detail. Four putative PeD-J genes were identified in the Moso bamboo genome, and microsynteny and phylogenetic analyses indicated that they represent a new branch in the evolution of plant lectins. PeD-J proteins were found to be composed of a dirigent domain and a jacalin-related lectin domain, each of which contained two different motifs. Multiple sequence alignment and homologous modeling analysis indicated that the three-dimensional structure of the PeD-J proteins was significantly different compared to other plant lectins, primarily due to the tandem dirigent and jacalin domains. We surveyed the upstream putative promoter regions of the PeD-Js and found that they mainly contained cis-acting elements related to hormone and abiotic stress response. An analysis of the expression patterns of root, leaf, rhizome and panicle revealed that four PeD-J genes were highly expressed in the panicle, indicating that they may be required during the formation and development of several different tissue types in Moso bamboo. Moreover, PeD-J genes were shown to be involved in the rapid growth and development of bamboo shoots. Quantitative Real-time PCR (qRT PCR) assays further verified that D-J family genes were responsive to hormones and stresses. The results of this study will help to elucidate the biological functions of PeD-Js during bamboo growth, development and stress response.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Peiyao Yu
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Shiyu Ruan
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|