1
|
Liu D, Dou W, Song H, Deng H, Tian Z, Chen R, Liu Z, Jiao Z, Akhberdi O. Insights into the functional mechanism of the non-specific lipid transfer protein nsLTP in Kalanchoe fedtschenkoi (Lavender scallops). Protein Expr Purif 2025; 226:106607. [PMID: 39260807 DOI: 10.1016/j.pep.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Plant non-specific lipid transfer protein (nsLTP) is able to bind and transport lipids and essential oils, as well as engage in various physiological processes, including defense against phytopathogens. Kalanchoe fedtschenkoi (Lavender Scallops) is an attractive and versatile succulent. To investigate the functional mechanism of Kalanchoe fedtschenkoi nsLTP (Ka-nsLTP), we expressed, purified and successfully obtained monomeric Ka-nsLTP. Mutational experiments revealed that the C6A variant retained the same activity as the wild-type (WT) Ka-nsLTP. Ka-nsLTP showed weak antiphytopathogenic bacterial activity, but inhibited fungal growth. Ka-nsLTP possessed a hydrophobic cavity effectively binding lauric acid. Our results offer novel molecular insights into the functional mechanism of nsLTP, which broadens our knowledge of the biological function of nsLTP in crops and provides a useful locus for genetic improvement of plants.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Wenrui Dou
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hongying Song
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huashui Deng
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Rong Chen
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Zhen Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Ziwei Jiao
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China.
| | - Oren Akhberdi
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China.
| |
Collapse
|
2
|
Jiang ZY, Yang AA, Zhang HG, Wang WB, Zhang RH. Population structure and genetic diversity of Tamarix chinensis as revealed with microsatellite markers in two estuarine flats. PeerJ 2023; 11:e15882. [PMID: 37719128 PMCID: PMC10501381 DOI: 10.7717/peerj.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023] Open
Abstract
Background Tamarix chinensis Lour. is a 3-6-meter-tall small tree with high salt- and alkali- tolerance and aggressive invasiveness, mainly distributed in the eastern part of China in warm-temperate and subtropical climate zones, yet there is little information available regarding genetic diversity and population structure. Methods A total of 204 individuals of nine T. chinensis populations were investigated for genetic diversity and population structure using a set of 12 highly polymorphic microsatellite markers. Results The total number of alleles detected was 162, the average number of effective allele was 4.607, the average polymorphism information content (PIC) value of the 12 loci was 0.685, and the mean observed heterozygosity (Ho) and the mean expected heterozygosity (He) was 0.653 and 0.711, respectively. Analysis of molecular variance (AMOVA) showed a 5.32% genetic variation among T. chinensis populations. Despite a low population differentiation, Bayesian clustering analysis, discriminant analysis of principal components (DAPC) and the unweighted pair group method with arithmetic mean (UPGMA) clearly identified three genetic clusters correlated to the populations' geographic origin: the northern populations including those from Yellow River Delta, the Fangshan (FS) population from Beijing, the Changyi (CY) population from Bohai Bay, the Huanjiabu (HHJ) population from Hangzhou Bay, and the remaining two populations from Hangzhou Bay. There was a significant relationship between the genetic distance and geographical distance of the paired populations. Gene flow (Nm) was 4.254 estimated from FST. Conclusion T. chinensis possessed high genetic diversity comparable to tree species, and although the population differentiation is shallow, our results classified the sampled populations according to sampling localities, suggesting the different origins of the study populations.
Collapse
Affiliation(s)
- Zhao-Yu Jiang
- Linyi University, College of Life Science, Linyi City, Shandong Province, China
| | - Ao-Ao Yang
- Linyi University, College of Life Science, Linyi City, Shandong Province, China
| | - Hai-Guang Zhang
- Linyi University, College of Life Science, Linyi City, Shandong Province, China
| | - Wen-Bo Wang
- Linyi University, College of Life Science, Linyi City, Shandong Province, China
| | - Ru-Hua Zhang
- Linyi University, College of Life Science, Linyi City, Shandong Province, China
| |
Collapse
|
3
|
Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: An overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:115-127. [PMID: 34992048 DOI: 10.1016/j.plaphy.2021.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are usually defined as small, basic proteins, with a wide distribution in all orders of higher plants. Structurally, nsLTPs contain a conserved motif of eight cysteines, linked by four disulphide bonds, and a hydrophobic cavity in which the ligand is housed. This structure confers stability and enhances the ability to bind and transport a variety of hydrophobic molecules. Their highly conserved structural resemblance but low sequence identity reflects the wide variety of ligands they can carry, as well as the broad biological functions to which they are linked to, such as membrane stabilization, cell wall organization and signal transduction. In addition, they have also been described as essential in resistance to biotic and abiotic stresses, plant growth and development, seed development, and germination. Hence, there is growing interest in this family of proteins for their critical roles in plant development and for the many unresolved questions that need to be clarified, regarding their subcellular localization, transfer capacity, expression profile, biological function, and evolution.
Collapse
Affiliation(s)
- Khawla Missaoui
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Faical Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax (CBS), University of Sfax, Tunisia
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain.
| |
Collapse
|
4
|
Djemal R, Khoudi H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. PROTOPLASMA 2022; 259:19-31. [PMID: 33759027 DOI: 10.1007/s00709-021-01635-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), copper (Cu), and zinc (Zn) are among the most common heavy metals (HMs) present in polluted soils. While some HMs are required for key biological processes, they are toxic when present in excess. This toxicity damages plant health, decreases crop yields, and can impact human health via the food chain. For example, durum wheat is a staple food that is known to accumulate Cd when grown on polluted soils. Plant response to HM stress is complex and involves several transcription factors (TFs) among which members of the ERF family. Although roles of SHINE-type ERF transcription factors in abiotic stress tolerance have been thoroughly investigated, there is little information concerning their role in HM stress tolerance. In the present study, we investigated the role of durum wheat TdSHN1 TF in HM response and tolerance. Results showed that TdSHN1 expression was strongly induced by Cd, Cu, and Zn in durum wheat seedlings. In addition, TdSHN1 gene promoter directed HM-inducible GUS gene expression in transgenic tobacco. Overexpression of TdSHN1 encoding cDNA in transgenic yeast and tobacco conferred Cd, Cu, and Zn tolerances. Interestingly, transgenic tobacco lines exhibited longer roots and greater biomass accumulation, retained more chlorophyll, and produced less ROS than WT plants, when subjected to excess HMs. In addition, transgenic tobacco lines had higher activities of ROS-scavenging enzymes (SOD and CAT) which might have contributed to their HM tolerance. This study suggested that TdSHN1 is a potential candidate for improving HM tolerance in plants and phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6, 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6, 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
5
|
Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. MEMBRANES 2021; 11:membranes11100762. [PMID: 34677528 PMCID: PMC8537554 DOI: 10.3390/membranes11100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Lipid transfer proteins (LTPs) participate in many important physiological processes in plants, including adaptation to stressors, e.g., salinity. Here we address the mechanism of this protective action of LTPs by studying the interaction between LTPs and abscisic acid (ABA, a "stress" hormone) and their mutual participation in suberin deposition in root endodermis of salt-stressed pea plants. Using immunohistochemistry we show for the first time NaCl induced accumulation of LTPs and ABA in the cell walls of phloem paralleled by suberin deposition in the endoderm region of pea roots. Unlike LTPs which were found localized around phloem cells, ABA was also present within phloem cells. In addition, ABA treatment resulted in both LTP and ABA accumulation in phloem cells and promoted root suberization. These results suggested the importance of NaCl-induced accumulation of ABA in increasing the abundance of LTPs and of suberin. Using molecular modeling and fluorescence spectroscopy we confirmed the ability of different plant LTPs, including pea Ps-LTP1, to bind ABA. We therefore hypothesize an involvement of plant LTPs in ABA transport (unloading from phloem) as part of the salinity adaptation mechanism.
Collapse
|
6
|
Dhar N, Caruana J, Erdem I, Raina R. An Arabidopsis DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 is required for resistance against various phytopathogens and tolerance to salt stress. Gene 2020; 753:144802. [PMID: 32454178 DOI: 10.1016/j.gene.2020.144802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023]
Abstract
Synchronous and timely regulation of multiple genes results in an effective defense response that decides the fate of the host when challenged with pathogens or unexpected changes in environmental conditions. One such gene, which is downregulated in response to multiple bacterial pathogens, is a putative nonspecific lipid transfer protein (nsLTP) of unknown function that we have named DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 (DRN1). We show that upon pathogen challenge, DRN1 is strongly downregulated, while a putative DRN1-targeting novel microRNA (miRNA) named DRN1 Regulating miRNA (DmiR) is reciprocally upregulated. Furthermore, we provide evidence that DRN1 is required for defense against bacterial and fungal pathogens as well as for normal seedling growth under salinity stress. Although nsLTP family members from different plant species are known to be a significant source of food allergens and are often associated with antimicrobial properties, our knowledge on the biological functions and regulation of this gene family is limited. Our current work not only sheds light on the mechanism of regulation but also helps in the functional characterization of DRN1, a putative nsLTP family member of hitherto unknown function.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States; Department of Plant Pathology, University of California, Davis, Salinas, CA 93905, United States
| | - Julie Caruana
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States; American Society for Engineering Education Postdoctoral Fellow, Washington DC 20375, United States
| | - Irmak Erdem
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, NY 13210, United States.
| |
Collapse
|
7
|
Rai KK, Rai N, Aamir M, Tripathi D, Rai SP. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in lablab purpureus L.: Structural and functional insights using computational approaches. J Biotechnol 2020; 309:113-130. [PMID: 31935417 DOI: 10.1016/j.jbiotec.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Salicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant's growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1-18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India; Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini (Shahanshahpur), Varanasi, 221305, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Deepika Tripathi
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
8
|
Akhiyarova GR, Finkina EI, Ovchinnikova TV, Veselov DS, Kudoyarova GR. Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Biomolecules 2019; 10:E15. [PMID: 31877653 PMCID: PMC7022384 DOI: 10.3390/biom10010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Lipid transfer proteins (LTPs) are a class of small, cationic proteins that bind and transfer lipids and play an important role in plant defense. However, their precise biological role in plants under adverse conditions including salinity and possible regulation by stress hormone abscisic acid (ABA) remains unknown. In this work, we studied the localization of LTPs and ABA in the roots of pea plants using specific antibodies. Presence of LTPs was detected on the periphery of the cells mainly located in the phloem. Mild salt stress (50 mM NaCI) led to slowing plant growth and higher immunostaining for LTPs in the phloem. The deposition of suberin in Casparian bands located in the endoderma revealed with Sudan III was shown to be more intensive under salt stress and coincided with the increased LTP staining. All obtained data suggest possible functions of LTPs in pea roots. We assume that these proteins can participate in stress-induced pea root suberization or in transport of phloem lipid molecules. Salt stress increased ABA immunostaining in pea root cells but its localization was different from that of the LTPs. Thus, we failed to confirm the hypothesis regarding the direct influence of ABA on the level of LTPs in the salt-stressed root cells.
Collapse
Affiliation(s)
- Guzel R. Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| | - Ekaterina I. Finkina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow 117997, Russia; (E.I.F.); (T.V.O.)
| | - Tatiana V. Ovchinnikova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow 117997, Russia; (E.I.F.); (T.V.O.)
| | - Dmitry S. Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| | - Guzel R. Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, Ufa 450054, Russia; (G.R.A.); (D.S.V.)
| |
Collapse
|
9
|
Rojas M, Jimenez-Bremont F, Villicaña C, Carreón-Palau L, Arredondo-Vega BO, Gómez-Anduro G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:816-829. [PMID: 31138396 DOI: 10.1071/fp18280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.
Collapse
Affiliation(s)
- Mario Rojas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Francisco Jimenez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km. 5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México
| | - Laura Carreón-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Bertha Olivia Arredondo-Vega
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México; and Corresponding author.
| |
Collapse
|
10
|
da Silva FCV, do Nascimento VV, Machado OLT, Pereira LDS, Gomes VM, de Oliveira Carvalho A. Insight into the α-Amylase Inhibitory Activity of Plant Lipid Transfer Proteins. J Chem Inf Model 2018; 58:2294-2304. [DOI: 10.1021/acs.jcim.8b00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Flávia Camila Vieira da Silva
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Viviane Veiga do Nascimento
- Unidade de Biologia Integrativa, Laboratório de Biotecnologia, P8, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Olga Lima Tavares Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Lídia da Silva Pereira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| |
Collapse
|
11
|
Melnikova DN, Mineev KS, Finkina EI, Arseniev AS, Ovchinnikova TV. A novel lipid transfer protein from the dill Anethum graveolens L.: isolation, structure, heterologous expression, and functional characteristics. J Pept Sci 2015; 22:59-66. [PMID: 26680443 DOI: 10.1002/psc.2840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/31/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022]
Abstract
A novel lipid transfer protein, designated as Ag-LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag-LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag-LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag-LTP spatial structure contains four α-helices, forming the internal hydrophobic cavity, and a long C-terminal tail. The measured volume of the Ag-LTP hydrophobic cavity is equal to ~800 A(3), which is much larger than those of other plant LTP1s. Ag-LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants.
Collapse
Affiliation(s)
- Daria N Melnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Konstantin S Mineev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Ekaterina I Finkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| |
Collapse
|
12
|
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5663-81. [PMID: 26139823 DOI: 10.1093/jxb/erv313] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan 430206, China
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
13
|
Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. C R Biol 2013; 336:530-45. [DOI: 10.1016/j.crvi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
14
|
Chen C, Chen G, Hao X, Cao B, Chen Q, Liu S, Lei J. CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:439-448. [PMID: 21889050 DOI: 10.1016/j.plantsci.2011.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 07/12/2011] [Indexed: 05/28/2023]
Abstract
Based on the gene differential expression analysis performed by cDNA-amplified fragment length polymorphism (cDNA-AFLP) in the genic male sterile-fertile line 114AB of Capsicum annuum L., a variety of differentially expressed cDNA fragments were detected in fertile or sterile lines. A transcript-derived fragment (TDF) specifically accumulated in the flower buds of fertile line was isolated, and the corresponding full-length cDNA and DNA were subsequently amplified. Bioinformatical analyses of this gene named CaMF2 showed that it encodes a lipid transfer protein with 94 amino acids. Spatial and temporal expression patterns analysis indicated that CaMF2 was an anther-specific gene and the expression of CaMF2 was detected only in flower buds at stage 3-7 of male fertile line with a peak expression at stage 4, but not detected in the roots, tender stems, fresh leaves, flower buds, open flowers, sepals, petals, anthers or pistils of male sterile line. Further, inhibition of the CaMF2 by virus-induced gene silencing (VIGS) method resulted in the low pollen germination ability and shriveled pollen grains. All these evidence showed that CaMF2 had a vital role in pollen development of C. annuum.
Collapse
MESH Headings
- Amino Acid Sequence
- Amplified Fragment Length Polymorphism Analysis
- Antigens, Plant/chemistry
- Antigens, Plant/genetics
- Antigens, Plant/metabolism
- Base Sequence
- Capsicum/anatomy & histology
- Capsicum/genetics
- Capsicum/growth & development
- Capsicum/ultrastructure
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA, Complementary/genetics
- Expressed Sequence Tags
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant/genetics
- Molecular Sequence Data
- Organ Specificity/genetics
- Plant Infertility/genetics
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Pollen/genetics
- Pollen/growth & development
- Pollen/ultrastructure
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 2011; 12:363. [PMID: 21752295 PMCID: PMC3146458 DOI: 10.1186/1471-2164-12-363] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Hamlet Avilés-Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Kena Casarrubias-Castillo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Gabriela Casique-Arroyo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Paula A Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Julio Massange-Sánchez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Norma A Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Fannie I Parra-Cota
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Erandi Vargas-Ortiz
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - María G Estrada-Hernández
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
- Department of Entomology, College of Agricultural Sciences. Penn State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta Gen Subj 2011; 1810:375-83. [DOI: 10.1016/j.bbagen.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022]
|