1
|
LeBoldus JM, Lynch SC, Newhouse AE, Søndreli KL, Newcombe G, Bennett PI, Muchero W, Chen JG, Busby PE, Gordon M, Liang H. Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:309-335. [PMID: 39251210 DOI: 10.1146/annurev-phyto-021622-114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
Collapse
Affiliation(s)
- Jared M LeBoldus
- Department of Botany and Plant Pathology and Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA;
| | - Shannon C Lynch
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Andrew E Newhouse
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrick I Bennett
- Rocky Mountain Research Station, United States Forest Service, Moscow, Idaho, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
3
|
Li J, Xiong C, Ruan D, Du W, Li H, Ruan C. Identification of Camellia oleifera WRKY transcription factor genes and functional characterization of CoWRKY78. FRONTIERS IN PLANT SCIENCE 2023; 14:1110366. [PMID: 36968410 PMCID: PMC10036053 DOI: 10.3389/fpls.2023.1110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Camellia oleifera Abel is a highly valued woody edible oil tree, which is endemic to China. It has great economic value because C. oleifera seed oil contains a high proportion of polyunsaturated fatty acids. C. oleifera anthracnose caused by Colletotrichum fructicola, poses a serious threat to C. oleifera growth and yield and causes the benefit of the C. oleifera industry to suffer directly. The WRKY transcription factor family members have been widely characterized as vital regulators in plant response to pathogen infection. Until now, the number, type and biological function of C. oleifera WRKY genes are remains unknown. Here, we identified 90 C. oleifera WRKY members, which were distributed across 15 chromosomes. C. oleifera WRKY gene expansion was mainly attributed to segmental duplication. We performed transcriptomic analyses to verify the expression patterns of CoWRKYs between anthracnose-resistant and -susceptible cultivars of C. oleifera. These results demonstrated that multiple candidate CoWRKYs can be induced by anthracnose and provide useful clues for their functional studies. CoWRKY78, an anthracnose-induced WRKY gene, was isolated from C. oleifera. It was significantly down-regulated in anthracnose-resistant cultivars. Overexpression of CoWRKY78 in tobacco markedly reduced resistance to anthracnose than WT plants, as evidenced by more cell death, higher malonaldehyde content and reactive oxygen species (ROS), but lower activities of superoxide dismutase (SOD), peroxidase (POD), as well as phenylalanine ammonia-lyase (PAL). Furthermore, the expression of multiple stress-related genes, which are associated with ROS-homeostasis (NtSOD and NtPOD), pathogen challenge (NtPAL), and pathogen defense (NtPR1, NtNPR1, and NtPDF1.2) were altered in the CoWRKY78-overexpressing plants. These findings increase our understanding of the CoWRKY genes and lay the foundation for the exploration of anthracnose resistance mechanisms and expedite the breeding of anthracnose-resistant C. oleifera cultivars.
Collapse
|
4
|
Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int J Mol Sci 2022; 23:ijms232113589. [DOI: 10.3390/ijms232113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Banana (Musa spp.), which is one of the world’s most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Collapse
|
5
|
Liu H, Zhang H, Yang F, Chai S, Wang L, de Dios VR, Tan W, Yao Y. Ethylene activates poplar defense against Dothiorella gregaria Sacc by regulating reactive oxygen species accumulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13726. [PMID: 35638504 DOI: 10.1111/ppl.13726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Populus canker is a widespread disease that seriously threatens the survival of trees. Phytohormones are considered as effective chemical molecules improving plant resistance to various diseases. Ethylene is an important phytohormone that is extensively involved in the regulation of plant growth, development, and stress responses, but how ethylene and ethylene signaling regulates defense responses in woody plants is still unclear. Here, we showed that ethylene positively regulates the responses of poplar to canker caused by the hemibiotrophic fungus Dothiorella gregaria. Treatment of Populus tomentosa with 1-aminocyclopropane-1-carboxylic acid (ACC, the biosynthetic precursor of ethylene) significantly enhanced disease resistance, accompanied by the induction of pathogen-related protein (PR) gene expression and H2 O2 accumulation. Blocking ethylene biosynthesis using aminoethoxyvinyl glycine (AVG, a specific inhibitor of ethylene biosynthesis) repressed the disease resistance. Overexpression of the ethylene biosynthesis gene PtoACO7 in Populus tomentosa promoted defense responses and disease resistance. Furthermore, we demonstrated that the ethylene-induced defense response is independent of the salicylic acid pathway, but needs ROS signaling. ACC or PtoACO7 overexpression induced expressions of PtoRbohD/RbohF, which encode NADPH oxidases, and elevated H2 O2 levels in poplar. Inhibition of the NADPH oxidase compromised ethylene-induced disease resistance and PR gene expressions, while H2 O2 application could completely rescue the AVG-caused disease hypersensitivity. Therefore, the involvement of ethylene in disease resistance is done by activation of PR gene expressions and ROS production. Our results also showed that modifying ethylene biosynthesis or its signaling pathway has a great potential for improving disease resistance in woody plants.
Collapse
Affiliation(s)
- Hengjing Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hao Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Fei Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
6
|
Yu X, Pan Y, Dong Y, Lu B, Zhang C, Yang M, Zuo L. Cloning and overexpression of PeWRKY31 from Populus × euramericana enhances salt and biological tolerance in transgenic Nicotiana. BMC PLANT BIOLOGY 2021; 21:80. [PMID: 33549055 PMCID: PMC7866765 DOI: 10.1186/s12870-021-02856-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND As important forest tree species, biological stress and soil salinization are important factors that restrict the growth of Populus × euramericana. WRKYs are important transcription factors in plants that can regulate plant responses to biotic and abiotic stresses. In this study, PeWRKY31 was isolated from Populus × euramericana, and its bioinformation, salt resistance and insect resistance were analyzed. This study aims to provide guidance for producing salt-resistant and insect-resistant poplars. RESULTS PeWRKY31 has a predicted open reading frame (ORF) of 1842 bp that encodes 613 amino acids. The predicted protein is the unstable, acidic, and hydrophilic protein with a molecular weight of 66.34 kDa, and it has numerous potential phosphorylation sites, chiefly on serines and threonines. PeWRKY31 is a zinc-finger C2H2 type-II WRKY TF that is closely related to WRKY TFs of Populus tomentosa, and localizes to the nucleus. A PeWRKY31 overexpression vector was constructed and transformed into Nicotiana tabacum L. Overexpression of PeWRKY31 improved the salt tolerance and insect resistance of the transgenic tobacco. Transcriptome sequencing and KEGG enrichment analysis showed the elevated expression of genes related to glutathione metabolism, plant hormone signal transduction, and MAPK signaling pathways, the functions of which were important in plant salt tolerance and insect resistance in the overexpressing tobacco line. CONCLUSIONS PeWRKY31 was isolated from Populus × euramericana. Overexpression of PeWRKY31 improved the resistance of transgenic plant to salt stress and pest stress. The study provides references for the generation of stress-resistant lines with potentially great economic benefit.
Collapse
Affiliation(s)
- Xiaoyue Yu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Yu Pan
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Tianjin nuohe medical laboratory co. LTD, Tianjin, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Bin Lu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Chao Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China.
| | - Lihui Zuo
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056000, Handan, P. R. China.
| |
Collapse
|
7
|
Transcriptomic profile analysis of the halophyte Suaeda rigida response and tolerance under NaCl stress. Sci Rep 2020; 10:15148. [PMID: 32939003 PMCID: PMC7494938 DOI: 10.1038/s41598-020-71529-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.
Collapse
|
8
|
Guo L, Li C, Jiang Y, Luo K, Xu C. Heterologous Expression of Poplar WRKY18/35 Paralogs in Arabidopsis Reveals Their Antagonistic Regulation on Pathogen Resistance and Abiotic Stress Tolerance via Variable Hormonal Pathways. Int J Mol Sci 2020; 21:E5440. [PMID: 32751641 PMCID: PMC7432504 DOI: 10.3390/ijms21155440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
WRKY transcription factors (WRKY TFs) are one of the largest protein families in plants, and most of them play vital roles in response to biotic and abiotic stresses by regulating related signaling pathways. In this study, we isolated two WRKY TF genes PtrWRKY18 and PtrWRKY35 from Populustrichocarpa and overexpressed them in Arabidopsis. Expression pattern analyses showed that PtrWRKY18 and PtrWRKY35 respond to salicylic acid (SA), methyl JA (MeJA), abscisic acid (ABA), B. cinereal, and P. syringae treatment. The transgenic plants conferred higher B. cinerea tolerance than wild-type (WT) plants, and real-time quantitative (qRT)-PCR assays showed that PR3 and PDF1.2 had higher expression levels in transgenic plants, which was consistent with their tolerance to B. cinereal. The transgenic plants showed lower P. syringae tolerance than WT plants, and qRT-PCR analysis (PR1, PR2, and NPR1) also corresponded to this phenotype. Germination rate and root analysis showed that the transgenic plants are less sensitive to ABA, which leads to the reduced tolerance to osmotic stress and the increase of the death ratio and stomatal aperture. Compared with WT plants, a series of ABA-related genes (RD29A, ABO3, ABI4, ABI5, and DREB1A) were significantly down-regulated in PtrWRKY18 and PtrWRKY35 overexpression plants. All of these results demonstrated that the two WRKY TFs are multifunctional transcription factors in plant resistance.
Collapse
Affiliation(s)
- Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yuanzhong Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
| |
Collapse
|
9
|
Zhang L, Lei D, Deng X, Li F, Ji H, Yang S. Cytosolic glyceraldehyde-3-phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:836-853. [PMID: 31873939 DOI: 10.1111/pce.13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Daili Lei
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
10
|
Guo SM, Tan Y, Chu HJ, Sun MX, Xing JC. Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLoS One 2019; 14:e0219979. [PMID: 31335886 PMCID: PMC6650071 DOI: 10.1371/journal.pone.0219979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250 unigenes were significantly differentially expressed in leaves and roots in saline treatment, respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohydrate, lipid and amino acid metabolisms were all downregulated in saline treatment, which should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium and chloride channels were upregulated in saline treatment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signaling transduction pathways were all upregulated in response to saline treatment, which were important to gene regulations of ion transportation and antioxidation. These changes might comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study provided new insights to understand the mechanisms underlying tolerance to salinity in halophytes.
Collapse
Affiliation(s)
- Su-Ming Guo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Ying Tan
- College of Architecture, Southeast University, Nanjing City, Jiangsu Province, P. R. China
| | - Han-Jie Chu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Mei-Xia Sun
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Jin-Cheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, P. R. China
| |
Collapse
|
11
|
Yao W, Zhou B, Zhang X, Zhao K, Cheng Z, Jiang T. Transcriptome analysis of transcription factor genes under multiple abiotic stresses in Populus simonii × P.nigra. Gene 2019; 707:189-197. [PMID: 31029602 DOI: 10.1016/j.gene.2019.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Transcription factor (TF) genes play essential roles in abiotic stress responses as master switches in complex regulatory networks. In the present study, the transcript abundance of 4287 TF genes in Populus simonii × P.nigra were profiled under NaCl, KCl, CdCl2 and PEG stresses, respectively. A total of 118 up-regulated and 226 down-regulated TFs were identified to be shared in the four stress conditions. Among the top seven TF families (ERF, NAC, WRKY, MYB, bHLH, C2H2, bZIP), there were 76 up-regulated TFs found common in the four stresses, and 67% of them were likely to be involved in stress responses. We identified three TFs, which can enhance stress tolerance of transgenic plants, were members of the most significantly up-regulated genes in the respective TF family. Among them, a highly salt-inducible ERF gene, ERF76, was proved to activate the expression of other TFs in the transgenic poplar lines overexpressing ERF76. Transcriptome analysis indicated there was a synergistic effect of TFs on improving salinity tolerance of the transgenic plants. Of significant interest in the study is the discovery of the role and interactions of various TF genes under multiple stress conditions.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China.
| |
Collapse
|
12
|
WRKYs, the Jack-of-various-Trades, Modulate Dehydration Stress in Populus davidiana-A Transcriptomic Approach. Int J Mol Sci 2019; 20:ijms20020414. [PMID: 30669402 PMCID: PMC6358917 DOI: 10.3390/ijms20020414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
Populus davidiana, native to Korea and central Asian countries, is a major contributor to the Korean forest cover. In the current study, using high-throughput RNA-seq mediated transcriptome analysis, we identified about 87 P. davidiana WRKY transcription factors (PopdaWRKY TFs) that showed differential expression to dehydration stress in both sensitive and tolerant cultivars. Our results suggested that, on average, most of the WRKY genes were upregulated in tolerant cultivars but downregulated in sensitive cultivars. Based on protein sequence alignment, P. davidiana WRKYs were classified into three major groups, I, II, III, and further subgroups. Phylogenetic analysis showed that WRKY TFs and their orthologs in Arabidopsis and rice were clustered together in the same subgroups, suggesting similar functions across species. Significant correlation was found among qRT-PCR and RNA-seq analysis. In vivo analysis using model plant Arabidopsis showed that atwrky62 (orthologous to Potri.016G137900) knockout mutants were significantly sensitive to dehydration possibly due to an inability to close their stomata under dehydration conditions. In addition, a concomitant decrease in expression of ABA biosynthetic genes was observed. The AtHK1 that regulates stomatal movement was also downregulated in atwrky62 compared to the wild type. Taken together, our findings suggest a regulatory role of PopdaWRKYs under dehydration stress.
Collapse
|
13
|
Zhao H, Jiang J, Li K, Liu G. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. TREE PHYSIOLOGY 2017; 37:827-844. [PMID: 28369503 DOI: 10.1093/treephys/tpx020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/21/2017] [Indexed: 05/21/2023]
Abstract
WRKY transcription factors (TFs) are important regulators in the complex stress response signaling networks in plants, but the detailed mechanisms underlying these regulatory networks have not been fully characterized. In the present study, we identified a Group III WRKY gene (PsnWRKY70, Potri.016G137900) from Populussimonii × Populusnigra and explored its function under salt and pathogen stresses. The promoter sequence that is located 2471-bp upstream from the start codon (SC) of PsnWRKY70 contained many stress-responsive cis-elements. Yeast one-hybrid assay suggested the upstream regulators, PsnWRKY70, PsnNAM (Potri.009G141600), PsnMYB (Potri.006G000800) and PsnGT1 (Potri.010G055000), probably modulate the expression of the PsnWRKY70 gene by specifically binding to the W-box or GT1GMSCAM4 (GT1) element. Yeast two-hybrid assay and transcriptome analysis revealed that HP1 (Potri.004G092100), RRM (Potri.008G146700), Ulp1 (Potri.002G105700) and some mitogen-activated protein kinase cascade members probably interact with PsnWRKY70 TF to response to salt stress. Compared with non-transgenic (NT) plants, PsnWRKY70-overexpressing (OEX) plants exhibited improved leaf blight disease resistance, while PsnWRKY70-repressing (REX) plants displayed enhanced salt stress tolerance. PsnWRKY70, PsnNAM, PsnMYB and PsnGT1 exhibited similar expression patterns in NT under salt and leaf blight disease stresses. The differentially expressed genes (DEGs) from NT vs OEX1 and the DEGs from NT vs REX1 exhibited considerable diversification. Most of the DEGs between NT and OEX1 were involved in aromatic amino acid biosynthesis, secondary metabolism, programmed cell death, peroxisomes and disease resistance. Most of the DEGs between NT and REX1 were related to desiccation response, urea transmembrane transport, abscisic acid response, calcium ion transport and hydrogen peroxide transmembrane transport. Our findings not only revealed the salt stress response signal transduction pathway of PsnWRKY70, but also provided direct evidence for the opposite biological functions of PsnWRKY70 TF in response to salt stress and leaf blight disease in P. simonii × P. nigra.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 2, Hexing Road, Xiangfang, Harbin, Heilongjiang 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 2, Hexing Road, Xiangfang, Harbin, Heilongjiang 150040, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 2, Hexing Road, Xiangfang, Harbin, Heilongjiang 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 2, Hexing Road, Xiangfang, Harbin, Heilongjiang 150040, China
| |
Collapse
|
14
|
Jiang Y, Guo L, Ma X, Zhao X, Jiao B, Li C, Luo K. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. TREE PHYSIOLOGY 2017; 37:665-675. [PMID: 28338710 DOI: 10.1093/treephys/tpx008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/30/2017] [Indexed: 05/23/2023]
Abstract
WRKY transcription factors play important roles in response to diverse environmental stresses, but exact functions of these proteins in poplar defense are still largely unknown. In a previous study, we have shown that poplar WRKY89 is induced by salicylic acid (SA) treatment and plays an important role in resistance against fungi in transgenic poplars. Here, we determined an increase in transcript levels of Group IIa WRKY members in transgenic poplars overexpressing WRKY89 using quantitative real-time polymerase chain reaction analysis. Yeast one-hybrid assay showed that PtrWRKY18 and PtrWRKY35 were potential target genes of WRKY89. Furthermore, we demonstrated that PtrWRKY18 and PtrWRKY35 were localized in the nucleus, and exhibited no transcription activation activity. Constitutive overexpression of PtrWRKY18 and PtrWRKY35 in poplars activated pathogenesis-related genes, and increased resistance to the biotrophic pathogen Melampsora. The results also provided support for the involvement of SA-mediated signaling in Melampsora resistance.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu 610065, China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaodong Ma
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, Qinghai 810008, China
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, No. 3, Bayi Mid Road, Xining, Qinghai 810007, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Bo Jiao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, Qinghai 810008, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
15
|
Ji SD, Wang ZY, Fan HJ, Zhang RS, Yu ZY, Wang JJ, Liu ZH. Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternate. JOURNAL OF PLANT RESEARCH 2016; 129:921-933. [PMID: 27193371 DOI: 10.1007/s10265-016-0829-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/27/2015] [Indexed: 05/02/2023]
Abstract
The tolerance of plants to biotic and abiotic stresses could be improved by transforming with fungal resistance-related genes. In this study, the cDNA sequence (GenBank Acc. No. KP337939) of the resistance-related gene Hsp24 encoding the 24 kD heat shock protein was obtained from the biocontrol fungus Trichoderma asperellum ACCC30536. The promoter region of Hsp24 contained many cis-regulators related to stresses response, such as "GCN4" and "GCR1" etc. Hsp24 transcription in T. asperellum was up-regulated under six different environmental stresses, compared with the control. Furthermore, following heterologous transformation into Populus davidiana × P. alba var. Pyramidalis (Pdpap), Hsp24 was successfully transcribed in transformant Pdpap-Hsp24s. Pathogen-related genes (PRs) in four Pdpap-Hsp24s were up-regulated compared with those in the control Pdpap (Pdpap-Con). After co-culture of Pdpap-Hsp24s with the weak parasite Cytospora chrysosperma, the transcription of genes related to hormone signal pathway (JA and SA) were up-regulated in Pdpap-Hsp24s, and ethidium bromide (EtBr) and Nitro-blue tetrazolium (NBT) staining assays indicated that the cell membrane permeability and the active oxygen content of Pdpap-Hsp24s leaves were lower than that of the control Pdpap-Con. And when the Pdpap-Hsp24s were under the Alternaria alternate stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) got higher in Pdpap-Hsp24s than that in Pdpap-Con, and the disease spots in Pdpap-Con leaves were obviously larger than those in Pdpap-Hsp24s leaves. In summary, Hsp24 of T. asperellum ACCC30536 is an important defense response gene, and its heterologous expression improved the resistance of transformant Pdpap-Hsp24s to C. chrysosperma and A. alternate.
Collapse
Affiliation(s)
- S D Ji
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z Y Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - H J Fan
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - R S Zhang
- The College of Landscape, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z Y Yu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - J J Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z H Liu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China.
| |
Collapse
|
16
|
Han Y, Wu M, Cao L, Yuan W, Dong M, Wang X, Chen W, Shang F. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. PLANT MOLECULAR BIOLOGY 2016; 91:485-96. [PMID: 27106478 DOI: 10.1007/s11103-016-0483-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/13/2016] [Indexed: 05/22/2023]
Abstract
The sweet osmanthus carotenoid cleavage dioxygenase 4 (OfCCD4) cleaves carotenoids such as β-carotene and zeaxanthin to yield β-ionone. OfCCD4 is a member of the CCD gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated three WRKY cDNAs from the petal of Osmanthus fragrans. One of them, OfWRKY3, encodes a protein containing two WRKY domains and two zinc finger motifs. OfWRKY3 and OfCCD4 had nearly identical expression profile in petals of 'Dangui' and 'Yingui' at different flowering stages and showed similar expression patterns in petals treated by salicylic acid, jasmonic acid and abscisic acid. Activation of OfCCD4pro:GUS by OfWRKY3 was detected in coinfiltrated tobacco leaves and very weak GUS activity was detected in control tissues, indicating that OfWRKY3 can interact with the OfCCD4 promoter. Yeast one-hybrid and electrophoretic mobility shift assay showed that OfWRKY3 was able to bind to the W-box palindrome motif present in the OfCCD4 promoter. These results suggest that OfWRKY3 is a positive regulator of the OfCCD4 gene, and might partly account for the biosynthesis of β-ionone in sweet osmanthus.
Collapse
Affiliation(s)
- Yuanji Han
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Miao Wu
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Liya Cao
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Wangjun Yuan
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Meifang Dong
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaohui Wang
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Weicai Chen
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Fude Shang
- School of Life Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
17
|
Jin H, Dong D, Yang Q, Zhu D. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing. PLoS One 2016; 11:e0150504. [PMID: 26930632 PMCID: PMC4773115 DOI: 10.1371/journal.pone.0150504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted.
Collapse
Affiliation(s)
- Hangxia Jin
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Dekun Dong
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Qinghua Yang
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Danhua Zhu
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Phukan UJ, Jeena GS, Shukla RK. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:760. [PMID: 27375634 PMCID: PMC4891567 DOI: 10.3389/fpls.2016.00760] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/17/2016] [Indexed: 05/17/2023]
Abstract
Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research.
Collapse
|
19
|
Wei Y, Shi H, Xia Z, Tie W, Ding Z, Yan Y, Wang W, Hu W, Li K. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. FRONTIERS IN PLANT SCIENCE 2016; 7:25. [PMID: 26904033 PMCID: PMC4742560 DOI: 10.3389/fpls.2016.00025] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/09/2016] [Indexed: 05/19/2023]
Abstract
The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | - Zhiqiang Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Wei Hu
| | - Kaimian Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Kaimian Li
| |
Collapse
|
20
|
Yogendra KN, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa KA, Duggavathi R, Kushalappa AC. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7377-89. [PMID: 26417019 PMCID: PMC4765800 DOI: 10.1093/jxb/erv434] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato-Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls.
Collapse
Affiliation(s)
| | - Arun Kumar
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Kobir Sarkar
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Yunliang Li
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Doddaraju Pushpa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Kareem A Mosa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
21
|
Karim A, Jiang Y, Guo L, Ling Z, Ye S, Duan Y, Li C, Luo K. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa. TREE PHYSIOLOGY 2015; 35:1129-39. [PMID: 26423133 DOI: 10.1093/treephys/tpv084] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/05/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is a defense-related key signaling molecule involved in plant immunity. In this study, a subgroup IIa WRKY gene PtrWRKY40 was isolated from Populus trichocarpa, which displayed amino acid sequence similar to Arabidopsis AtWRKY40, AtWRKY18 and AtWRKY60. PtrWRKY40 transcripts accumulated significantly in response to SA, methyl jasmonate and hemibiotrophic fungus Dothiorella gregaria Sacc. Overexpression of PtrWRKY40 in transgenic poplar conferred higher susceptibility to D. gregaria infection. This susceptibility was coupled with reduced expression of SA-associated genes (PR1.1, PR2.1, PR5.9, CPR5 and SID2) and jasmonic acid (JA)-related gene JAZ8. Decreased accumulation of endogenous SA was observed in transgenic lines overexpressing PtrWRKY40 when compared with wild-type plants. However, constitutive expression of PtrWRKY40 in Arabidopsis thaliana displayed resistance to necrotrophic fungus Botrytis cinerea, and the expression of JA-defense-related genes such as PDF1.2, VSP2 and PR3 was remarkably increased in transgenic plants upon infection with fugal pathogens. Together, our findings indicate that PtrWRKY40 plays a negative role in resistance to hemibiotrophic fungi in poplar but functions as a positive regulator of resistance toward the necrotrophic fungi in Arabidopsis.
Collapse
Affiliation(s)
- Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengyi Ling
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chaofeng Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008 Xining, China
| |
Collapse
|
22
|
Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:831-41. [PMID: 25627252 PMCID: PMC4405351 DOI: 10.1007/s00299-015-1745-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/28/2014] [Accepted: 01/12/2015] [Indexed: 05/18/2023]
Abstract
A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.
Collapse
Affiliation(s)
- Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Zhengyi Ling
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Yunqiu He
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Siqi Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008 China
| |
Collapse
|
23
|
WRKY proteins: signaling and regulation of expression during abiotic stress responses. ScientificWorldJournal 2015; 2015:807560. [PMID: 25879071 PMCID: PMC4387944 DOI: 10.1155/2015/807560] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 02/03/2023] Open
Abstract
WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.
Collapse
|