1
|
Mathias JM, Smith KR, Lantz KE, Allen KT, Wright MJ, Sabet A, Anderson-Teixeira KJ, Thomas RB. Differences in leaf gas exchange strategies explain Quercus rubra and Liriodendron tulipifera intrinsic water use efficiency responses to air pollution and climate change. GLOBAL CHANGE BIOLOGY 2023; 29:3449-3462. [PMID: 36897273 DOI: 10.1111/gcb.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Trees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2 ) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long-term records of tree-ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet ), and stomatal conductance to water (gs ) since 1940. We first show 16%-25% increases in tree iWUE since the mid-20th century, primarily driven by iCO2 , but also document the individual and interactive effects of nitrogen (NOx ) and sulfur (SO2 ) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope-derived leaf internal CO2 (Ci ), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%-50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%-86% of the chronologies with reductions in gs attributable to the remaining 14%-21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Kenneth R Smith
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Kristin E Lantz
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Keanan T Allen
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Marvin J Wright
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Afsoon Sabet
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, Virginia, USA
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Savard MM, Marion J, Bégin C, Laganière J. On the significance of long-term trends in tree-ring N isotopes - The interplay of soil conditions and regional NOx emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159580. [PMID: 36280071 DOI: 10.1016/j.scitotenv.2022.159580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As anthropogenic nitrogen (N) emissions have been rising for decades, it is critical to develop natural archives that help understand how natural processes were modified in the past. Tree-ring δ15N values may represent such an indicator but its validity as faithful record of N cycling changes is still debated. Here we produce long-tree-ring δ15N series for five white spruce stands from two boreal regions submitted to moderate industrial N inputs. The obtained δ15N series show sharp differences among stands, even from the same region, despite the fact that they show similar increases in intrinsic water use efficiency (iWUE), a proxy for foliar strategies derived from δ13C values. The statistical modeling of these series and the basal area increment (BAI) of the trees allow to suggest that the mechanisms controlling the isotopic fractionation of N assimilated by tree rings are decoupled from the foliar strategies under the anthropogenic N emissions. The iWUE trends mainly reflect rise of pCO2 and changes in air quality. The long-term δ15N trends echo different biogeochemical processes responding to N deposition due to distinct original soil pH at the various sites. We contend that tree-ring δ15N series can record changes in the forest N cycle, but their rigorous interpretation requires laborious work, particularly an understanding of the biogeochemistry in the soil immediately around the investigated trees. "Seek simplicity and distrust it", Alfred North Whitehead.
Collapse
Affiliation(s)
- Martine M Savard
- Commission géologique du Canada (Ressources naturelles Canada), 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Joëlle Marion
- Commission géologique du Canada (Ressources naturelles Canada), 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Christian Bégin
- Commission géologique du Canada (Ressources naturelles Canada), 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Jérôme Laganière
- Centre de Foresterie des Laurentides, Service canadien des Forêts (Ressources naturelles Canada), 1055 rue du P.E.P.S., Stn. Sainte-Foy, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| |
Collapse
|
3
|
Jiang X, Song M, Qiao Y, Liu M, Ma L, Fu S. Long-term water use efficiency and non-structural carbohydrates of dominant tree species in response to nitrogen and water additions in a warm temperate forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1025162. [PMID: 36420022 PMCID: PMC9676439 DOI: 10.3389/fpls.2022.1025162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) deposition tends to accompany precipitation in temperate forests, and vegetation productivity is mostly controlled by water and N availability. Many studies showed that tree species response to precipitation or N deposition alone influences, while the N deposition and precipitation interactive effects on the traits of tree physiology, especially in non-structural carbohydrates (NSCs) and long-term water use efficiency (WUE), are still unclear. In this study, we measured carbon stable isotope (δ13C), total soluble sugar and starch content, total phenols, and other physiological traits (e.g., leaf C:N:P stoichiometry, lignin, and cellulose content) of two dominant tree species (Quercus variabilis Blume and Liquidambar formosana Hance) under canopy-simulated N deposition and precipitation addition to analyze the changes of long-term WUE and NSC contents and to explain the response strategies of dominant trees to abiotic environmental changes. This study showed that N deposition decreased the root NSC concentrations of L. formosana and the leaf lignin content of Q. variabilis. The increased precipitation showed a negative effect on specific leaf area (SLA) and a positive effect on leaf WUE of Q. variabilis, while it increased the leaf C and N content and decreased the leaf cellulose content of L. formosana. The nitrogen-water interaction reduced the leaf lignin and total phenol content of Q. variabilis and decreased the leaf total phenol content of L. formosana, but it increased the leaf C and N content of L. formosana. Moreover, the response of L. formosana to the nitrogen-water interaction was greater than that of Q. variabilis, highlighting the differences between the two dominant tree species. The results showed that N deposition and precipitation obviously affected the tree growth strategies by affecting the NSC contents and long-term WUE. Canopy-simulated N deposition and precipitation provide a new insight into the effect of the nitrogen-water interaction on tree growth traits in a temperate forest ecosystem, enabling a better prediction of the response of dominant tree species to global change.
Collapse
Affiliation(s)
- Xiyan Jiang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengya Song
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yaqi Qiao
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengzhou Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Lei Ma
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, College of Geography and Environmental Science, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Impacts of Canopy and Understory Nitrogen Additions on Stomatal Conductance and Carbon Assimilation of Dominant Tree Species in a Temperate Broadleaved Deciduous Forest. Ecosystems 2021. [DOI: 10.1007/s10021-020-00595-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO 2 and modulated by climate and plant functional types. Proc Natl Acad Sci U S A 2021; 118:e2014286118. [PMID: 33558233 PMCID: PMC7896309 DOI: 10.1073/pnas.2014286118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon-oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon-hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
6
|
Shen H, Dong S, DiTommaso A, Li S, Xiao J, Yang M, Zhang J, Gao X, Xu Y, Zhi Y, Liu S, Dong Q, Wang W, Liu P, Xu J. Eco-physiological processes are more sensitive to simulated N deposition in leguminous forbs than non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140612. [PMID: 32711302 DOI: 10.1016/j.scitotenv.2020.140612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Increased nitrogen (N) deposition can affect ecosystem processes and thus influence plant eco-physiological processes in grasslands. However, how N deposition affects eco-physiological processes of leguminous and non-leguminous forbs in alpine grasslands is understudied. A long-term field experiment using a range of simulated N deposition rates (0, 8, 24, 40, 56, and 72 kg N ha-1 year-1) was established to examine the effects of N deposition on various eco-physiological parameters in leguminous and non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau. We found that the responses of leguminous and non-leguminous forbs to simulated N deposition varied. Net photosynthetic rate of leguminous and non-leguminous forbs exhibited different response patterns, but chronic increases in simulated N deposition rates may lead to negative effects in both functional groups. Neither functional group responded differently in aboveground biomass under the highest N addition level (72 kg N ha-1 year-1) compared to the control. Differences in aboveground biomass of leguminous forbs were observed at intermediate N levels. Short-term simulated N deposition significantly promoted N uptake of both functional groups. In leguminous forbs, simulated N deposition affected net photosynthetic rates (PN) and aboveground biomass (AGB) mainly via stomatal conductance (gs), water use efficiency (WUE), and plant N uptake. In non-leguminous forbs, simulated N deposition affected PN and AGB mainly through WUE and plant N uptake. Our findings suggest that leguminous and non-leguminous forbs have differential response mechanisms to N deposition, and compared with non-leguminous forbs, leguminous forbs are more sensitive to continuing increased N deposition. The obvious decline trend in photosynthetic capacity in leguminous forbs is likely to exacerbate the already divergent ecological processes between leguminous and non-leguminous forbs. More importantly, these changes are likely to alter the future composition, function, and stability of alpine meadow ecosystems.
Collapse
Affiliation(s)
- Hao Shen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China; Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Shikui Dong
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China; College of Grassland Sciences, Beijing Forestry University, Beijing 100083, China; Department of Natural Resources, Cornell University, Ithaca, NY 14853, United States.
| | - Antonio DiTommaso
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Shuai Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Mingyue Yang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Xiaoxia Gao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Yudan Xu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Yangliu Zhi
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Shiliang Liu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Quanming Dong
- Qinghai Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining 810003, China
| | - Wenying Wang
- School of Life and Geographic Sciences, Qinghai Normal University, Xining 810008, China
| | - Pan Liu
- School of Life and Geographic Sciences, Qinghai Normal University, Xining 810008, China
| | - Jiyu Xu
- School of Life and Geographic Sciences, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
7
|
Vadeboncoeur MA, Jennings KA, Ouimette AP, Asbjornsen H. Correcting tree-ring δ13C time series for tree-size effects in eight temperate tree species. TREE PHYSIOLOGY 2020; 40:333-349. [PMID: 31976526 DOI: 10.1093/treephys/tpz138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Stable carbon isotope ratios (δ13C) in tree rings have been widely used to study changes in intrinsic water-use efficiency (iWUE), sometimes with limited consideration of how C-isotope discrimination is affected by tree height and canopy position. Our goals were to quantify the relationships between tree size or tree microenvironment and wood δ13C for eight functionally diverse temperate tree species in northern New England and to better understand the physical and physiological mechanisms underlying these differences. We collected short increment cores in closed-canopy stands and analyzed δ13C in the most recent 5 years of growth. We also sampled saplings in both shaded and sun-exposed environments. In closed-canopy stands, we found strong tree-size effects on δ13C, with 3.7-7.2‰ of difference explained by linear regression vs height (0.11-0.28‰ m-1), which in some cases is substantially stronger than the effect reported in previous studies. However, open-grown saplings were often isotopically more similar to large codominant trees than to shade-grown saplings, indicating that light exposure contributes more to the physiological and isotopic differences between small and large trees than does height. We found that in closed-canopy forests, δ13C correlations with diameter at breast height were nonlinear but also strong, allowing a straightforward procedure to correct tree- or stand-scale δ13C-based iWUE chronologies for changing tree size. We demonstrate how to use such data to correct and interpret multi-decadal composite isotope chronologies in both shade-regenerated and open-grown tree cohorts, and we highlight the importance of understanding site history when interpreting δ13C time series.
Collapse
Affiliation(s)
- Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Road, Durham, NH 03824, USA
| | - Katie A Jennings
- Earth Systems Research Center, University of New Hampshire, 8 College Road, Durham, NH 03824, USA
| | - Andrew P Ouimette
- Earth Systems Research Center, University of New Hampshire, 8 College Road, Durham, NH 03824, USA
| | - Heidi Asbjornsen
- Earth Systems Research Center, University of New Hampshire, 8 College Road, Durham, NH 03824, USA
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824, USA
| |
Collapse
|
8
|
Tree Growth and Water-Use Efficiency Do Not React in the Short Term to Artificially Increased Nitrogen Deposition. FORESTS 2019. [DOI: 10.3390/f11010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing atmospheric CO2 concentration and nitrogen deposition are, among the global change related drivers, those playing a major role on forests carbon sequestration potential, affecting both their productivity and water-use efficiency. Up to now, results are however contrasting, showing that the processes underlying them are far from being fully comprehended. In this study, we adopted an innovative approach to simulate the increase of N deposition in a sessile oak forest in North-Eastern Italy, by fertilizing both from above and below the canopy. We observed the dynamics of basal area increment, intrinsic water-use efficiency and of several leaf functional traits over 4 years, to evaluate how the added nitrogen and the two different fertilization system could affect them. We were not able, however, to detect any shift, besides a common yearly variability related to a prevailing background environmental forcing. To this end, we considered as relevant factors both the short time-span of the observation and the relatively low rate of applied nitrogen. Therefore, we stress the importance of long-term, manipulative experiments to improve the understanding of the C sequestration and mitigation ability of forests in response to increased N deposition.
Collapse
|
9
|
El Masri B, Schwalm C, Huntzinger DN, Mao J, Shi X, Peng C, Fisher JB, Jain AK, Tian H, Poulter B, Michalak AM. Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Sci Rep 2019; 9:14680. [PMID: 31604972 PMCID: PMC6789101 DOI: 10.1038/s41598-019-50808-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/12/2019] [Indexed: 11/08/2022] Open
Abstract
Terrestrial ecosystems carbon and water cycles are tightly coupled through photosynthesis and evapotranspiration processes. The ratios of carbon stored to carbon uptake and water loss to carbon gain are key ecophysiological indicators essential to assess the magnitude and response of the terrestrial plant to the changing climate. Here, we use estimates from 10 terrestrial ecosystem models to quantify the impacts of climate, atmospheric CO2 concentration, and nitrogen (N) deposition on water use efficiency (WUE), and carbon use efficiency (CUE). We find that across models, WUE increases over the 20th Century particularly due to CO2 fertilization and N deposition and compares favorably to experimental studies. Also, the results show a decrease in WUE with climate for the last 3 decades, in contrasts with up-scaled flux observations that demonstrate a constant WUE. Modeled WUE responds minimally to climate with modeled CUE exhibiting no clear trend across space and time. The divergence between simulated and observationally-constrained WUE and CUE is driven by modeled NPP and autotrophic respiration, nitrogen cycle, carbon allocation, and soil moisture dynamics in current ecosystem models. We suggest that carbon-modeling community needs to reexamine stomatal conductance schemes and the soil-vegetation interactions for more robust modeling of carbon and water cycles.
Collapse
Affiliation(s)
- Bassil El Masri
- Department of Earth and Environmental Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Christopher Schwalm
- Woods Hole Research Center, Falmouth, MA, 02540, USA
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Deborah N Huntzinger
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Changhui Peng
- Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, H3C 3J7, Canada
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hanqin Tian
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Hu Y, Zhao P, Zhu L, Zhao X, Ni G, Ouyang L, Schäfer KVR, Shen W. Responses of sap flux and intrinsic water use efficiency to canopy and understory nitrogen addition in a temperate broadleaved deciduous forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:325-336. [PMID: 30121032 DOI: 10.1016/j.scitotenv.2018.08.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Increasing atmospheric nitrogen (N) deposition could profoundly impact structure and functioning of forest ecosystems. Therefore, we conducted a two-year (2014-2015) experiment to assess the responses of tree sap flux density (Js) and intrinsic water use efficiency (WUEi) of dominant tree species (Liquidambar formosana, Quercus acutissima and Quercus variabilis) to increased N deposition at a manipulative experiment with canopy and understory N addition in a deciduous broadleaved forest. Five treatments were administered including N addition of 25 kg ha-1 year-1 and 50 kg ha-1 year-1 onto canopy (C25 and C50) and understory (U25 and U50), and control treatment (CK, without N addition). Our results showed neither canopy nor understory N addition had an impact on leaf N content and C:N ratio (P > 0.05). Due to the distinct influencing ways, canopy and understory N addition generated different impacts on Js and WUEi of the dominant tree species. Canopy N addition increased WUEi of Q. variabilis, whereas understory addition treatment had a minimal impact on WUEi. Both N additions did not exert impacts on WUEi of L. formosana and Q. acutissima. Canopy N addition exerted negative impacts on Js and its sensitivity to micrometeorological factors of Q. acutissima and Q. variabilis in 2014, while understory addition showed no effect. Neither canopy nor understory N addition had an influence on Js of L. formosana in 2014. Probably owing to the increased soil acidification as the experiment proceeded, Js of L. formosana and Q. variabilis was decreased by understory N addition while canopy addition had a minimal effect in 2015. Thus, the traditional understory addition approach could not fully reflect the effects of increased N deposition on the canopy-associated transpiration process indicated by the different responses of Js and WUEi to canopy and understory N addition, and exaggerated its influences induced by the variation of soil chemical properties.
Collapse
Affiliation(s)
- Yanting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China.
| | - Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Xiuhua Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| | - Karina V R Schäfer
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA; Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Road Xingke 723, District Tianhe, Guangzhou 510650, China
| |
Collapse
|
11
|
Mathias JM, Thomas RB. Disentangling the effects of acidic air pollution, atmospheric CO 2 , and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. GLOBAL CHANGE BIOLOGY 2018; 24:3938-3953. [PMID: 29781219 DOI: 10.1111/gcb.14273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 05/24/2023]
Abstract
In the 45 years after legislation of the Clean Air Act, there has been tremendous progress in reducing acidic air pollutants in the eastern United States, yet limited evidence exists that cleaner air has improved forest health. Here, we investigate the influence of recent environmental changes on the growth and physiology of red spruce (Picea rubens Sarg.) trees, a key indicator species of forest health, spanning three locations along a 100 km transect in the Central Appalachian Mountains. We incorporated a multiproxy approach using 75-year tree ring chronologies of basal tree growth, carbon isotope discrimination (∆13 C, a proxy for leaf gas exchange), and δ15 N (a proxy for ecosystem N status) to examine tree and ecosystem level responses to environmental change. Results reveal the two most important factors driving increased tree growth since ca. 1989 are reductions in acidic sulfur pollution and increases in atmospheric CO2 , while reductions in pollutant emissions of NOx and warmer springs played smaller, but significant roles. Tree ring ∆13 C signatures increased significantly since 1989, concurrently with significant declines in tree ring δ15 N signatures. These isotope chronologies provide strong evidence that simultaneous changes in C and N cycling, including greater photosynthesis and stomatal conductance of trees and increases in ecosystem N retention, were related to recent increases in red spruce tree growth and are consequential to ecosystem recovery from acidic pollution. Intrinsic water use efficiency (iWUE) of the red spruce trees increased by ~51% across the 75-year chronology, and was driven by changes in atmospheric CO2 and acid pollution, but iWUE was not linked to recent increases in tree growth. This study documents the complex environmental interactions that have contributed to the recovery of red spruce forest ecosystems from pervasive acidic air pollution beginning in 1989, about 15 years after acidic pollutants started to decline in the United States.
Collapse
Affiliation(s)
- Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Richard B Thomas
- Department of Biology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
12
|
Zhang H, Li W, Adams HD, Wang A, Wu J, Jin C, Guan D, Yuan F. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. FRONTIERS IN PLANT SCIENCE 2018; 9:683. [PMID: 29875787 PMCID: PMC5974508 DOI: 10.3389/fpls.2018.00683] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity (P50, +21.5%; i.e., P50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases in vessel diameter, which leads to higher hydraulic conductance, but lower water potential and increased vulnerability to embolism. Overall, our results suggest that N addition will shift plant function along a tradeoff between C and hydraulic economies by enhancing C uptake while simultaneously increasing the risk of hydraulic dysfunction.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weibin Li
- State Key Laboratory of Grassland and Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Henry D. Adams
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
13
|
Guerrieri R, Jennings K, Belmecheri S, Asbjornsen H, Ollinger S. Evaluating climate signal recorded in tree-ring δ 13 C and δ 18 O values from bulk wood and α-cellulose for six species across four sites in the northeastern US. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2081-2091. [PMID: 28940773 DOI: 10.1002/rcm.7995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 05/08/2023]
Abstract
RATIONALE We evaluated the applicability of tree-ring δ13 C and δ18 O values in bulk wood - instead of the more time and lab-consuming α-cellulose δ13 C and δ18 O values, to assess climate and physiological signals across multiple sites and for six tree species along a latitudinal gradient (35°97'N to 45°20'N) of the northeastern United States. METHODS Wood cores (n = 4 per tree) were sampled from ten trees per species. Cores were cross-dated within and across trees at each site, and for the last 30 years. Seven years, including the driest on record, were selected for this study. The δ13 C and δ18 O values were measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between materials in δ13 C and δ18 O values were assessed. Correlation and multiple regression analyses were used to evaluate the strength of the climate signal across sites. Finally the relationship between δ13 C and δ18 O values in bulk wood vs α-cellulose was analyzed to assess the consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, from both materials. RESULTS We found offsets of 1.1‰ and 5.6‰ between bulk and α-cellulose for δ13 C and δ18 O values, respectively, consistent with offset values reported in the literature. Bulk wood showed similar or stronger correlations to climate parameters than α-cellulose for the investigated sites. In particular, temperature and vapor pressure deficit and standard precipitation-evaporation index (SPEI) were the most visible climate signals recorded in δ13 C and δ18 O values, respectively. For most of the species, there was no relationship between δ13 C and δ18 O values, regardless of the wood material considered. CONCLUSIONS Extraction of α-cellulose was not necessary to detect climate signals in tree rings across the four investigated sites. Furthermore, the physiological information inferred from the dual isotope approach was similar for most of the species regardless of the material considered.
Collapse
Affiliation(s)
- Rossella Guerrieri
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| | - Katie Jennings
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, 85721-0045, USA
| | - Heidi Asbjornsen
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| | - Scott Ollinger
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
14
|
Voelker SL, Meinzer FC, Way D. Where and when does stem cellulose δ18O reflect a leaf water enrichment signal? TREE PHYSIOLOGY 2017; 37:551-553. [PMID: 28338963 DOI: 10.1093/treephys/tpx029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Steven L Voelker
- Department of Plants, Soils & Climate, Utah State University, Logan, UT 84322, USA
- Ecology Center, Utah State University, Logan, UT 84322, USA
- Corresponding author
| | - Frederick C Meinzer
- U.S.D.A. Forest Service, Pacific Northwest Research Station, Corvallis, OR 97330 , USA
| | | |
Collapse
|
15
|
Levesque M, Andreu-Hayles L, Pederson N. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO 2 and reduced acid deposition. Sci Rep 2017; 7:46158. [PMID: 28393872 PMCID: PMC5385545 DOI: 10.1038/srep46158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 11/11/2022] Open
Abstract
Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO2 concentration, and SO4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.
Collapse
Affiliation(s)
- Mathieu Levesque
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Laia Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA 01366, USA
| |
Collapse
|