1
|
Hoenicka H, Bein S, Starczak M, Graf W, Hanelt D, Gackowski D. β-Aminobutyric acid promotes stress tolerance, physiological adjustments, as well as broad epigenetic changes at DNA and RNA nucleobases in field elms (Ulmus minor). BMC PLANT BIOLOGY 2024; 24:779. [PMID: 39148013 PMCID: PMC11325618 DOI: 10.1186/s12870-024-05425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND β-Aminobutyric acid (BABA) has been successfully used to prime stress resistance in numerous plant species; however, its effectiveness in forest trees has been poorly explored thus far. This study aimed to investigate the influence of BABA on morphological, physiological, and epigenetic parameters in field elms under various growth conditions. Epigenetic changes were assessed in both DNA and RNA through the use of reversed-phase ultra-performance liquid chromatography (UPLC) coupled with sensitive mass spectrometry. RESULTS The presented results confirm the influence of BABA on the development, physiology, and stress tolerance in field elms. However, the most important findings are related to the broad epigenetic changes promoted by this amino acid, which involve both DNA and RNA. Our findings confirm, for the first time, that BABA influences not only well-known epigenetic markers in plants, such as 5-methylcytosine, but also several other non-canonical nucleobases, such as 5-hydroxymethyluracil, 5-formylcytosine, 5-hydroxymethylcytosine, N6-methyladenine, uracil (in DNA) and thymine (in RNA). The significant effect on the levels of N6-methyladenine, the main bacterial epigenetic marker, is particularly noteworthy. In this case, the question arises as to whether this effect is due to epigenetic changes in the microbiome, the plant genome, or both. CONCLUSIONS The plant phenotype is the result of complex interactions between the plant's DNA, the microbiome, and the environment. We propose that different types of epigenetic changes in the plant and microbiome may play important roles in the largely unknown memory process that enables plants to adapt faster to changing environmental conditions.
Collapse
Affiliation(s)
- Hans Hoenicka
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany.
| | - Susanne Bein
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany
| | - Marta Starczak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, Bydgoszcz, 85-095, Poland
| | - Wolfgang Graf
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany
| | - Dieter Hanelt
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorst. 18, D-22609, Hamburg, Germany
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, Bydgoszcz, 85-095, Poland
| |
Collapse
|
2
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K, Zlatković M, Hensel G, Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. TRENDS IN PLANT SCIENCE 2023; 28:1144-1165. [PMID: 37331842 DOI: 10.1016/j.tplants.2023.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Biosciences and Bioresources (IBBR), Portici, Italy; CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jana Murovec
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Justyna Boniecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon E Bull
- Molecular Plant Breeding, Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland; Plant Biochemistry, Institute of Molecular Plant Biology, ETH, Zurich, Switzerland
| | - Tom Eeckhaut
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium
| | | | - Vladislava Galovic
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Anna Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tjaša Lukan
- National Institute of Biology, Department of Biotechnology and Systems Biology, Ljubljana, Slovenia
| | - Isabel Mafra
- Rede de Química e Tecnologia (REQUIMTE) Laboratório Associado para a Química Verde (LAQV), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute, National Research Institute, Błonie, Poland
| | - Musa Kavas
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Alessandro Nicolia
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Justyna Nowakowska
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Laszlo Sági
- Centre for Agricultural Research, Loránd Eötvös Research Network, Martonvásár, Hungary
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Milica Zlatković
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Goetz Hensel
- Heinrich-Heine-University, Institute of Plant Biochemistry, Centre for Plant Genome Engineering, Düsseldorf, Germany; Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katrijn Van Laere
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium.
| |
Collapse
|
4
|
Klocko AL, Elorriaga E, Ma C, Strauss SH. Variation in floral form of CRISPR knock-outs of the poplar homologs of LEAFY and AGAMOUS after FT heat-induced early flowering. HORTICULTURE RESEARCH 2023; 10:uhad132. [PMID: 37564267 PMCID: PMC10410293 DOI: 10.1093/hr/uhad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
Plant migration and gene flow from genetically modified or exotic trees to nearby lands or by crossing with wild relatives is a major public and regulatory concern. Many genetic strategies exist to mitigate potential gene flow; however, the long delay in onset of flowering is a severe constraint to research progress. We used heat-induced FT overexpression to speed assessment of the expected floral phenotypes after CRISPR knockout of poplar homologs of the key floral genes, LEAFY and AGAMOUS. We selected events with previously characterized CRISPR-Cas9 induced biallelic changes then re-transformed them with the Arabidopsis thaliana FLOWERING LOCUS T (AtFT) gene under control of either a strong constitutive promoter or a heat-inducible promoter. We successfully obtained flowering in both a male and female clones of poplar, observing a wide range of inflorescence and floral forms among flowers, ramets, and insertion events. Overall, flowers obtained from the selected LFY and AG targeted events were consistent with what would be predicted for loss-of-function of these genes. LFY-targeted events showed small catkins with leaf-like organs, AG-targeted events had nested floral organs consistent with reduction in floral determinacy and absence of well-formed carpels or anthers. These findings demonstrate the great developmental plasticity of Populus flowers during genetically accelerated flowering, which may be of horticultural value. They also provide an informative early view of floral phenotypes and apparent sterility from knockouts of both these gene targets.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Estefania Elorriaga
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Ortega MA, Zhou R, Chen MSS, Bewg WP, Simon B, Tsai C. In vitro floral development in poplar: insights into seed trichome regulation and trimonoecy. THE NEW PHYTOLOGIST 2023; 237:1078-1081. [PMID: 36385612 PMCID: PMC10107547 DOI: 10.1111/nph.18624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 05/24/2023]
Affiliation(s)
- María A. Ortega
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Ran Zhou
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Margot S. S. Chen
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - William Patrick Bewg
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Bindu Simon
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Chung‐Jui Tsai
- Warnell School of Forestry and Natural ResourceUniversity of GeorgiaAthensGA30602USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
6
|
Leite Montalvão AP, Kersten B, Kim G, Fladung M, Müller NA. ARR17 controls dioecy in Populus by repressing B-class MADS-box gene expression. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210217. [PMID: 35306887 PMCID: PMC8935312 DOI: 10.1098/rstb.2021.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The number of dioecious species for which the genetic basis of sex determination has been resolved is rapidly increasing. Nevertheless, the molecular mechanisms downstream of the sex determinants remain largely elusive. Here, by RNA-sequencing early-flowering isogenic aspen (Populus tremula) lines differing exclusively for the sex switch gene ARR17, we show that a narrowly defined genetic network controls differential development of female and male flowers. Although ARR17 encodes a type-A response regulator supposedly involved in cytokinin (CK) hormone signalling, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated arr17 knockout only affected the expression of a strikingly small number of genes, indicating a specific role in the regulation of floral development rather than a generic function in hormone signalling. Notably, the UNUSUAL FLORAL ORGANS (UFO) gene, encoding an F-box protein acting as a transcriptional cofactor with LEAFY (LFY) to activate B-class MADS-box gene expression, and the B-class gene PISTILLATA (PI), necessary for male floral organ development, were strongly de-repressed in the arr17 CRISPR mutants. Our data highlight a CK-independent role of the poplar response regulator ARR17 and further emphasize the minimal differences between female and male individuals. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Ana P Leite Montalvão
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Gihwan Kim
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| |
Collapse
|
7
|
Alves FC, Balmant KM, Resende MFR, Kirst M, de Los Campos G. Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. THE PLANT GENOME 2020; 13:e20048. [PMID: 33217213 DOI: 10.1002/tpg2.20048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Breeding forest species can be a costly and slow process because of the extensive areas needed for field trials and the long periods (e.g., five years) that are required to measure economically and environmentally relevant phenotypes (e.g., adult plant biomass or plant height). Genomic selection (GS) and indirect selection using early phenotypes (e.g., phenotypes collected in greenhouse conditions) are two ways by which tree breeding can be accelerated. These approaches can both reduce the costs of field-testing and the time required to make selection decisions. Moreover, these approaches can be highly synergistic. Therefore, in this study, we used a data set comprising DNA genotypes and longitudinal measurements of growth collected from a population of Populus deltoides W. Bartram ex Marshall (eastern cottonwood) in the greenhouse and the field, to evaluate the potential impact of integrating large-scale greenhouse phenotyping with conventional GS. We found that the integration of greenhouse phenotyping and GS can deliver very early selection decisions that are moderately accurate. Therefore, we conclude that the adoption of these approaches, in conjunction with reproductive techniques that shorten the generation interval, can lead to an unprecedented acceleration of selection gains in P. deltoides and, potentially, other commercially planted tree species.
Collapse
Affiliation(s)
- Filipe C Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly M Balmant
- School of Forest Resources and Conservation, University of Florida, Gainsville, FL, 32611, USA
| | - Marcio F R Resende
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainsville, FL, 32611, USA
- Horticulture Science Department, University of Florida, Gainsville, FL, 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainsville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainsville, FL, 32611, USA
- Horticulture Science Department, University of Florida, Gainsville, FL, 32611, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M. A single gene underlies the dynamic evolution of poplar sex determination. NATURE PLANTS 2020; 6:630-637. [PMID: 32483326 DOI: 10.1038/s41477-020-0672-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive1. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR-Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
Collapse
Affiliation(s)
- Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Carolina Bernhardsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vikash Kumar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Birte Pakull
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Maurizio Sabatti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Cristina Vettori
- Institute of Biosciences and BioResources, Division of Florence, National Research Council, Sesto Fiorentino, Italy
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
9
|
Kersten B, Leite Montalvão AP, Hoenicka H, Vettori C, Paffetti D, Fladung M. Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration. Transgenic Res 2020; 29:321-337. [PMID: 32356192 PMCID: PMC7283205 DOI: 10.1007/s11248-020-00203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/18/2020] [Indexed: 02/02/2023]
Abstract
Next-generation sequencing (NGS) approaches are attractive alternatives to the PCR-based characterisation of genetically modified plants for safety assessment and labelling since NGS is highly sensitive to the detection of T-DNA inserts as well as vector backbone sequences in transgenic plants. In this study, two independent transgenic male Populus tremula lines, T193-2 and T195-1, both carrying the FLOWERING LOCUS T gene from Arabidopsis thaliana under control of a heat-inducible promoter (pHSP::AtFT) and the non-transgenic control clone W52, were further characterised by NGS and third-generation sequencing. The results support previous findings that the T-DNA was hemizygously inserted in one genomic locus of each line. However, the T-DNA insertions consist of conglomerations of one or two T-DNA copies together with a small T-DNA fragment without AtFT parts. Based on NGS data, no additional T-DNA splinters or vector backbone sequences could be identified in the genome of the two transgenic lines. Seedlings derived from crosses between the pHSP::AtFT transgenic male parents and female wild type plants are therefore expected to be T-DNA splinter or vector backbone free. Thus, PCR analyses amplifying a partial T-DNA fragment with AtFT-specific primers are sufficient to determine whether the seedlings are transgenic or not. An analysis of 72 second generation-seedlings clearly showed that about 50% of them still reveal the presence of the T-DNA, confirming data already published. To prove if unanticipated genomic changes were induced by T-DNA integration, extended future studies using long-range sequencing technologies are required once a suitable chromosome-level P. tremula reference genome sequence is available.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany
| | - Cristina Vettori
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry, Agricultural Genetics Section, University of Florence, P. le delle Cascine 18, 50144, Florence, Italy
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| |
Collapse
|
10
|
Briones MV, Hoenicka H, Cañas LA, Beltrán JP, Hanelt D, Sharry S, Fladung M. Efficient evaluation of a gene containment system for poplar through early flowering induction. PLANT CELL REPORTS 2020; 39:577-587. [PMID: 32052127 PMCID: PMC7165154 DOI: 10.1007/s00299-020-02515-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The early flowering system HSP::AtFT allowed a fast evaluation of a gene containment system based on the construct PsEND1::barnase-barstar for poplar. Transgenic lines showed disturbed pollen development and sterility. Vertical gene transfer through pollen flow from transgenic or non-native plant species into their crossable natural relatives is a major concern. Gene containment approaches have been proposed to reduce or even avoid gene flow among tree species. However, evaluation of genetic containment strategies for trees is very difficult due to the long-generation times. Early flowering induction would allow faster evaluation of genetic containment in this case. Although no reliable methods were available for the induction of fertile flowers in poplar, recently, a new early flowering approach was developed. In this study, early flowering poplar lines containing the gene construct PsEND1::barnase-barstar were obtained. The PsEND1 promoter was chosen due to its early expression pattern, its versality and efficiency for generation of male-sterile plants fused to the barnase gene. RT-PCRs confirmed barnase gene activity in flowers, and pollen development was disturbed, leading to sterile flowers. The system developed in this study represents a valuable tool for gene containment studies in forest tree species.
Collapse
Affiliation(s)
- M Valentina Briones
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, B1900, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1900, La Plata, Argentina
| | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| | - Luis A Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022, Valencia, Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022, Valencia, Spain
| | - Dieter Hanelt
- Institut für Pflanzenwissenschaften und Mikrobiologie, Universität Hamburg, 22609, Hamburg, Germany
| | - Sandra Sharry
- Laboratorio de Investigaciones de la Madera (LIMAD), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, B1900, La Plata, Argentina
- CIT-Viedma, Universidad Nacional de Río Negro, R8500, Viedma, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), B1900, La Plata, Argentina
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany
| |
Collapse
|
11
|
Bruegmann T, Deecke K, Fladung M. Evaluating the Efficiency of gRNAs in CRISPR/Cas9 Mediated Genome Editing in Poplars. Int J Mol Sci 2019; 20:E3623. [PMID: 31344908 PMCID: PMC6696231 DOI: 10.3390/ijms20153623] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 01/23/2023] Open
Abstract
CRISPR/Cas9 has become one of the most promising techniques for genome editing in plants and works very well in poplars with an Agrobacterium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and TOZ19 for three different research topics. The gRNAs were designed for editing, and, together with a constitutively expressed Cas9 nuclease, transferred either into the poplar hybrid Populus × canescens or into P. tremula. The regenerated lines showed different types of editing and revealed several homozygous editing events which are of special interest in perennial species because of limited back-cross ability. Through a time series, we could show that despite the constitutive expression of the Cas9 nuclease, no secondary editing of the target region occurred. Thus, constitutive Cas9 expression does not seem to pose any risk to additional editing events. Based on various criteria, we obtained evidence for a relationship between the structure of gRNA and the efficiency of gene editing. In particular, the GC content, purine residues in the gRNA end, and the free accessibility of the seed region seemed to be highly important for genome editing in poplars. Based on our findings on nine different poplar genes, efficient gRNAs can be designed for future efficient editing applications in poplars.
Collapse
Affiliation(s)
- Tobias Bruegmann
- Thuenen Institute of Forest Genetics, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany.
| | - Khira Deecke
- Thuenen Institute of Forest Genetics, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany
| | - Matthias Fladung
- Thuenen Institute of Forest Genetics, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany.
| |
Collapse
|
12
|
Fritsche S, Klocko AL, Boron A, Brunner AM, Thorlby G. Strategies for Engineering Reproductive Sterility in Plantation Forests. FRONTIERS IN PLANT SCIENCE 2018; 9:1671. [PMID: 30498505 PMCID: PMC6249417 DOI: 10.3389/fpls.2018.01671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.
Collapse
Affiliation(s)
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | | | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
13
|
Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Amino Acids 2017; 50:149-161. [PMID: 29030729 DOI: 10.1007/s00726-017-2501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/30/2017] [Indexed: 01/20/2023]
Abstract
Maize (Zea mays L.) is a typical short-day plant that is produced as an important food product and industrial material. The photoperiod is one of the most important evolutionary mechanisms enabling the adaptation of plant developmental phases to changes in climate conditions. There are differences in the photoperiod sensitivity of maize inbred lines from tropical to temperate regions. In this study, to identify the maize proteins responsive to a long photoperiod (LP), the photoperiod-insensitive inbred line HZ4 and its near-isogenic line H496, which is sensitive to LP conditions, were analyzed under long-day conditions using isobaric tags for relative and absolute quantitation. We identified 5259 proteins in maize leaves exposed to the LP condition between the vegetative and reproductive stages. These proteins included 579 and 576 differentially accumulated proteins in H496 and HZ4 leaves, respectively. The differentially accumulated proteins (e.g., membrane, defense, and energy- and ribosome-related proteins) exhibited the opposite trends in HZ4 and H496 plants during the transition from the vegetative stage to the reproductive stage. These results suggest that the photoperiod-associated fragment in H496 plants considerably influences various proteins to respond to the photoperiod sensitivity. Overall, our data provide new insights into the effects of long-day treatments on the maize proteome, and may be useful for the development of new germplasm.
Collapse
|
14
|
Brunner AM, Varkonyi-Gasic E, Jones RC. Phase Change and Phenology in Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
McGarry RC, Klocko AL, Pang M, Strauss SH, Ayre BG. Virus-Induced Flowering: An Application of Reproductive Biology to Benefit Plant Research and Breeding. PLANT PHYSIOLOGY 2017; 173:47-55. [PMID: 27856915 PMCID: PMC5210732 DOI: 10.1104/pp.16.01336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/13/2016] [Indexed: 05/18/2023]
Abstract
Virus-induced flowering combines fundamental research in reproductive biology with efficient tools for manipulating gene expression in nonmodel systems to accelerate discovery and breeding.
Collapse
Affiliation(s)
- Roisin C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017 (R.C.M., M.P., B.G.A.); and
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5704 (A.L.K., S.H.S.)
| | - Amy L Klocko
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017 (R.C.M., M.P., B.G.A.); and
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5704 (A.L.K., S.H.S.)
| | - Mingxiong Pang
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017 (R.C.M., M.P., B.G.A.); and
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5704 (A.L.K., S.H.S.)
| | - Steven H Strauss
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017 (R.C.M., M.P., B.G.A.); and
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5704 (A.L.K., S.H.S.)
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas 76203-5017 (R.C.M., M.P., B.G.A.); and
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5704 (A.L.K., S.H.S.)
| |
Collapse
|