1
|
Xiong Y, Chen X, Liu J, Li Y, Bian Z, Zhang X, Zeng S, da Silva JAT, Ma G. Comparative transcriptomic and hormonal analyses reveal potential regulation networks of adventitious root formation in Metasequoia glyptostroboides Hu et Cheng. BMC Genomics 2024; 25:1098. [PMID: 39558286 PMCID: PMC11572361 DOI: 10.1186/s12864-024-10989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The extract from Metasequoia glyptostroboides Hu et Cheng, a rare and endangered species native to China, exhibits numerous biological and pharmacological activities. The species is recalcitrant to rooting during micropropagation, a challenge that has yet to be resolved. In this study, transcriptomic and hormonal analyses were conducted to appreciate the molecular mechanism of adventitious root (AR) formation in optimized rooting conditions. RESULTS The use of 2/5-strength Woody Plant Medium (WPM) significantly promoted AR formation of M. glyptostroboides shoots while the content of endogenous auxin, cytokinins and gibberellins (GAs) varied at different stages of AR formation. Transcriptomic analysis showed the significant up- or down-regulation of differentially expressed genes (DEGs) associated with plant hormone signal transduction and the phenylpropanoid biosynthesis pathway in response to 2/5-strength WPM. DEGs related to the biosynthesis of indole-3-acetic acid, cytokinins and GAs were identified. Transcript factors involved in 13 families were also revealed. A weighted gene co-expression network analysis indicated a strong correlation between hormones and genes involved in plant hormone signal transduction and the phenylpropanoid biosynthetic pathway. CONCLUSIONS These results indicate that the AR-promoting potential of 2/5-strength WPM in M. glyptostroboides was due to complex interactions between hormones and the expression of genes related to plant hormone signal transduction and the phenylpropanoid biosynthetic pathway.
Collapse
Affiliation(s)
- Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaohong Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Junyu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhan Bian
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Bellini C. A synthetic auxin for cloning mature trees. Nat Biotechnol 2024; 42:1651-1652. [PMID: 38267758 DOI: 10.1038/s41587-024-02132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France.
| |
Collapse
|
3
|
Wang S, Wu H, Zhang Y, Sun G, Qian W, Qu F, Zhang X, Hu J. Transcriptome Reveals the Regulation of Exogenous Auxin Inducing Rooting of Non-Rooting Callus of Tea Cuttings. Int J Mol Sci 2024; 25:8080. [PMID: 39125650 PMCID: PMC11311428 DOI: 10.3390/ijms25158080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (S.W.); (H.W.); (Y.Z.); (G.S.); (W.Q.); (F.Q.); (X.Z.)
| |
Collapse
|
4
|
Varas E, Valladares S, Vielba J, Vidal N, Sánchez C. Expression of CsSCL1 and Rooting Response in Chestnut Leaves Are Dependent on the Auxin Polar Transport and the Ontogenetic Origin of the Tissues. PLANTS (BASEL, SWITZERLAND) 2023; 12:2657. [PMID: 37514273 PMCID: PMC10385970 DOI: 10.3390/plants12142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with two distinct ontogenetic origins that differ in rooting competence. Leaves were treated with auxin and N-1-naphthyl-phthalamic acid (NPA), an inhibitor of auxin polar transport (PAT). The physiological effects were investigated by recording rooting rates and the number and quality of the roots. Molecular responses were examined by localizing and monitoring the changes in the expression of CsSCL1, an auxin-inducible gene in juvenile and mature shoots during AR. The rooting response of leaves was ontogenetic-stage dependent and similar to that of the donor microshoots. Initiation of root primordia and root development were inhibited by application of NPA, although its effect depended on the timing of application. CsSCL1 was upregulated by auxin only in rooting-competent leaves during the novo root organogenesis, and the expression was reduced by NPA. The inhibitory effect on gene expression was detected during the reprograming of rooting competent cells towards root initials in response to auxin, indicating that PAT-mediated upregulation of CsSCL1 is required in the initial steps of AR in chestnut leaves. The localized expression of CsSCL1 in the quiescent center (QC) also suggests a role for this gene in the maintenance of meristematic competence and root radial patterning.
Collapse
Affiliation(s)
- Elena Varas
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
- Fundación Promiva, Ctra M-501, Km 5.4, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Silvia Valladares
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
- Agromillora Iberia, C/El Rebato, s/n, 08379 Barcelona, Spain
| | - Jesús Vielba
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Zhou H, Yan F, Hao F, Ye H, Yue M, Woeste K, Zhao P, Zhang S. Pan-genome and transcriptome analyses provide insights into genomic variation and differential gene expression profiles related to disease resistance and fatty acid biosynthesis in eastern black walnut ( Juglans nigra). HORTICULTURE RESEARCH 2023; 10:uhad015. [PMID: 36968185 PMCID: PMC10031739 DOI: 10.1093/hr/uhad015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Walnut (Juglans) species are used as nut crops worldwide. Eastern black walnut (EBW, Juglans nigra), a diploid, horticultural important woody species is native to much of eastern North America. Although it is highly valued for its wood and nut, there are few resources for understanding EBW genetics. Here, we present a high-quality genome assembly of J. nigra based on Illumina, Pacbio, and Hi-C technologies. The genome size was 540.8 Mb, with a scaffold N50 size of 35.1 Mb, and 99.0% of the assembly was anchored to 16 chromosomes. Using this genome as a reference, the resequencing of 74 accessions revealed the effective population size of J. nigra declined during the glacial maximum. A single whole-genome duplication event was identified in the J. nigra genome. Large syntenic blocks among J. nigra, Juglans regia, and Juglans microcarpa predominated, but inversions of more than 600 kb were identified. By comparing the EBW genome with those of J. regia and J. microcarpa, we detected InDel sizes of 34.9 Mb in J. regia and 18.3 Mb in J. microcarpa, respectively. Transcriptomic analysis of differentially expressed genes identified five presumed NBS-LRR (NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT) genes were upregulated during the development of walnut husks and shells compared to developing embryos. We also identified candidate genes with essential roles in seed oil synthesis, including FAD (FATTY ACID DESATURASE) and OLE (OLEOSIN). Our work advances the understanding of fatty acid bioaccumulation and disease resistance in nut crops, and also provides an essential resource for conducting genomics-enabled breeding in walnut.
Collapse
Affiliation(s)
| | | | | | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
- Xi’an Botanical Garden of Shaanxi Province, Xi’an, Shaanxi 710061, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, Indiana, 47907, USA
| | | | | |
Collapse
|
6
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhao Y, Chen Y, Jiang C, Lu MZ, Zhang J. Exogenous hormones supplementation improve adventitious root formation in woody plants. Front Bioeng Biotechnol 2022; 10:1009531. [PMID: 36177185 PMCID: PMC9513251 DOI: 10.3389/fbioe.2022.1009531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Jin Zhang, , orcid.org/0000-0002-8397-5078
| |
Collapse
|
8
|
Zhou J, Wu JT. Physiological characteristics and miRNA sequencing of two root zones with contrasting ammonium assimilation patterns in Populus. Genes Genomics 2021; 44:39-51. [PMID: 34455578 DOI: 10.1007/s13258-021-01156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The net ammonium fluxes differ among the different root zones of Populus, but the physiological and microRNA regulatory mechanisms are unclear. OBJECTIVE To elucidate the physiological and miRNA regulatory mechanisms, we investigated the two root zones displaying significant differences in net NH4+ effluxes of P. × canescens. METHODS Populus plantlets were cultivated with 500 μM NH4Cl for 10 days. Six plants were randomly selected to determine the net NH4+ fluxes using a noninvasive microtest technique. High-throughput sequencing were used to determine the dynamic expression profile of miRNA among the different root zones of Populus. RESULTS Net NH4+ efflux in zone I (from 0 to 40 mm from the root apex) was - 19.64 pmol cm-2 s-1 and in zone II (from 40 to 80 mm) it was - 43.96 pmol cm-2 s-1. The expression of eleven miRNAs was significantly upregulated, whereas fifteen miRNAs were downregulated. Moreover, eighty-eight target genes of the significantly differentially expressed miRNAs were identified in root zone II compared with zone I. Particularly, ptc-miR171a/b/e and their target, SCL6, were found to be important for the difference in net NH4+ effluxes in the two root zones. Moreover, the expression of the target of ptc-miR169d, NFYA3 was upregulated in root zone II compared with root zone I, contributing to increased NH4+ efflux and decreased NH4+ assimilation in root zone II. CONCLUSION These results indicate that miRNAs regulate the expression levels of their target genes and thus play key roles in net NH4+ fluxes and NH4+ assimilation in different poplar root zones.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
9
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
10
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
11
|
Díaz-Sala C. A Perspective on Adventitious Root Formation in Tree Species. PLANTS 2020; 9:plants9121789. [PMID: 33348577 PMCID: PMC7766270 DOI: 10.3390/plants9121789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Adventitious root formation is an organogenic process, regulated at several levels, that is crucial for the successful vegetative propagation of numerous plants. In many tree species, recalcitrance to adventitious root formation is a major limitation in the clonal propagation of elite germplasms. Information on the mechanisms underlying the competence for adventitious root formation is still limited. Therefore, increasing our understanding of the mechanisms that enable differentiated somatic cells to switch their fates and develop into root meristematic cells, especially those involved in cell developmental aging and maturation, is a priority in adventitious root-related research. The dynamic cell wall-cytoskeleton, along with soluble factors, such as cellular signals or transcriptional regulators, may be involved in adult cell responses to intrinsic or extrinsic factors, resulting in maintenance, induction of root meristematic cell formation, or entrance into another differentiating pathway.
Collapse
Affiliation(s)
- Carmen Díaz-Sala
- Department of Life Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Zhou J, Lu Y, Shi WG, Deng SR, Luo ZB. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens. TREE PHYSIOLOGY 2020; 40:1392-1404. [PMID: 32542375 DOI: 10.1093/treephys/tpaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Different root zones have distinct capacities for nitrate (NO3-) uptake in Populus species, but the underlying physiological and microRNA (miRNA) regulatory mechanisms remain largely unknown. To address this question, two root zones of Populus × canescens (Ait.) Smith. with contrasting capacities for NO3- uptake were investigated. The region of 0-40 mm (root zone I) to the root apex displayed net influxes, whereas the region of 40-80 mm (root zone II) exhibited net effluxes. Concentrations of NO3- and ammonium (NH4+) as well as nitrate reductase activity were lower in zone II than in zone I. Forty one upregulated and twenty three downregulated miRNAs, and 576 targets of these miRNAs were identified in zone II in comparison with zone I. Particularly, growth-regulating factor 4 (GRF4), a target of upregulated ptc-miR396g-5p and ptc-miR396f_L + 1R-1, was downregulated in zone II in comparison with zone I, probably contributing to lower NO3- uptake rates and assimilation in zone II. Furthermore, several miRNAs and their targets, members of C2H2 zinc finger family and APETALA2/ethylene-responsive element binding protein family, were found in root zones, which probably play important roles in regulating NO3- uptake. These results indicate that differentially expressed miRNA-target pairs play key roles in regulation of distinct NO3- uptake rates and assimilation in different root zones of poplars.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shu-Rong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Alallaq S, Ranjan A, Brunoni F, Novák O, Lakehal A, Bellini C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:586140. [PMID: 33014006 PMCID: PMC7509059 DOI: 10.3389/fpls.2020.586140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 05/02/2023]
Abstract
Vegetative propagation relies on the capacity of plants to regenerate de novo adventitious roots (ARs), a quantitative trait controlled by the interaction of endogenous factors, such as hormones and environmental cues among which light plays a central role. However, the physiological and molecular components mediating light cues during AR initiation (ARI) remain largely elusive. Here, we explored the role of red light (RL) on ARI in de-rooted Norway spruce seedlings. We combined investigation of hormone metabolism and gene expression analysis to identify potential signaling pathways. We also performed extensive anatomical characterization to investigate ARI at the cellular level. We showed that in contrast to white light, red light promoted ARI likely by reducing jasmonate (JA) and JA-isoleucine biosynthesis and repressing the accumulation of isopentyl-adenine-type cytokinins. We demonstrated that exogenously applied JA and/or CK inhibit ARI in a dose-dependent manner and found that they possibly act in the same pathway. The negative effect of JA on ARI was confirmed at the histological level. We showed that JA represses the early events of ARI. In conclusion, RL promotes ARI by repressing the accumulation of the wound-induced phytohormones JA and CK.
Collapse
Affiliation(s)
- Sanaria Alallaq
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Biology, College of Science for Women, Baghdad University, Baghdad, Iraq
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agriculture University, Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
14
|
Genome-Wide Identification of WOX Gene Family and Expression Analysis during Rejuvenational Rhizogenesis in Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f11010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rejuvenation is an efficient approach used in the cuttings of trees and horticultural crops, to improve their rooting ability, especially in difficult-to-root trees. WOX gene family members are involved in cell-fate transformation through balancing the maintenance and proliferation of the stem cells. However, there are no reports about the WOX gene family in Walnut (Juglans regia L.) and its relationship between rejuvenation and adventitious roots formation (ARF). Here, a genome-wide identification of JrWOX genes and their physical and chemical properties, phylogeny, and expression profiles in different organs and during rejuvenation-induced ARF is reported. The phenotype and histology characteristics of mature and rejuvenated cuttings (Mc and Rc) are also observed. In this study, 12 genes were identified and clustered into three groups based on phylogenetics, special domains, and conserved motifs. The gene structures and conserved motifs were relatively conserved, while the 12 sequences of the JrWOXs domain were diversified. Gene expression in root, stem, leaf, female flower, immature fruit, and zygotic embryo revealed that the expression levels of JrWOX4a, JrWOX4b, JrWOX5, JrWOX11, and JrWOX13 in the root were significantly higher than those of other JrWOXs, while only the expression of JrWOX11 was exclusive to the root organ. Additionally, rejuvenation treatment significantly induced almost all JrWOX genes, except JrWOX4a, JrWOX4b, and JrWOX13 (Rc 0 vs. Mc 0). During the ARF process, the transcripts of JrWOX11 and JrWOX5 were consecutively increased on a significance level; in contrast, the transcription levels of the other JrWOXs decreased or changed insignificantly. The phenotype and histology observation indicate that rejuvenation treatment made the base of the stem expand and reduced the thickness and density of sclerenchyma between the cortex and phloem. This might provide the conditions for the formation of new meristem niches. The results provided insight into the JrWOX genes’ general characteristics and their roles in rejuvenation-induced ARF.
Collapse
|
15
|
Cai H, Yang C, Liu S, Qi H, Wu L, Xu LA, Xu M. MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8. TREE PHYSIOLOGY 2019; 39:1922-1936. [PMID: 31504994 DOI: 10.1093/treephys/tpz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 05/13/2023]
Abstract
The ability of a plant to form roots from its non-root tissues is ecologically advantageous during rapid adaptation to a changing environment. Although this biological phenomenon has been widely utilized for cuttings in many economically important agronomic and tree species, its genetic and developmental mechanisms have been poorly understood. In this study, we conducted an association analysis of small RNAs, the degradome and the transcriptome of adventitious rooting in poplar softwood cuttings, which revealed that 373 miRNA-target pairs were detected. Of these, 72 significantly differentially expressed targets were screened as likely to modulate adventitious root (AR) development, in conjunction with plant hormone signal transduction. Poplar miR167a and its targets PeARF6s and PeARF8s were subjected to functional verification of their ability to mediate plant growth and hormone signal transduction. Overexpression of miR167a inhibited target transcripts and improved lateral root (LR) development in poplar, while overexpressing PeARF8.1mut increased AR numbers and slightly inhibited LR development. Taken together, these results suggest that miR167a-PeARF8.1 modules play crucial roles in regulating AR and LR development in poplar and improve the adaptation of poplar to more complex environments.
Collapse
Affiliation(s)
- Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxia Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Yang H, Klopotek Y, Hajirezaei MR, Zerche S, Franken P, Druege U. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. ANNALS OF BOTANY 2019; 124:1053-1066. [PMID: 31181150 PMCID: PMC6881223 DOI: 10.1093/aob/mcz095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Adventitious root (AR) formation in Petunia hybrida is inhibited by low nitrogen fertilization of stock plants but promoted by dark incubation of cuttings before planting. We investigated whether the plant hormone auxin is involved in nitrogen- and dark-mediated AR formation. METHODS Concentrations of indole-3-acetic acid (IAA) and RNA accumulation of genes controlling auxin homeostasis and function were monitored in the stem base in response to high versus low nitrogen supply to stock plants and to temporal dark vs. light exposure of cuttings by use of GC-MS/MS, a petunia-specific microarray and quantitative RT-PCR. Auxin source capacity, polar auxin transport in cuttings and auxin concentration in the rooting zone were manipulated to investigate the functional contribution of auxin homeostasis and response to the effects of nitrogen fertilization and dark exposure on rooting. KEY RESULTS The nitrogen content of cuttings had only a marginal effect on IAA concentration in the stem base. Dark incubation enhanced the accumulation of IAA in the stem base during AR induction independent of nitrogen level. Early IAA accumulation in the dark depended on the upper shoot as an auxin source and was enhanced after apical IAA supply. Dark exposure stimulated RNA accumulation of auxin-related genes. In particular, expression of Ph-PIN1 and of genes controlling auxin signalling, including Ph-IAA14, Ph-ARF8, Ph-ARF10 and Ph-SAUR14, was enhanced, while the latter four were repressed in nitrogen-limited cuttings, particularly in the dark. Dark stimulation of rooting depended on polar auxin transport. Basal auxin application partially substituted the effect of dark exposure on rooting, whereas the auxin response of AR formation was strongly depressed by nitrogen limitation. CONCLUSIONS Increased auxin delivery from the upper shoot and enhanced auxin signalling in the stem base contribute to dark-stimulated AR formation, while nitrogen limitation inhibits AR formation downstream of the auxin signal.
Collapse
Affiliation(s)
- Huaiyu Yang
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | | | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Erfurt, Germany
| |
Collapse
|
17
|
Physiological and Transcriptomic Changes during the Early Phases of Adventitious Root Formation in Mulberry Stem Hardwood Cuttings. Int J Mol Sci 2019; 20:ijms20153707. [PMID: 31362363 PMCID: PMC6696018 DOI: 10.3390/ijms20153707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
The initiation and induction of root primordia are of great importance for adventitious root (AR) formation in cutting propagation of horticultural and forestry crops. However, the underlying mechanisms orchestrating these early phases of AR formation remain largely unexplored. Here, we investigated the physiological and transcriptomic changes during the early AR phases in mulberry stem hardwood cuttings. The results showed that the concentrations of soluble proteins increased, whereas concentrations of soluble sugars and starch were decreased. Indole-3-acetic acid (IAA) and zeatin had a rapid transit peak at 6 h after planting (hAP) and declined thereafter. The activities of peroxidase and catalase persistently increased and indole-3-acetic acid oxidase was maintained at a higher stable level from 0 hAP, while the activities of polyphenol oxidase fluctuated with soluble phenolics and IAA levels. The comparative transcriptome identified 4276 common genes that were differentially regulated at −6, 0 and 54 hAP. They were separated into five clusters with distinct biological functions such as defense response and photosynthesis. Considerable common genes were assigned to pathways of sugar metabolism, mitogen-activated protein kinase, and circadian rhythm. The gene co-expression network analysis revealed three major co-expressed modules involved in stress responses, hormone signaling, energy metabolism, starch metabolism, and circadian rhythm. These findings demonstrate the positive effect of auxin on AR induction, and uncovered the crucial roles of stress responses, hormone signaling and circadian rhythm in coordinating the physiological changes during the early phases of AR formation in mulberry stem hardwood cuttings.
Collapse
|
18
|
Gonin M, Bergougnoux V, Nguyen TD, Gantet P, Champion A. What Makes Adventitious Roots? PLANTS (BASEL, SWITZERLAND) 2019; 8:E240. [PMID: 31336687 PMCID: PMC6681363 DOI: 10.3390/plants8070240] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Collapse
Affiliation(s)
- Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Thu D Nguyen
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, 34,394 Montpellier, France
| |
Collapse
|
19
|
Lakehal A, Bellini C. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. PHYSIOLOGIA PLANTARUM 2019; 165:90-100. [PMID: 30159890 DOI: 10.1111/ppl.12823] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated root systems that help them to cope with harsh environmental conditions. They are typically composed of a primary root and lateral roots (LRs), but may also include adventitious roots (ARs). Unlike LRs, ARs may be initiated not only from pericycle cells, but from various cell types and tissues depending on the species. Phytohormones, together with many other internal and external stimuli, coordinate and guide every step of AR formation from the first event of cell reprogramming until emergence and outgrowth. In this review, we summarize recent advances in the molecular mechanisms controlling AR formation and highlight the main hormonal cross talk involved in its regulation under different conditions and in different model systems.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
- Institut National de la Research Agronomic, UMR1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, University of Paris-Sud, F-78000 Versailles, France
| |
Collapse
|
20
|
Díaz-Sala C. Molecular Dissection of the Regenerative Capacity of Forest Tree Species: Special Focus on Conifers. FRONTIERS IN PLANT SCIENCE 2018; 9:1943. [PMID: 30687348 PMCID: PMC6333695 DOI: 10.3389/fpls.2018.01943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/13/2018] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) and organogenesis have become leading biotechnologies for forest tree improvement and the implementation of multi-varietal forestry. Despite major advances in clonal propagation using these technologies, many forest tree species, such as conifers, show a low regeneration capacity. Developmental factors such as genotype, the type and age of the explant or tissue, and the age and maturity of the mother tree are limiting factors for the success of propagation programs. This review summarizes recent research on the molecular pathways involved in the regulation of key steps in SE and organogenesis of forest tree species, mainly conifers. The interaction between auxin and stress conditions, the induction of cell identity regulators and the role of cell wall remodeling are reviewed. This information is essential to develop tools and strategies to improve clonal propagation programs for forest tree species.
Collapse
|