1
|
Peruzzo A, Petrin S, Boscolo Anzoletti A, Mancin M, Di Cesare A, Sabatino R, Lavagnolo MC, Beggio G, Baggio G, Danesi P, Barco L, Losasso C. The integration of omics and cultivation-dependent methods could effectively determine the biological risks associated with the utilization of soil conditioners in agriculture. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135567. [PMID: 39182301 DOI: 10.1016/j.jhazmat.2024.135567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
In the circular economy, reusing agricultural residues, treated biowaste, and sewage sludges-commonly referred to as soil conditioners-in agriculture is essential for converting waste into valuable resources. However, these materials can also contribute to the spread of antimicrobial-resistant pathogens in treated soils. In this study, we analyzed different soil conditioners categorized into five groups: compost from source-separated biowaste and green waste, agro-industrial digestate, digestate from anaerobic digestion of source-separated biowaste, compost from biowaste digestate, and sludges from wastewater treatment plants. Under Italian law, only the first two categories are approved for agricultural use, despite Regulation 1009/2019/EU allowing the use of digestate from anaerobic digestion of source-separated biowaste in CE-marked fertilizers. We examined the bacterial community and associated resistome of each sample using metagenomic approaches. Additionally, we detected and isolated various pathogens to provide a comprehensive understanding of the potential risks associated with sludge application in agriculture. The compost samples exhibited higher bacterial diversity and a greater abundance of potentially pathogenic bacteria compared to other samples, except for wastewater treatment plant sludges, which had the highest frequency of Salmonella isolation and resistome diversity. Our findings suggest integrating omics and cultivation-dependent methods to accurately assess the biological risks of using sludge in agriculture.
Collapse
Affiliation(s)
- Arianna Peruzzo
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy; PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Departiment of Public Health, Experimental and Forensice Medicine, University of Pavia, Pavia 27100, Italy
| | - Sara Petrin
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Aurora Boscolo Anzoletti
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Marzia Mancin
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Andrea Di Cesare
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Raffaella Sabatino
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Maria Cristina Lavagnolo
- Department of Civil Environmental and Architectural Engineering, University of Padova, Lungargine Rovetta 8, 35100 Padova, Italy
| | - Giovanni Beggio
- Department of Civil Environmental and Architectural Engineering, University of Padova, Lungargine Rovetta 8, 35100 Padova, Italy
| | - Giulia Baggio
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Patrizia Danesi
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Lisa Barco
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Italy.
| |
Collapse
|
2
|
Zang ZL, Wang YX, Battini N, Gao WW, Zhou CH. Synthesis and antibacterial medicinal evaluation of carbothioamido hydrazonyl thiazolylquinolone with multitargeting antimicrobial potential to combat increasingly global resistance. Eur J Med Chem 2024; 275:116626. [PMID: 38944934 DOI: 10.1016/j.ejmech.2024.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
4
|
Gonabadi NSA, Menbari S, Farsiani H, Sedaghat H, Motallebi M. Antimicrobial susceptibility and virulence gene analysis of Shigella species causing dysentery in Iranian children: Implications for fluroquinolone resistance. Heliyon 2024; 10:e34384. [PMID: 39130411 PMCID: PMC11315073 DOI: 10.1016/j.heliyon.2024.e34384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Shigella species significantly impact global health due to their role in diarrheal diseases. A 2019-2022 cross-sectional study on 432 stool samples from pediatric patients in Mashhad, Iran, identified Shigella spp. and tested their susceptibility to 12 antimicrobials by the disk diffusion method. The presence of virulence factors, namely ipaH, virA, stx1, and stx2, as well as plasmid-mediated quinolone resistance (PMQR) genes, including qnrA, qnrB, qnrC, qnrD, and qnrS, were ascertained through the utilization of polymerase chain reaction techniques. Sequencing of 15 isolates detected mutations within quinolone resistance-determining regions (QRDRs) at the gyrA and parC genes, indicating fluoroquinolone (FQ) resistance. 19.2 % (83/432) of stool samples contained Shigella, primarily S. sonnei (77.1 %), followed by S. flexneri (21.6 %) and S. boydii (1.2 %). Most isolates were from children under five (55.4 %). All strains had the ipaH gene, lacked stx1 and stx2, and 86.7 % had virA. High resistance was noted for ampicillin and tetracycline (84.3 % each), trimethoprim-sulfamethoxazole (81.9 %), and azithromycin (60.2 %). 87.1 % of isolates were multidrug-resistant (MDR). The most common PMQR genes were qnrA and qnrS (41 % each). The qnrD gene, prevalent in 36.1 % of cases, is reported in Iran for the first time. The most common PMQR profile was qnrADS (15.7 %). Resistance to nalidixic acid and ciprofloxacin was 45.8 % and 12 %, respectively. The Shigella isolates exhibited mutations in the gyrA (at codons 83, 87, and 211) and parC (at codons 80, 84, 93, 126, 128, 129, and 132) genes. The D87Y mutation in the gyrA gene was the most common in Shigella isolates, occurring in 73 % of cases. The F93S and L132T mutations in the parC gene were unique to this study. Empirical FQ therapy in patients infected with MDR Shigella, possessing PMQR determinants and/or mutations in the QRDRs of gyrA and parC, may escalate the risks of secondary diseases, extended treatment duration, therapeutic failure, and resistance spread. Consequently, the necessity for continuous surveillance and genetic testing to detect FQ-resistant Shigella strains is of paramount importance.
Collapse
Affiliation(s)
- Nafise Sadat Alavi Gonabadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hadi Farsiani
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hosein Sedaghat
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
da Rosa EEB, Kremer FS. The mobilome landscape of biocide-resistance in Brazilian ESKAPE isolates. Braz J Microbiol 2024:10.1007/s42770-024-01450-7. [PMID: 39028534 DOI: 10.1007/s42770-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
The increasing frequency of antibiotic-resistant bacteria is a constant threat to global human health. Therefore, the pathogens of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp.) are among the most relevant causes of hospital infections responsible for millions of deaths every year. However, little has been explored about the danger of microorganisms resistant to biocides such as antiseptics and disinfectants. Widely used in domestic, industrial, and hospital environments, these substances reach the environment and can cause selective pressure for resistance genes and induce cross-resistance to antibiotics, further aggravating the problem. Therefore, it is necessary to use innovative and efficient strategies to monitor the spread of genes related to resistance to biocides. Whole genome sequencing and bioinformatics analysis aiming to search for sequences encoding resistance mechanisms are essential to help monitor and combat these pathogens. Thus, this work describes the construction of a bioinformatics tool that integrates different databases to identify gene sequences that may confer some resistance advantage about biocides. Furthermore, the tool analyzed all the genomes of Brazilian ESKAPE isolates deposited at NCBI and found a series of different genes related to resistance to benzalkonium chloride, chlorhexidine, and triclosan, which were the focus of this work. As a result, the presence of resistance genes was identified in different types of biological samples, environments, and hosts. Regarding mobile genetic elements (MGEs), around 52% of isolates containing genes related to resistance to these compounds had their genes identified in plasmids, and 48.7% in prophages. These data show that resistance to biocides can be a silent, underestimated danger spreading across different environments and, therefore, requires greater attention.
Collapse
Affiliation(s)
- Elias Eduardo Barbosa da Rosa
- Laboratório de Bioinformática (Omixlab), Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rio Grande Do Sul, Brazil
| | - Frederico Schmitt Kremer
- Laboratório de Bioinformática (Omixlab), Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rio Grande Do Sul, Brazil.
| |
Collapse
|
6
|
Sohrabi M, Fathi J, Mohebi S, Hashemizadeh Z, Kholdi S, Hadadi M, Keshavarz K, Darvishvand Z. High prevalence of plasmid-mediated quinolone resistance in escherichia coli strains producing extended-spectrum beta-lactamases isolated from faeces and urine of pregnant women with acute cystitis. Mol Biol Rep 2024; 51:566. [PMID: 38656625 DOI: 10.1007/s11033-024-09491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum β-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soudeh Kholdi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Hadadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kowsar Keshavarz
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Darvishvand
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, Zalpoor H, Nabi-Afjadi M, Malekzadegan Y. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell 2024; 37:139-153. [PMID: 37924488 DOI: 10.1007/s13577-023-00996-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Collapse
Affiliation(s)
- Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
8
|
Beig M, Moradkasani S, Goodarzi F, Sholeh M. Prevalence of Brucella melitensis and Brucella abortus Fluoroquinolones Resistant Isolates: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2024; 24:1-9. [PMID: 37862228 DOI: 10.1089/vbz.2023.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: Brucellosis impact both animals and humans worldwide. However, using antibiotics for brucellosis remains controversial despite decades of research. Relapse can complicate treatment in this area. Since the mid-1980s, microbiologists, and physicians have studied fluoroquinolones' use for treating human brucellosis. The principal advantages of fluoroquinolones are their intracellular antimicrobial activity, low nephrotoxicity, good pharmacokinetics, and the lack of drug-level monitoring. Fluoroquinolones inhibit disease recurrence. In vitro and clinical data were used to study the prevalence of Brucella melitensis and Brucella abortus fluoroquinolone-resistant isolates. Methods: The PubMed, Scopus, Embase, and Web of Science databases were carefully searched until August 6, 2022, for relevant papers. The number of resistant isolates and sample size were used to estimate the proportion of resistant isolates, fitting a model with random effects, and DerSimonian-Laird estimated heterogeneity. Furthermore, meta-regression and subgroup analyses were used to assess the moderators to identify the sources of heterogeneity. Meta-analysis was performed using R software. Results: Forty-seven studies evaluated fluoroquinolone resistance in Brucella spp. Isolates. Fluoroquinolones have shown high in vitro efficacy against Brucella spp. The resistance rates to ofloxacin, sparfloxacin, fleroxacin, pefloxacin, and lomefloxacin were 2%, 1.6%, and 4.6%, respectively. Conclusion: Clinical in vitro tests demonstrated that fluoroquinolones can eradicate Brucella spp. Owing to first-line medication resistance, recurrence, and toxicity, it is essential to standardize the Brucella antimicrobial susceptibility test method for a more precise screening of resistance status. Fluoroquinolones are less resistant to fluoroquinolone-based treatments in modern clinical practice as alternatives to standard therapy for patients with brucellosis relapse after treatment with another regimen and in patients who have developed toxicity from older agents.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Menck-Costa MF, Baptista AAS, Sanches MS, dos Santos BQ, Cicero CE, Kitagawa HY, Justino L, Medeiros LP, de Souza M, Rocha SPD, Nakazato G, Kobayashi RKT. Resistance and Virulence Surveillance in Escherichia coli Isolated from Commercial Meat Samples: A One Health Approach. Microorganisms 2023; 11:2712. [PMID: 38004724 PMCID: PMC10672981 DOI: 10.3390/microorganisms11112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Escherichia coli is a key indicator of food hygiene, and its monitoring in meat samples points to the potential presence of antimicrobial-resistant strains capable of causing infections in humans, encompassing resistance profiles categorized as serious threats by the Centers for Disease Control and Prevention (CDC), such as Extended-Spectrum Beta-Lactamase (ESBL)-a problem with consequences for animal, human, and environmental health. The objective of the present work was to isolate and characterize ESBL-producing E. coli strains from poultry, pork, and beef meat samples, with a characterization of their virulence and antimicrobial resistance profiles. A total of 450 meat samples (150 chicken, 150 beef, and 150 pork) were obtained from supermarkets and subsequently cultured in medium supplemented with cefotaxime. The isolated colonies were characterized biochemically, followed by antibiogram testing using the disk diffusion technique. Further classification involved biofilm formation and the presence of antimicrobial resistance genes (blaCTX-M, AmpC-type, mcr-1, and fosA3), and virulence genes (eaeA, st, bfpA, lt, stx1, stx2, aggR, iss, ompT, hlyF, iutA, iroN, fyuA, cvaC, and hylA). Statistical analysis was performed via the likelihood-ratio test. In total, 168 strains were obtained, with 73% originating from chicken, 22% from pork, and 17% from beef samples. Notably, strains exhibited greater resistance to tetracycline (51%), ciprofloxacin (46%), and fosfomycin (38%), apart from β-lactams. The detection of antimicrobial resistance in food-isolated strains is noteworthy, underscoring the significance of antimicrobial resistance as a global concern. More than 90% of the strains were biofilm producers, and strains carrying many ExPEC genes were more likely to be biofilm formers (OR 2.42), which increases the problem since the microorganisms have a greater chance of environment persistence and genetic exchange. Regarding molecular characterization, bovine samples showed a higher prevalence of blaCTX-M-1 (OR 6.52), while chicken strains were more likely to carry the fosA3 gene (OR 2.43, CI 1.17-5.05) and presented between 6 to 8 ExPEC genes (OR 2.5, CI 1.33-5.01) compared to other meat samples. Concerning diarrheagenic E. coli genes, two strains harbored eae. It is important to highlight these strains, as they exhibited both biofilm-forming capacities and multidrug resistance (MDR), potentially enabling colonization in diverse environments and causing infections. In conclusion, this study underscores the presence of β-lactamase-producing E. coli strains, mainly in poultry samples, compared to beef and pork samples. Furthermore, all meat sample strains exhibited many virulence-associated extraintestinal genes, with some strains harboring diarrheagenic E. coli (DEC) genes.
Collapse
Affiliation(s)
- Maísa Fabiana Menck-Costa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Ana Angelita Sampaio Baptista
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Matheus Silva Sanches
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Beatriz Queiroz dos Santos
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Claudinéia Emidio Cicero
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Hellen Yukari Kitagawa
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Larissa Justino
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Leonardo Pinto Medeiros
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Marielen de Souza
- Department of Preventive Veterinary Medicine, Center for Agricultural Sciences (CCA), State University of Londrina (UEL), Londrina 86057-970, Brazil; (A.A.S.B.); (B.Q.d.S.); (C.E.C.); (L.J.); (M.d.S.)
| | - Sergio Paulo Dejato Rocha
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Gerson Nakazato
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Center for Biological Science (CCB), State University of Londrina (UEL), Londrina 86057-970, Brazil; (M.F.M.-C.); (M.S.S.); (H.Y.K.); (L.P.M.); (S.P.D.R.); (G.N.)
| |
Collapse
|
10
|
Coombs K, Rodriguez-Quijada C, Clevenger JO, Sauer-Budge AF. Current Understanding of Potential Linkages between Biocide Tolerance and Antibiotic Cross-Resistance. Microorganisms 2023; 11:2000. [PMID: 37630560 PMCID: PMC10459251 DOI: 10.3390/microorganisms11082000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobials (e.g., antibiotics and biocides) are invaluable chemicals used to control microbes in numerous contexts. Because of the simultaneous use of antibiotics and biocides, questions have arisen as to whether environments commonly treated with biocides (e.g., hospitals, food processing, wastewater, agriculture, etc.) could act as a reservoir for the development of antibiotic cross-resistance. Theoretically, cross-resistance could occur if the mechanism of bacterial tolerance to biocides also resulted in antibiotic resistance. On the other hand, biocides would likely present a higher evolutionary barrier to the development of resistance given the different modes of action between biocides and antibiotics and the broad-based physicochemical effects associated with most biocides. Published studies have shown that the induction of biocide tolerance in a laboratory can result in cross-resistance to some antibiotics, most commonly hypothesized to be due to efflux pump upregulation. However, testing of environmental isolates for biocide tolerance and antibiotic cross-resistance has yielded conflicting results, potentially due to the lack of standardized testing. In this review, we aim to describe the state of the science on the potential linkage between biocide tolerance and antibiotic cross-resistance. Questions still remain about whether the directed evolution of biocide tolerance and the associated antibiotic cross-resistance in a laboratory are or are not representative of real-world settings. Thus, research should continue to generate informative data to guide policies and preserve these tools' utility and availability.
Collapse
|
11
|
Yekani M, Azargun R, Sharifi S, Nabizadeh E, Nahand JS, Ansari NK, Memar MY, Soki J. Collateral sensitivity: An evolutionary trade-off between antibiotic resistance mechanisms, attractive for dealing with drug-resistance crisis. Health Sci Rep 2023; 6:e1418. [PMID: 37448730 PMCID: PMC10336338 DOI: 10.1002/hsr2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background The discovery and development of antimicrobial drugs were one of the most significant advances in medicine, but the evolution of microbial resistance limited the efficiency of these drugs. Aim This paper reviews the collateral sensitivity in bacteria and its potential and limitation as a new target for treating infections. Results and Discussion Knowledge mechanisms of resistance to antimicrobial agents are useful to trace a practical approach to treat and control of resistant pathogens. The effect of a resistance mechanism to certain antibiotics on the susceptibility or resistance to other drugs is a key point that may be helpful for applying a strategy to control resistance challenges. In an evolutionary trade-off known as collateral sensitivity, the resistance mechanism to a certain drug may be mediated by the hypersensitivity to other drugs. Collateral sensitivity has been described for different drugs in various bacteria, but the molecular mechanisms affecting susceptibility are not well demonstrated. Collateral sensitivity could be studied to detect its potential in the battle against resistance crisis as well as in the treatment of pathogens adapting to antibiotics. Collateral sensitivity-based antimicrobial therapy may have the potential to limit the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of MedicineKashan University of Medical SciencesKashanIran
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeKashan University of Medical SciencesKashanIran
| | - Robab Azargun
- Department of Microbiology, Faculty of MedicineMaragheh University of Medical ScienceMaraghehIran
| | - Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Navideh Karimi Ansari
- Department of Microbiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Jozsef' Soki
- Institute of Medical Microbiology, Albert Szent‐Györgyi Faculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
12
|
Rissardo JP, Caprara ALF. Fluoroquinolone-Associated Movement Disorder: A Literature Review. MEDICINES (BASEL, SWITZERLAND) 2023; 10:33. [PMID: 37367728 DOI: 10.3390/medicines10060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Fluoroquinolones (FQNs) are related to several central nervous system side effects. This review aims to evaluate the clinical-epidemiological profile, pathophysiological mechanisms, and management of FQNs-associated movement disorders (MDs). METHODS Two reviewers identified and assessed relevant reports in six databases without language restriction between 1988 and 2022. RESULTS A total of 45 reports containing 51 cases who developed MDs secondary to FQNs were reported. The MDs included 25 myoclonus, 13 dyskinesias, 7 dystonias, 2 cerebellar syndromes, 1 ataxia, 1 tic, and 2 undefined cases. The FQNs reported were ciprofloxacin, ofloxacin, gatifloxacin, moxifloxacin, levofloxacin, gemifloxacin, and pefloxacin. The mean and median age were 64.54 (SD: 15.45) and 67 years (range: 25-87 years). The predominant sex was male (54.16%). The mean and median time of MD onset were 6.02 (SD: 10.87) and 3 days (range: 1-68 days). The mean and median recovery time after MD treatment was 5.71 (SD: 9.01) and 3 days (range: 1-56 days). A complete recovery was achieved within one week of drug withdrawal in 80.95% of the patients. Overall, 95.83% of the individuals fully recovered after management. CONCLUSIONS Future cases need to describe the long-term follow-up of the individuals. Additionally, FQN-induced myoclonus should include electrodiagnostic studies.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | |
Collapse
|
13
|
Benlabidi S, Raddaoui A, Lengliz S, Cheriet S, Hynds P, Achour W, Ghrairi T, Abbassi MS. Occurrence of High-Risk Clonal Lineages ST58, ST69, ST224, and ST410 among Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Healthy Free-Range Chickens ( Gallus gallus domesticus) in a Rural Region in Tunisia. Genes (Basel) 2023; 14:genes14040875. [PMID: 37107633 PMCID: PMC10138121 DOI: 10.3390/genes14040875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial-resistant Escherichia coli isolates have emerged in various ecologic compartments and evolved to spread globally. We sought to (1.) investigate the occurrence of ESBL-producing E. coli (ESBL-Ec) in feces from free-range chickens in a rural region and (2.) characterize the genetic background of antimicrobial resistance and the genetic relatedness of collected isolates. Ninety-five feces swabs from free-range chickens associated with two households (House 1/House 2) in a rural region in northern Tunisia were collected. Samples were screened to recover ESBL-Ec, and collected isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, and molecular typing (pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)). Overall, 47 ESBL-Ec were identified, with the following genes detected: 35 blaCTX-M-1, 5 blaCTX-M-55, 5 blaCTX-M-15, 1 blaSHV-2, and 1 blaSHV-12. Resistance to fluoroquinolones, tetracycline, sulfonamides, and colistin was encoded by aac(6')-Ib-cr (n = 21), qnrB (n = 1), and qnrS (n = 2); tetA (n = 17)/tetB (n = 26); sul1 (n = 29)/sul2 (n = 18); and mcr-2 (n = 2) genes, respectively. PFGE and MLST identified genetic homogeneity of isolates in House 1; however, isolates from House 2 were heterogeneous. Notably, among nine identified sequence types, ST58, ST69, ST224, and ST410 belong to pandemic high-risk clonal lineages associated with extrapathogenic E. coli. Minor clones belonging to ST410 and ST471 were shared by chickens from both households. The virulence genes fyuA, fimH, papGIII, and iutA were detected in 35, 47, 17, and 23 isolates, respectively. Findings indicate a high occurrence of ESBL-Ec in free-range chickens and highlight the occurrence of pandemic zoonotic clones.
Collapse
Affiliation(s)
- Saloua Benlabidi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 1068, Tunisia
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
- Research Laboratory 'Antimicrobial Resistance' LR18ES39, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
14
|
Prendergast DM, Slowey R, Burgess CM, Murphy D, Johnston D, Morris D, O’ Doherty Á, Moriarty J, Gutierrez M. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol 2023; 14:1118264. [PMID: 37032887 PMCID: PMC10073600 DOI: 10.3389/fmicb.2023.1118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Background The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. Methods To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. Results A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. Conclusion Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health.
Collapse
Affiliation(s)
- Deirdre M. Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
- *Correspondence: Deirdre M. Prendergast,
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Declan Murphy
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, University of Galway, Galway, Ireland
| | - Áine O’ Doherty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | |
Collapse
|
15
|
Shi Y, Chen L, Hou S, Zhang S, Wang X, Dong P, Gao F, Li H. Strengthened adsorption films of double antibiotic medicines skeletons-based dendrimers on copper surface: Molecular dynamics simulation and intensified anti effects of algae, bacteria and corrosion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Farjami A, Jalilzadeh S, Siahi-Shadbad M, Lotfipour F. The anti-biofilm activity of hydrogen peroxide against Escherichia coli strain FL-Tbz isolated from a pharmaceutical water system. JOURNAL OF WATER AND HEALTH 2022; 20:1497-1505. [PMID: 36308494 DOI: 10.2166/wh.2022.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biofilms are considered a significant reason for the failure of disinfection strategies in industrial water systems due to their resistance to antimicrobial agents. This study is designed to investigate the anti-biofilm activity of hydrogen peroxide (H2O2) at combinations of temperatures and contact times. For this purpose, an in vitro microtiter plate (MTP)-based model system was used for biofilm formation using Escherichia coli (E. coli) strain FL-Tbz isolated from the water system of a pharmaceutical plant. To investigate the anti-biofilm activity of H2O2, it was added at different concentrations (2-7% v/v) to biofilms and incubated at different temperatures (20-60 °C) for 10-40 min to find effective conditions to eradicate biofilms. Maximum biofilms were formed when bacterial suspensions were incubated at 37 °C for 96 h. The rate of biofilm formation using an environmental isolate was higher than that of standard strain. H2O2 at concentrations of ≥6.25% (v/v) at temperatures of ≥40 °C incubated for ≥25 min significantly eradicated the biofilms.
Collapse
Affiliation(s)
- Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail: ; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Jalilzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail: ; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail: ; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
17
|
Sahin S, Mogulkoc MN, Kürekci C. Disinfectant and heavy metal resistance profiles in extended spectrum β-lactamase (ESBL) producing Escherichia coli isolates from chicken meat samples. Int J Food Microbiol 2022; 377:109831. [PMID: 35843029 DOI: 10.1016/j.ijfoodmicro.2022.109831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022]
Abstract
Biocidal compounds are frequently used as disinfectants in poultry industry and their widespread usage has risen concern due to the co-selection and persistence of antimicrobial resistance among bacteria. In this study, extended spectrum β-lactamase producing (ESBL) Escherichia coli isolates (n = 60) obtained from chicken meat were characterized by Pulsed Field Gel Electrophoresis (PFGE) and further tested for disinfectant and heavy metal resistance phenotypically and genotypically. Plasmid replicon types of these isolates were also determined. ESBL producing E. coli isolates were found to be resistant to ciprofloxacin (48.3 %) and gentamicin (15 %). The majority of these isolates (46.5 %) carried blaCTX-M-55 gene. The isolates showed higher minimal inhibitory concentrations to cetylpyridinium chloride (90 %), cetyltrimethylammonium bromide (50 %), hexadecyltrimethylammonium bromide (46.7 %), triclosan (38.3 %), benzalkonium chloride (28.3 %), chlorhexidine (21.7 %), acriflavine (3.3 %), benzethonium chloride (1.7 %) and N-alkyl dimethyl benzyl ammonium chloride (1.7 %), but 18.3 % of the isolates were resistant to triclosan. Of the quaternary ammonium compounds (QACs) tolerance genes, mdfA, sugE(c), ydgE and ydgF were most present in all isolates, but the qacE, qacG, oqxA and oqxB genes were not detected. Of genes mediating the heavy metal resistance, the zitB gene was detected in all isolates, whereas the copA and cueO genes were detected in 96.67 % and 95 % of isolates, respectively. The IncFIB plasmid was commonly present (93.3 %) in ESBL producing E. coli isolates. Consequently, given the detection of genes mediating disinfectant and heavy metal resistance commonly in ESBL producing E. coli isolates as well as high rate of MICs against disinfectant compounds, the use of QACs for decontamination of the facilities may not be as effective as expected in poultry sector in Turkey.
Collapse
Affiliation(s)
- Seyda Sahin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas 58140, Turkey.
| | - Mahmut Niyazi Mogulkoc
- Department of Microbiology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay 31030, Turkey
| |
Collapse
|
18
|
Yue Y, Shen M, Liu X, Hao Q, Kang Y, Che Y, Li F, Chen S, Xu S, Jing H, Li ZJ, Zhou XZ. Whole-genome sequencing-based prediction and analysis of antimicrobial resistance in Yersinia enterocolitica from Ningxia, China. Front Microbiol 2022; 13:936425. [PMID: 35942314 PMCID: PMC9356307 DOI: 10.3389/fmicb.2022.936425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Focusing on resistance trends and transmission patterns of pathogenic microorganisms is a major priority for national surveillance programs. The use of whole-genome sequencing for antimicrobial susceptibility testing (WGS-AST) is a powerful alternative to traditional microbiology laboratory methods. Yersinia enterocolitica antimicrobial resistance (AMR) in the Ningxia Hui Autonomous Region has yet to be described thoroughly in current studies. We assessed and monitored the development of Y. enterocolitica AMR in the Ningxia Hui Autonomous Region during 2007–2019 based on WGS-AST. Resistance genotypes were predicted based on WGS. Antimicrobial resistance testing using classical microbiology determined resistance to 13 antimicrobial agents in 189 Y. enterocolitica isolates from Ningxia. The highest resistance level was 97.88% for cefazolin, followed by ampicillin (AMP) (44.97%), ciprofloxacin (CIP) (25.40%), streptomycin (STR) (11.11%), and tetracycline (TET) (10.58%). Isolates emerged as chloramphenicol (CHL) and trimethoprim/sulfamethoxazole (SXT) resistant. The primary plasmid types were IncFII(Y) and ColRNAI. The TET, STR, and SXT resistance were mediated by the tetA, aph(6)-Id, aph(3″)-Ib, and sul2 genes located on the IncQ1 plasmid. The resistant strains were predominantly biotype 4/O:3/ST429 and the hosts were pigs and patients. The number of multidrug-resistant (MDR) strains was of concern, at 27.51%. At present, the prediction of antimicrobial resistance based on WGS requires a combination of phenotypes. From 2007 to 2019, Y. enterocolitica isolates from the Ningxia Hui Autonomous Region showed a relatively high rate of resistance to cefazolin (CZO) and some resistance to AMP, CIP, STR, and TET. CIP, SXT, and TET showed a relatively clear trend of increasing resistance. Plasmids carrying multiple drug resistance genes are an important mechanism for the spread of antimicrobial resistance. Isolates with low pathogenicity were more likely to present an AMR phenotype than non-pathogenic isolates.
Collapse
Affiliation(s)
- Yuan Yue
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Ningxia Hui Autonomous Region Food Testing and Research Institute, Yinchuan, China
| | - Mei Shen
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Xiang Liu
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Qiong Hao
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Che
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shenglin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen-jun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Zhen-jun Li,
| | - Xue-zhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China
- Xue-zhang Zhou,
| |
Collapse
|
19
|
Martin JF, Alvarez-Alvarez R, Liras P. Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms. Int J Mol Sci 2022; 23:5662. [PMID: 35628478 PMCID: PMC9146315 DOI: 10.3390/ijms23105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human society faces a serious problem due to the widespread resistance to antibiotics in clinical practice. Most antibiotic biosynthesis gene clusters in actinobacteria contain genes for intrinsic self-resistance to the produced antibiotics, and it has been proposed that the antibiotic resistance genes in pathogenic bacteria originated in antibiotic-producing microorganisms. The model actinobacteria Streptomyces clavuligerus produces the β-lactam antibiotic cephamycin C, a class A β-lactamase, and the β lactamases inhibitor clavulanic acid, all of which are encoded in a gene supercluster; in addition, it synthesizes the β-lactamase inhibitory protein BLIP. The secreted clavulanic acid has a synergistic effect with the cephamycin produced by the same strain in the fight against competing microorganisms in its natural habitat. High levels of resistance to cephamycin/cephalosporin in actinobacteria are due to the presence (in their β-lactam clusters) of genes encoding PBPs which bind penicillins but not cephalosporins. We have revised the previously reported cephamycin C and clavulanic acid gene clusters and, in addition, we have searched for novel β-lactam gene clusters in protein databases. Notably, in S. clavuligerus and Nocardia lactamdurans, the β-lactamases are retained in the cell wall and do not affect the intracellular formation of isopenicillin N/penicillin N. The activity of the β-lactamase in S. clavuligerus may be modulated by the β-lactamase inhibitory protein BLIP at the cell-wall level. Analysis of the β-lactam cluster in actinobacteria suggests that these clusters have been moved by horizontal gene transfer between different actinobacteria and have culminated in S. clavuligerus with the organization of an elaborated set of genes designed for fine tuning of antibiotic resistance and cell wall remodeling for the survival of this Streptomyces species. This article is focused specifically on the enigmatic connection between β-lactam biosynthesis and β-lactam resistance mechanisms in the producer actinobacteria.
Collapse
Affiliation(s)
| | | | - Paloma Liras
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain; (J.F.M.); (R.A.-A.)
| |
Collapse
|
20
|
Eyvazi S, Baradaran B, Mokhtarzadeh A, Guardia MDL. Recent advances on development of portable biosensors for monitoring of biological contaminants in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Azargun R, Sadeghi V, Leylabadlo HE, Alizadeh N, Ghotaslou R. Molecular mechanisms of fluoroquinolone resistance in Enterobacteriaceae clinical isolates in Azerbaijan, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|