1
|
Godwe C, Goni OH, San JE, Sonela N, Tchakoute M, Nanfack A, Koro FK, Butel C, Vidal N, Duerr R, Martin DP, de Oliveira T, Peeters M, Altfeld M, Ayouba A, Ndung’u T, Tongo M. Phylogenetic evidence of extensive spatial mixing of diverse HIV-1 group M lineages within Cameroon but not between its neighbours. Virus Evol 2024; 10:veae070. [PMID: 39386075 PMCID: PMC11463025 DOI: 10.1093/ve/veae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
From the perspective of developing relevant interventions for treating HIV and controlling its spread, it is particularly important to comprehensively understand the underlying diversity of the virus, especially in countries where the virus has been present and evolving since the cross-species transmission event that triggered the global pandemic. Here, we generate and phylogenetically analyse sequences derived from the gag-protease (2010 bp; n = 115), partial integrase (345 bp; n = 36), and nef (719 bp; n = 321) genes of HIV-1 group M (HIV-1M) isolates sampled between 2000 and 2022 from two cosmopolitan cities and 40 remote villages of Cameroon. While 52.4% of all sequenced viruses belonged to circulating recombinant form (CRF) 02_AG (CRF02_AG), the remainder were highly diverse, collectively representing seven subtypes and sub-subtypes, eight CRFs, and 36 highly divergent lineages that fall outside the established HIV-1M classification. Additionally, in 77 samples for which at least two genes were typed, 31% of the studied viruses apparently had fragments from viruses belonging to different clades. Furthermore, we found that the distribution of HIV-1M populations is similar between different regions of Cameroon. In contrast, HIV-1M demographics in Cameroon differ significantly from those in its neighbouring countries in the Congo Basin (CB). In phylogenetic trees, viral sequences cluster according to the countries where they were sampled, suggesting that while there are minimal geographical or social barriers to viral dissemination throughout Cameroon, there is strongly impeded dispersal of HIV-1M lineages between Cameroon and other locations of the CB. This suggests that the apparent stability of highly diverse Cameroonian HIV-1M populations may be attributable to the extensive mixing of human populations within the country and the concomitant trans-national movements of major lineages with very similar degrees of fitness; coupled with the relatively infrequent inter-national transmission of these lineages from neighbouring countries in the CB.
Collapse
Affiliation(s)
- Célestin Godwe
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, PO Box. 906 Yaoundé, Cameroon
- Department of Biochemistry, University of Douala, Douala, PO Box. 24157 Douala, Cameroon
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, PO Box. 906 Yaoundé, Cameroon
- Department of Microbiology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, PO Box. 812 Yaoundé, Cameroon
| | - James E San
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, United States
| | - Nelson Sonela
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, PO Box. 906 Yaoundé, Cameroon
- Chantal BIYA International Reference Centre for Research on HIV/AIDS prevention and management (CIRCB), Yaoundé PO Box. 3077 Yaoundé, Cameroon
- Weill Cornell Medical College, Department of Medicine, Cornell University, New York, NY 10021, United States
| | - Mérimé Tchakoute
- Programmes de Santé et développement au sein du Groupement de la Filière Bois du Cameroun, PO Box 495, Yaoundé, Cameroon
| | - Aubin Nanfack
- Chantal BIYA International Reference Centre for Research on HIV/AIDS prevention and management (CIRCB), Yaoundé PO Box. 3077 Yaoundé, Cameroon
| | - Francioli K Koro
- Department of Biochemistry, University of Douala, Douala, PO Box. 24157 Douala, Cameroon
| | - Christelle Butel
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, Montpellier, Montpellier cedex 34394, France
| | - Nicole Vidal
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, Montpellier, Montpellier cedex 34394, France
| | - Ralf Duerr
- Department of Medicine, Division of Infectious Diseases and Immunology, NYU Grossman School of Medicine, New York, NY 10016, United States
- Vaccine Center, NYU Grossman School of Medicine, New York, NY 10016, United States
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, United States
| | - Darren P Martin
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7700, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Martine Peeters
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, Montpellier, Montpellier cedex 34394, France
| | - Marcus Altfeld
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Hamburg 20251, Germany
| | - Ahidjo Ayouba
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, PO Box. 906 Yaoundé, Cameroon
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, Montpellier, Montpellier cedex 34394, France
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban 4013, South Africa
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
- Ragon Institute of MGH, MIT and Harvard University, Cambridge MA 02139, United States
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, PO Box. 906 Yaoundé, Cameroon
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban 4013, South Africa
| |
Collapse
|
2
|
Tongo M, Martin DP, Dorfman JR. Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods. Genes (Basel) 2021; 12:genes12040517. [PMID: 33918115 PMCID: PMC8065694 DOI: 10.3390/genes12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
Collapse
Affiliation(s)
- Marcel Tongo
- Center for Research on Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
- Correspondence:
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Jeffrey R. Dorfman
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| |
Collapse
|
3
|
Rubio-Garrido M, González-Alba JM, Reina G, Ndarabu A, Barquín D, Carlos S, Galán JC, Holguín Á. Current and historic HIV-1 molecular epidemiology in paediatric and adult population from Kinshasa in the Democratic Republic of Congo. Sci Rep 2020; 10:18461. [PMID: 33116151 PMCID: PMC7595211 DOI: 10.1038/s41598-020-74558-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 diversity may impact monitoring and vaccine development. We describe the most recent data of HIV-1 variants and their temporal trends in the Democratic Republic of Congo (DRC) from 1976 to 2018 and in Kinshasa from 1983-2018. HIV-1 pol sequencing from dried blood collected in Kinshasa during 2016-2018 was done in 340 HIV-infected children/adolescents/adults to identify HIV-1 variants by phylogenetic reconstructions. Recombination events and transmission clusters were also analyzed. Variant distribution and genetic diversity were compared to historical available pol sequences from the DRC in Los Alamos Database (LANL). We characterized 165 HIV-1 pol variants circulating in Kinshasa (2016-2018) and compared them with 2641 LANL sequences from the DRC (1976-2012) and Kinshasa (1983-2008). During 2016-2018 the main subtypes were A (26.7%), G (9.7%) and C (7.3%). Recombinants accounted for a third of infections (12.7%/23.6% Circulant/Unique Recombinant Forms). We identified the first CRF47_BF reported in Africa and four transmission clusters. A significant increase of subtype A and sub-subtype F1 and a significant reduction of sub-subtype A1 and subtype D were observed in Kinshasa during 2016-2018 compared to variants circulating in the city from 1983 to 2008. We provide unique and updated information related to HIV-1 variants currently circulating in Kinshasa, reporting the temporal trends of subtypes/CRF/URF during 43 years in the DRC, and providing the most extensive data on children/adolescents.
Collapse
Affiliation(s)
- Marina Rubio-Garrido
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, 28034, Madrid, Spain
| | - José María González-Alba
- Virology Section, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp, 28034, Madrid, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), 31008, Pamplona, Spain.
| | - Adolphe Ndarabu
- Monkole Hospital, Kinshasa, Democratic Republic of the Congo
| | - David Barquín
- Microbiology Department, Clínica Universidad de Navarra, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), 31008, Pamplona, Spain
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Navarra Institute for Health Research (IdiSNA), Institute of Tropical Health, Universidad de Navarra (ISTUN), Pamplona, 31008, Spain
| | - Juan Carlos Galán
- Virology Section, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp, 28034, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Ramón y Cajal-IRYCIS and CIBEREsp-RITIP, 28034, Madrid, Spain.
| |
Collapse
|
4
|
Digban TO, Iweriebor BC, Nwodo UU, Okoh AI, Obi LC. Chemokine Coreceptor Usage Among HIV-1 Drug-Naive Patients Residing in the Rural Eastern Cape, South Africa. AIDS Res Hum Retroviruses 2020; 36:688-696. [PMID: 32466656 DOI: 10.1089/aid.2020.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sub-Saharan region in Africa still holds the highest burden of HIV/AIDS globally. HIV-1 requires coreceptor to gain entry into permissive cells to initiate infection. Molecular analysis of the chemokine coreceptor usage is important clinically and in the effective management of AIDS virus. This study aims to determine the coreceptor usage among HIV-1 drug-naive patients residing in the rural Eastern cape, South Africa. We collected blood samples from 55 HIV-infected patients into an anticoagulant vacutainer. RNA was extracted from separated plasma, and reverse transcription-polymerase chain reaction (RT-PCR) was performed followed by nested polymerase chain reaction to amplify the partial envelope fragment spanning the C2-C3 region. Sanger sequencing was done on the amplicons using the BigDye Terminator V3.1 sequencing kit (Applied Biosystems, Foster City, CA) while sequences were manually edited using BioEdit and Geneious 10.2.6 tools. The WebPSSM and Geno2pheno online tools were also utilized to predict coreceptor tropism while the phylogenetic analysis of the isolates was determined using MEGA 7. Of the 55 blood samples collected for the study, 50 (91%) were successfully amplified and sequenced. The mean age of the patients was 32 (18-56) years while the ratio of men to women was 35% and 65% correspondingly. Phylogenetic analysis revealed that all 50 sequences clustered with HIV-1 subtype C reference strains. Viral tropism of the V3 loop revealed 47 sequences to be R5 strains, while three sequences (T1E, T10E, and T11E,) were classified as X4 strains based on the WebPSSM and the Geno2pheno algorithm. HIV-1 R5 tropic strains were the most dominant virus obtained from this study, while HIV-1 subtype C still drives the epidemic in South Africa suggesting greater in vivo and host pathogen fitness. Documented data on mapping out cellular tropism based on viral tropism are important as maraviroc and the other CCR5 antagonist could be introduced as part of the treatment regimen in South Africa.
Collapse
Affiliation(s)
- Tennison Onoriode Digban
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Benson Chucks Iweriebor
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Larry Chikwelu Obi
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
5
|
A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. Proc Natl Acad Sci U S A 2020; 117:12222-12229. [PMID: 32430331 DOI: 10.1073/pnas.1913682117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With very little direct biological data of HIV-1 from before the 1980s, far-reaching evolutionary and epidemiological inferences regarding the long prediscovery phase of this pandemic are based on extrapolations by phylodynamic models of HIV-1 genomic sequences gathered mostly over recent decades. Here, using a very sensitive multiplex RT-PCR assay, we screened 1,645 formalin-fixed paraffin-embedded tissue specimens collected for pathology diagnostics in Central Africa between 1958 and 1966. We report the near-complete viral genome in one HIV-1 positive specimen from Kinshasa, Democratic Republic of Congo (DRC), from 1966 ("DRC66")-a nonrecombinant sister lineage to subtype C that constitutes the oldest HIV-1 near full-length genome recovered to date. Root-to-tip plots showed the DRC66 sequence is not an outlier as would be expected if dating estimates from more recent genomes were systematically biased; and inclusion of the DRC66 sequence in tip-dated BEAST analyses did not significantly alter root and internal node age estimates based on post-1978 HIV-1 sequences. There was larger variation in divergence time estimates among datasets that were subsamples of the available HIV-1 genomes from 1978 to 2014, showing the inherent phylogenetic stochasticity across subsets of the real HIV-1 diversity. Our phylogenetic analyses date the origin of the pandemic lineage of HIV-1 to a time period around the turn of the 20th century (1881 to 1918). In conclusion, this unique archival HIV-1 sequence provides direct genomic insight into HIV-1 in 1960s DRC, and, as an ancient-DNA calibrator, it validates our understanding of HIV-1 evolutionary history.
Collapse
|
6
|
Kwon EH, Musema GMA, Boelter J, Townsend S, Tshala-Katumbay D, Kayembe PK, West J, Wood C. HIV-1 subtypes and drug resistance mutations among female sex workers varied in different cities and regions of the Democratic Republic of Congo. PLoS One 2020; 15:e0228670. [PMID: 32045455 PMCID: PMC7012409 DOI: 10.1371/journal.pone.0228670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/20/2020] [Indexed: 01/16/2023] Open
Abstract
Background Complex mosaic structures of HIV-1 were found in the Democratic Republic of Congo (DRC). Currently, there is limited information on the circulating HIV-1 strains, the distribution of these strains and antiretroviral (ART) resistant viruses in different regions of the country, and the HIV-1 strains harbored by the high-risk groups like female sex workers (FSW) reported to be the source of recombinant and ART resistant viruses. Methods Dried Blood Spots (DBS), collected from 325 infected FSWs in ten cities from 2012 DRC HIV/STI Integrated Biological and Behavioral Surveillance Survey, were tested for HIV-1 genotypes and antiretroviral resistance mutations. Regional segregation of HIV-1 clades was detected using phylogenetics. The significance for differences in HIV-1 subtype and drug resistance mutations were evaluated using Chi-square tests. Results There were 145 (env) and 93 (pol) sequences analyzed. Based on env sequences, the predominant subtype was A1 (44%), and recombinants as defined pol sequences comprised 35% of the total sample. Paired sequences of pol and env from DRC FSW revealed mosaic recombinant in 54% of the sequences. Distinct geographic distributions of different HIV-1 subtypes and recombinants were observed. Subtype A1 was prevalent (40%) in Goma located in the East and significantly higher than in Mbuji-Mayi (p<0.05) in the South-central region, or in Lubumbashi in the South. Antiretroviral resistance was detected in 21.5% of 93 pol sequences analyzed, with the M184I/V and K103N mutations that confer high-level resistance to NRTI and NNRTI, respectively, being the most frequent mutations. However, the K103N mutant viruses were found only in the East. Conclusion HIV-1 variants found in DRC FSW reflect those reported to circulate in the general population from the corresponding geographical locations. HIV-1 mosaic genetics were readily detected in FSW. Importantly, ART resistance mutations to NNRTI and NRTI were common in the DRC sex workers.
Collapse
Affiliation(s)
- Eun Hee Kwon
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | | | - Jessica Boelter
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Sydney Townsend
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Désiré Tshala-Katumbay
- Department of Neurology, School of Medicine and School of Public Health, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Neurology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Institut National de Recherches Biomédicales, Kinshasa, Democratic Republic of Congo
| | - Patrick K. Kayembe
- School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - John West
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
7
|
Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. PLoS Pathog 2019; 15:e1007976. [PMID: 31809523 PMCID: PMC6897401 DOI: 10.1371/journal.ppat.1007976] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.
Collapse
|
8
|
Wirden M, De Oliveira F, Bouvier-Alias M, Lambert-Niclot S, Chaix ML, Raymond S, Si-Mohammed A, Alloui C, André-Garnier E, Bellecave P, Malve B, Mirand A, Pallier C, Poveda JD, Rabenja T, Schneider V, Signori-Schmuck A, Stefic K, Calvez V, Descamps D, Plantier JC, Marcelin AG, Visseaux B. New HIV-1 circulating recombinant form 94: from phylogenetic detection of a large transmission cluster to prevention in the age of geosocial-networking apps in France, 2013 to 2017. Euro Surveill 2019; 24:1800658. [PMID: 31576801 PMCID: PMC6774227 DOI: 10.2807/1560-7917.es.2019.24.39.1800658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnding the HIV pandemic must involve new tools to rapidly identify and control local outbreaks and prevent the emergence of recombinant strains with epidemiological advantages.AimThis observational study aimed to investigate in France a cluster of HIV-1 cases related to a new circulating recombinant form (CRF). The confirmation this CRF's novelty as well as measures to control its spread are presented.MethodsPhylogenetic analyses of HIV sequences routinely generated for drug resistance genotyping before 2018 in French laboratories were employed to detect the transmission chain. The CRF involved was characterised by almost full-length viral sequencing for six cases. Cases' clinical data were reviewed. Where possible, epidemiological information was collected with a questionnaire.ResultsThe transmission cluster comprised 49 cases, mostly diagnosed in 2016-2017 (n = 37). All were infected with a new CRF, CRF94_cpx. The molecular proximity of this CRF to X4 strains and the high median viraemia, exceeding 5.0 log10 copies/mL, at diagnosis, even in chronic infection, raise concerns of enhanced virulence. Overall, 41 cases were diagnosed in the Ile-de-France region and 45 were men who have sex with men. Among 24 cases with available information, 20 reported finding partners through a geosocial networking app. Prevention activities in the area and population affected were undertaken.ConclusionWe advocate the systematic use of routinely generated HIV molecular data by a dedicated reactive network, to improve and accelerate targeted prevention interventions. Geosocial networking apps can play a role in the spread of outbreaks, but could also deliver local targeted preventive alerts.
Collapse
Affiliation(s)
- Marc Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Fabienne De Oliveira
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie associé au CNR VIH, Rouen, France
| | | | | | - Marie-Laure Chaix
- AP-HP, Hôpital Saint-Louis, Laboratoire de virologie, INSERM U944, Paris, France
| | | | | | - Chakib Alloui
- Laboratoire de virologie, Hôpital Avicenne, Bobigny, France
| | | | | | - Brice Malve
- Laboratoire de virologie CHU de Nancy, Nancy, France
| | - Audrey Mirand
- Laboratoire de virologie CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Coralie Pallier
- Laboratoire de virologie, Hôpital P. Brousse, Villejuif, France
| | | | - Theresa Rabenja
- Laboratoire du Grand Hôpital de l’Est Francilien, Jossigny, France
| | | | | | - Karl Stefic
- Laboratoire de virologie CHU de Tours, Tours, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Diane Descamps
- Laboratoire de virologie, AP-HP, Hopital Bichat Claude Bernard, Univ Paris-Diderot, INSERM, IAME, CNR VIH, Paris, France
| | - Jean-Christophe Plantier
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie associé au CNR VIH, Rouen, France
| | - Anne-Genevieve Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Benoit Visseaux
- Laboratoire de virologie, AP-HP, Hopital Bichat Claude Bernard, Univ Paris-Diderot, INSERM, IAME, CNR VIH, Paris, France
| | | |
Collapse
|
9
|
Banin AN, Tuen M, Bimela JS, Tongo M, Zappile P, Khodadadi-Jamayran A, Nanfack AJ, Meli J, Wang X, Mbanya D, Ngogang J, Heguy A, Nyambi PN, Fokunang C, Duerr R. Development of a Versatile, Near Full Genome Amplification and Sequencing Approach for a Broad Variety of HIV-1 Group M Variants. Viruses 2019; 11:E317. [PMID: 30939815 PMCID: PMC6520859 DOI: 10.3390/v11040317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
Near full genome sequencing (NFGS) of HIV-1 is required to assess the genetic composition of HIV-1 strains comprehensively. Population-wide, it enables a determination of the heterogeneity of HIV-1 and the emergence of novel/recombinant strains, while for each individual it constitutes a diagnostic instrument to assist targeted therapeutic measures against viral components. There is still a lack of robust and adaptable techniques for efficient NFGS from miscellaneous HIV-1 subtypes. Using rational primer design, a broad primer set was developed for the amplification and sequencing of diverse HIV-1 group M variants from plasma. Using pure subtypes as well as diverse, unique recombinant forms (URF), variable amplicon approaches were developed for NFGS comprising all functional genes. Twenty-three different genomes composed of subtypes A (A1), B, F (F2), G, CRF01_AE, CRF02_AG, and CRF22_01A1 were successfully determined. The NFGS approach was robust irrespective of viral loads (≥306 copies/mL) and amplification method. Third-generation sequencing (TGS), single genome amplification (SGA), cloning, and bulk sequencing yielded similar outcomes concerning subtype composition and recombinant breakpoint patterns. The introduction of a simple and versatile near full genome amplification, sequencing, and cloning method enables broad application in phylogenetic studies of diverse HIV-1 subtypes and can contribute to personalized HIV therapy and diagnosis.
Collapse
Affiliation(s)
- Andrew N Banin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Faculty of Medicine and Biomedical Sciences, Department of Biochemistry, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Jude S Bimela
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Faculty of Science, Department of Biochemistry, BP 1364 Yaoundé, Cameroon.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants, BP 906 Yaoundé, Cameroon.
| | - Paul Zappile
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories (ABL) and Genome Technology Center (GTC), Division of Advanced Research Technologies (DART), New York University Langone Medical Center, New York, NY 10016, USA.
| | - Aubin J Nanfack
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Medical Diagnostic Center, BP 15810 Yaoundé, Cameroon.
- Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, BP 3077 Messa Yaoundé, Cameroon.
| | | | - Xiaohong Wang
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, Department of Microbiology, Parasitology and Infectious Diseases, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Jeanne Ngogang
- Faculty of Medicine and Biomedical Sciences, Department of Biochemistry, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Phillipe N Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| | - Charles Fokunang
- Faculty of Medicine and Biomedical Sciences, Department of Pharmacotoxicology & Pharmacokinetics, University of Yaoundé 1, BP 1364 Yaoundé, Cameroon.
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
- Manhattan Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA.
| |
Collapse
|
10
|
Olabode AS, Avino M, Ng GT, Abu-Sardanah F, Dick DW, Poon AFY. Evidence for a recombinant origin of HIV-1 Group M from genomic variation. Virus Evol 2019; 5:vey039. [PMID: 30687518 PMCID: PMC6342232 DOI: 10.1093/ve/vey039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reconstructing the early dynamics of the HIV-1 pandemic can provide crucial insights into the socioeconomic drivers of emerging infectious diseases in human populations, including the roles of urbanization and transportation networks. Current evidence indicates that the global pandemic comprising almost entirely of HIV-1/M originated around the 1920s in central Africa. However, these estimates are based on molecular clock estimates that are assumed to apply uniformly across the virus genome. There is growing evidence that recombination has played a significant role in the early history of the HIV-1 pandemic, such that different regions of the HIV-1 genome have different evolutionary histories. In this study, we have conducted a dated-tip analysis of all near full-length HIV-1/M genome sequences that were published in the GenBank database. We used a sliding window approach similar to the 'bootscanning' method for detecting breakpoints in inter-subtype recombinant sequences. We found evidence of substantial variation in estimated root dates among windows, with an estimated mean time to the most recent common ancestor of 1922. Estimates were significantly autocorrelated, which was more consistent with an early recombination event than with stochastic error variation in phylogenetic reconstruction and dating analyses. A piecewise regression analysis supported the existence of at least one recombination breakpoint in the HIV-1/M genome with interval-specific means around 1929 and 1913, respectively. This analysis demonstrates that a sliding window approach can accommodate early recombination events outside the established nomenclature of HIV-1/M subtypes, although it is difficult to incorporate the earliest available samples due to their limited genome coverage.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Mariano Avino
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Garway T Ng
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - Faisal Abu-Sardanah
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
| | - David W Dick
- Department of Applied Mathematics, Western University, London, Ontario, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.,Department of Applied Mathematics, Western University, London, Ontario, Canada.,Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Villabona‐Arenas CJ, Ayouba A, Esteban A, D'arc M, Mpoudi Ngole E, Peeters M. Noninvasive western lowland gorilla's health monitoring: A decade of simian immunodeficiency virus surveillance in southern Cameroon. Ecol Evol 2018; 8:10698-10710. [PMID: 30519399 PMCID: PMC6262910 DOI: 10.1002/ece3.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Simian immunodeficiency virus (SIVgor) causes persistent infection in critically endangered western lowland gorillas (Gorilla gorilla gorilla) from west central Africa. SIVgor is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively). We established a noninvasive method that does not interfere with gorillas' natural behaviour to provide wildlife pathogen surveillance and health monitoring for conservation. A total of 1,665 geo-referenced fecal samples were collected at regular intervals from February 2006 to December 2014 (123 sampling days) in the Campo-Ma'an National Park (southwest Cameroon). Host genotyping was performed using microsatellite markers, SIVgor infection was identified by serology and genetic amplification was attempted on seropositive individuals. We identified at least 125 distinct gorillas, 50 were resampled (observed 3.5 times in average) and 38 were SIVgor+ (seven individuals were seroconverters). Six groups of gorillas were identified based on the overlapping occurrence of individuals with apparent high rates of gene flow. We obtained SIVgor genetic sequences from 25 of 38 seropositive genotyped gorillas and showed that the virus follows exponential growth dynamics under a strict molecular clock. Different groups shared SIVgor lineages demonstrating intergroup viral spread and recapture of positive individuals illustrated intra-host viral evolution. Relatedness and relationship genetic analysis of gorillas together with Bayesian phylogenetic inference of SIVgor provided evidence suggestive of vertical transmission. In conclusion, we provided insights into gorilla social dynamics and SIVgor evolution and emphasized the utility of noninvasive sampling to study wildlife health populations. These findings contribute to prospective planning for better monitoring and conservation.
Collapse
Affiliation(s)
- Christian Julian Villabona‐Arenas
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Ahidjo Ayouba
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Amandine Esteban
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Mirela D'arc
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Eitel Mpoudi Ngole
- Centre de recherche sur les maladies émergentes et réémergentes (CREMER)Institut de Recherches Médicales et d'Etudes des Plantes Médicinales (IMPM)YaoundéCameroun
| | - Martine Peeters
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| |
Collapse
|