1
|
Srivastava S, Jayaswal N, Kumar S, Rao GSNK, Budha RR, Mohanty A, Mehta R, Apostolopoulos V, Sah S, Bonilla-Aldana DK, Ulloque-Badaracco R, Rodriguez-Morales AJ. Targeting H3N2 influenza: advancements in treatment and vaccine strategies. Expert Rev Anti Infect Ther 2025; 23:5-18. [PMID: 39688174 DOI: 10.1080/14787210.2024.2443920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 12/15/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION The emergence of the H3N2 influenza virus in 1968 marked a significant event as it crossed the species barrier. This shift led to a pandemic, resulting in the deaths of one million people globally and highlighting the virus's severe impact on older individuals due to antigenic drift. AREA COVERED This review comprehensively examines the virological characteristics, evolutionary trends, and global epidemiology of the Influenza A (H3N2) virus. It delves into vaccination strategies, antiviral interventions, and emerging diagnostic approaches. The impact of antigenic variation on vaccine design and effectiveness, seasonal outbreak patterns, and pandemic potential are explored. Additionally, the interplay between viral factors and host immune responses is assessed. Researchers are actively investigating innovative strategies to enhance vaccine efficacy against H3N2 mutations, such as precise antigenic material administration, controlled release patterns, understanding immune system mechanisms, and glycan engineering. EXPERT OPINION The ongoing mutational dynamics of the H3N2 virus necessitate regular vaccine updates, as advocated by the WHO. Research in the Western Pacific region underscores the need for heightened awareness and effective control strategies. Evaluating antiviral therapies and addressing drug resistance requires multidisciplinary approaches involving researchers, healthcare professionals, and policymakers. This comprehensive understanding of H3N2 is vital for improving public health interventions and preparing for future influenza challenges.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University Gorakhpur, Gorakhpur, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Roja Rani Budha
- Department of Pharmacology, H.K. College of Pharmacy, Jogeshwari, Mumbai, India
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC, Australia
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Medicine, Korea Universtiy, Seoul, South Korea
| | | | | | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
2
|
Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, Méndez-Albores A. A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus. BIOSENSORS 2021; 11:66. [PMID: 33670852 PMCID: PMC7997427 DOI: 10.3390/bios11030066] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
The diagnosis of respiratory viruses of zoonotic origin (RVsZO) such as influenza and coronaviruses in humans is crucial, because their spread and pandemic threat are the highest. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with promising impact for the point-of-care diagnosis of viruses. It has been applied to a variety of influenza A virus subtypes, such as the H1N1 and the novel coronavirus SARS-CoV-2. In this work, a review of the strategies used for the detection of RVsZO by SERS is presented. In addition, relevant information about the SERS technique, anthropozoonosis, and RVsZO is provided for a better understanding of the theme. The direct identification is based on trapping the viruses within the interstices of plasmonic nanoparticles and recording the SERS signal from gene fragments or membrane proteins. Quantitative mono- and multiplexed assays have been achieved following an indirect format through a SERS-based sandwich immunoassay. Based on this review, the development of multiplex assays that incorporate the detection of RVsZO together with their specific biomarkers and/or secondary disease biomarkers resulting from the infection progress would be desirable. These configurations could be used as a double confirmation or to evaluate the health condition of the patient.
Collapse
Affiliation(s)
- Fernanda Saviñon-Flores
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Mónica López-Castaños
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Karen A. López-Castaños
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Miguel A. González-Fuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Alia Méndez-Albores
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| |
Collapse
|
3
|
Plant EP, Manukyan H, Laassri M, Ye Z. Insights from the comparison of genomic variants from two influenza B viruses grown in the presence of human antibodies in cell culture. PLoS One 2020; 15:e0239015. [PMID: 32925936 PMCID: PMC7489522 DOI: 10.1371/journal.pone.0239015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the extent and limitation of viral genome evolution can provide insight about potential drug and vaccine targets. Influenza B Viruses (IBVs) infect humans in a seasonal manner and causes significant morbidity and mortality. IBVs are negative-sense single-stranded RNA viruses with a segmented genome and can be divided into two antigenically distinct lineages. The two lineages have been circulating and further evolving for almost four decades. The immune response to IBV infection can lead to antibodies that target the strain causing the infection. Some antibodies are cross-reactive and are able to bind strains from both lineages but, because of antigenic drift and immunodominance, both lineages continue to evolve and challenge human health. Here we investigate changes in the genomes of an IBVs from each lineage after passage in tissue culture in the presence of human sera containing polyclonal antibodies directed toward antigenically and temporally distinct viruses. Our previous analysis of the fourth segment, which encodes the major surface protein HA, revealed a pattern of change in which signature sequences from one lineage mutated to the signature sequences of the other lineage. Here we analyze genes from the other genomic segments and observe that most of the quasispecies’ heterogeneity occurs at the same loci in each lineage. The nature of the variants at these loci are investigated and possible reasons for this pattern are discussed. This work expands our understanding of the extent and limitations of genomic change in IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Hasmik Manukyan
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Majid Laassri
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
4
|
Rasmussen DA, Stadler T. Coupling adaptive molecular evolution to phylodynamics using fitness-dependent birth-death models. eLife 2019; 8:45562. [PMID: 31411558 PMCID: PMC6715349 DOI: 10.7554/elife.45562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
Beneficial and deleterious mutations cause the fitness of lineages to vary across a phylogeny and thereby shape its branching structure. While standard phylogenetic models do not allow mutations to feedback and shape trees, birth-death models can account for this feedback by letting the fitness of lineages depend on their type. To date, these multi-type birth-death models have only been applied to cases where a lineage’s fitness is determined by a single character state. We extend these models to track sequence evolution at multiple sites. This approach remains computationally tractable by tracking the genotype and fitness of lineages probabilistically in an approximate manner. Although approximate, we show that we can accurately estimate the fitness of lineages and site-specific mutational fitness effects from phylogenies. We apply this approach to estimate the population-level fitness effects of mutations in Ebola and influenza virus, and compare our estimates with in vitro fitness measurements for these mutations.
Collapse
Affiliation(s)
- David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, United States
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
5
|
Otieno JR, Kamau EM, Oketch JW, Ngoi JM, Gichuki AM, Binter Š, Otieno GP, Ngama M, Agoti CN, Cane PA, Kellam P, Cotten M, Lemey P, Nokes DJ. Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains. Virus Evol 2018; 4:vey027. [PMID: 30271623 PMCID: PMC6153471 DOI: 10.1093/ve/vey027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The respiratory syncytial virus (RSV) group A variant with the 72-nucleotide duplication in the G gene, genotype ON1, was first detected in Kilifi in 2012 and has almost completely replaced circulating genotype GA2 strains. This replacement suggests some fitness advantage of ON1 over the GA2 viruses in Kilifi, and might be accompanied by important genomic substitutions in ON1 viruses. Close observation of such a new virus genotype introduction over time provides an opportunity to better understand the transmission and evolutionary dynamics of the pathogen. We have generated and analysed 184 RSV-A whole-genome sequences (WGSs) from Kilifi (Kenya) collected between 2011 and 2016, the first ON1 genomes from Africa and the largest collection globally from a single location. Phylogenetic analysis indicates that RSV-A circulation in this coastal Kenya location is characterized by multiple introductions of viral lineages from diverse origins but with varied success in local transmission. We identified signature amino acid substitutions between ON1 and GA2 viruses’ surface proteins (G and F), polymerase (L), and matrix M2-1 proteins, some of which were positively selected, and thereby provide an enhanced picture of RSV-A diversity. Furthermore, five of the eleven RSV open reading frames (ORFs) (G, F, L, N, and P) formed distinct phylogenetic clusters for the two genotypes. This might suggest that coding regions outside of the most frequently studied G ORF also play a role in the adaptation of RSV to host populations, with the alternative possibility that some of the substitutions are neutral and provide no selective advantage. Our analysis provides insight into the epidemiological processes that define RSV spread, highlights the genetic substitutions that characterize emerging strains, and demonstrates the utility of large-scale WGS in molecular epidemiological studies.
Collapse
Affiliation(s)
- J R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - E M Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J W Oketch
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J M Ngoi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - A M Gichuki
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Š Binter
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - G P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - M Ngama
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - C N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,Department of Biomedical Sciences, Pwani University, Kilifi, Kenya
| | - P A Cane
- High Containment Microbiology, Public Health England, Salisbury, UK
| | - P Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - M Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Lemey
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - D J Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, UK
| |
Collapse
|
6
|
Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc Natl Acad Sci U S A 2018; 115:E8276-E8285. [PMID: 30104379 PMCID: PMC6126756 DOI: 10.1073/pnas.1806133115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A key goal in the study of influenza virus evolution is to forecast which viral strains will persist and which ones will die out. Here we experimentally measure the effects of all amino acid mutations to the hemagglutinin protein from a human H3N2 influenza strain on viral growth in cell culture. We show that these measurements have utility for distinguishing among viral strains that do and do not succeed in nature. Overall, our work suggests that new high-throughput experimental approaches may be useful for understanding virus evolution in nature. Human influenza virus rapidly accumulates mutations in its major surface protein hemagglutinin (HA). The evolutionary success of influenza virus lineages depends on how these mutations affect HA’s functionality and antigenicity. Here we experimentally measure the effects on viral growth in cell culture of all single amino acid mutations to the HA from a recent human H3N2 influenza virus strain. We show that mutations that are measured to be more favorable for viral growth are enriched in evolutionarily successful H3N2 viral lineages relative to mutations that are measured to be less favorable for viral growth. Therefore, despite the well-known caveats about cell-culture measurements of viral fitness, such measurements can still be informative for understanding evolution in nature. We also compare our measurements for H3 HA to similar data previously generated for a distantly related H1 HA and find substantial differences in which amino acids are preferred at many sites. For instance, the H3 HA has less disparity in mutational tolerance between the head and stalk domains than the H1 HA. Overall, our work suggests that experimental measurements of mutational effects can be leveraged to help understand the evolutionary fates of viral lineages in nature—but only when the measurements are made on a viral strain similar to the ones being studied in nature.
Collapse
|
7
|
Lyons DM, Lauring AS. Mutation and Epistasis in Influenza Virus Evolution. Viruses 2018; 10:E407. [PMID: 30081492 PMCID: PMC6115771 DOI: 10.3390/v10080407] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza remains a persistent public health challenge, because the rapid evolution of influenza viruses has led to marginal vaccine efficacy, antiviral resistance, and the annual emergence of novel strains. This evolvability is driven, in part, by the virus's capacity to generate diversity through mutation and reassortment. Because many new traits require multiple mutations and mutations are frequently combined by reassortment, epistatic interactions between mutations play an important role in influenza virus evolution. While mutation and epistasis are fundamental to the adaptability of influenza viruses, they also constrain the evolutionary process in important ways. Here, we review recent work on mutational effects and epistasis in influenza viruses.
Collapse
Affiliation(s)
- Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam S Lauring
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|