1
|
Tada S, Tsuihiji T, Matsumoto R, Hanai T, Iwami Y, Tomita N, Sato H, Tsogtbaatar K. Evolutionary process toward avian-like cephalic thermoregulation system in Theropoda elucidated based on nasal structures. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220997. [PMID: 37063996 PMCID: PMC10090882 DOI: 10.1098/rsos.220997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
It has long been discussed whether non-avian dinosaurs were physiologically closer to ectotherms or endotherms, with the internal nasal structure called the respiratory turbinate present in extant endotherms having been regarded as an important clue for this conundrum. However, the physiological function and relevance of this structure for dinosaur physiology are still controversial. Here, we found that the size of the nasal cavity relative to the head size of extant endotherms is larger than those of extant ectotherms, with that of the dromaeosaurid Velociraptor being below the extant endotherms level. The result suggests that a large nasal cavity accommodating a well-developed respiratory turbinate is primarily important as a thermoregulation apparatus for large brains characteristic of endothermic birds and mammals, and the nasal cavity of Velociraptor was apparently not large enough to carry out this role required for an endothermic-sized brain. In addition, a hypothesis that the enlargement of the nasal cavity for brain cooling has been associated with the skull modification in the theropod lineage toward modern birds is proposed herein. In particular, the reduction of the maxilla in derived avialans may have coincided with acquisition of the avian-like cephalic thermoregulation system.
Collapse
Affiliation(s)
- Seishiro Tada
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takanobu Tsuihiji
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryoko Matsumoto
- Department of Zoology, Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250-0031, Japan
| | - Tomoya Hanai
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Iwami
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Naoki Tomita
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Hideaki Sato
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Khishigjav Tsogtbaatar
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, 15160 Ulaanbaatar, Mongolia
| |
Collapse
|
2
|
Li Z, Wang M, Stidham TA, Zhou Z. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat Ecol Evol 2023; 7:20-31. [PMID: 36593291 DOI: 10.1038/s41559-022-01921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 01/03/2023]
Abstract
The Cretaceous is a critical time interval that encompasses explosive diversifications of terrestrial vertebrates, particularly the period when the earliest-branching birds, after divergence from their theropod ancestors, evolved the characteristic avian Bauplan that led eventually to their global radiation. This early phylogenetic diversity is overwhelmed by the Ornithothoraces, consisting of the Enantiornithes and Ornithuromorpha, whose members evolved key derived features of crown birds. This disparity consequently circumscribes a large morphological gap between these derived clades and the oldest bird Archaeopteryx. The non-ornithothoracine pygostylians, with an intermediate phylogenetic position, are key to deciphering those evolutionary transformations, but progress in their study has been hampered by the limited diversity of known fossils. Here we report an Early Cetaceous non-ornithothoracine pygostylian, Cratonavis zhui gen. et sp. nov., that exhibits a unique combination of a non-avialan dinosaurian akinetic skull with an avialan post-cranial skeleton, revealing the key role of evolutionary mosaicism in early bird diversification. The unusually elongated scapular and metatarsal one preserved in Cratonavis highlights a breadth of skeletal plasticity, stemming from their distinct developmental modules and selection for possibly raptorial behaviour. Mapped changes in these two elements across theropod phylogeny demonstrate clade-specific evolutionary lability.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China.
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang R, Hu D, Zhang M, Wang S, Zhao Q, Sullivan C, Xu X. A new confuciusornithid bird with a secondary epiphyseal ossification reveals phylogenetic changes in confuciusornithid flight mode. Commun Biol 2022; 5:1398. [PMID: 36543908 PMCID: PMC9772404 DOI: 10.1038/s42003-022-04316-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The confuciusornithids are the earliest known beaked birds, and constitute the only species-rich clade of Early Cretaceous pygostylian birds that existed prior to the cladogenesis of Ornithothoraces. Here, we report a new confuciusornithid species from the Lower Cretaceous of western Liaoning, northeastern China. Compared to other confuciusornithids, this new species and the recently reported Yangavis confucii both show evidence of stronger flight capability, although the wings of the two taxa differ from one another in many respects. Our aerodynamic analyses under phylogeny indicate that varying modes of flight adaptation emerged across the diversity of confuciusornithids, and to a lesser degree over the course of their ontogeny, and specifically suggest that both a trend towards improved flight capability and a change in flight strategy occurred in confuciusornithid evolution. The new confuciusornithid differs most saliently from other Mesozoic birds in having an extra cushion-like bone in the first digit of the wing, a highly unusual feature that may have helped to meet the functional demands of flight at a stage when skeletal growth was still incomplete. The new find strikingly exemplifies the morphological, developmental and functional diversity of the first beaked birds.
Collapse
Affiliation(s)
- Renfei Wang
- College of Earth Sciences, Jilin University, Changchun, China
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China
| | - Dongyu Hu
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China.
| | - Meisheng Zhang
- College of Earth Sciences, Jilin University, Changchun, China
| | - Shiying Wang
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China
| | - Qi Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Philip J. Currie Dinosaur Museum, Wembley, AB, Canada
| | - Xing Xu
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China.
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Center for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China.
| |
Collapse
|
4
|
Hu H, Wang Y, Fabbri M, O’Connor JK, Mcdonald PG, Wroe S, Yin X, Zheng X, Zhou Z, Benson RBJ. Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Jeholornis is a representative of the earliest-diverging bird lineages, providing important evidence of anatomical transitions involved in bird origins. Although ~100 specimens have been reported, its cranial morphology remains poorly documented owing to poor two-dimensional preservation, limiting our understanding of the morphology and ecology of the key avian lineage Jeholornithiformes, in addition to cranial evolution during the origin and early evolution of birds. Here, we provide a detailed description of the cranial osteology of Jeholornis prima, based primarily on high-quality, three-dimensional data of a recently reported specimen. New anatomical information confirms the overall plesiomorphic morphology of the skull, with the exception of the more specialized rostrum. Data from a large sample size of specimens reveal the dental formula of J. prima to be 0–2–3 (premaxillary–maxillary–dentary tooth counts), contrary to previous suggestions that the presence of maxillary teeth is diagnostic of a separate species, Jeholornis palmapenis. We also present evidence of sensory adaptation, including relatively large olfactory bulbs in comparison to other known stem birds, suggesting that olfaction was an important aspect of Jeholornis ecology. The digitally reconstructed scleral ring suggests a strongly diurnal habit, supporting the hypothesis that early-diverging birds were predominantly active during the day.
Collapse
Affiliation(s)
- Han Hu
- Department of Earth Sciences, University of Oxford , Oxford OX1 3AN , UK
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University , Linyi, Shandong 276000 , China
| | - Matteo Fabbri
- Negaunee Integrative Research Center, Field Museum of Natural History , Chicago, IL 60605 , USA
| | - Jingmai K O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History , Chicago, IL 60605 , USA
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences , 100044 Beijing , China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences , 100044 Beijing , China
| | - Paul G Mcdonald
- Zoology Division, School of Environmental and Rural Sciences, University of New England , Armidale, NSW 2351 , Australia
| | - Stephen Wroe
- Zoology Division, School of Environmental and Rural Sciences, University of New England , Armidale, NSW 2351 , Australia
| | - Xuwei Yin
- Shandong Tianyu Museum of Nature , Pingyi, Shandong, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University , Linyi, Shandong 276000 , China
- Shandong Tianyu Museum of Nature , Pingyi, Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences , 100044 Beijing , China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences , 100044 Beijing , China
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford , Oxford OX1 3AN , UK
| |
Collapse
|
5
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
6
|
Monfroy QT, Kundrát M. The osteohistological variability in the evolution of basal avialans. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Quentin T. Monfroy
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University Šrobárova 2Košice Slovakia
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Center for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University Jesenná 5Košice Slovakia
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Center for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University Jesenná 5Košice Slovakia
| |
Collapse
|
7
|
Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun Biol 2020; 3:519. [PMID: 32958793 PMCID: PMC7506531 DOI: 10.1038/s42003-020-01252-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Soft tissue preservation in fossil birds provides a rare window into their anatomy, function, and development. Here, we present an exceptionally-preserved specimen of Confuciusornis which, through Laser-Stimulated Fluorescence imaging, is identified as preserving a disassociated rhamphotheca. Reconstruction of the in vivo position of the rhamphotheca validates the association of the rhamphotheca with two previous confuciusornithid specimens while calling that of a third specimen into question. The ease of dissociation is discussed and proposed with a fourth specimen alongside finite element analysis as evidence for preferential soft-food feeding. However, this proposition remains tentative until there is a better understanding of the functional role of beak attachment in living birds. Differences in post-rostral extent and possibly rhamphotheca curvature between confuciusornithids and modern birds hint at developmental differences between the two. Together, this information provides a wealth of new information regarding the nature of the beak outside crown Aves.
Collapse
|
8
|
On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11110212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Confuciusornithiformes represent the most stem-ward avian occurrence of an edentulous rostrum. Although a keratinous beak is widely considered to have covered the rostrum in confuciusornithiforms, this feature is almost never preserved, having been previously reported only in the holotype of Confuciusornis dui and the holotype of Eoconfuciusornis zhengi. This strongly contrasts with the widespread preservation of the keratinous sheaths that cover the manual and pedal ungual phalanges. Here, we report on a third occurrence of a preserved rhamphotheca in a specimen of Confuciusornis sanctus. We illuminated the preserved traces using laser-stimulated fluorescence. Similarly to E. zhengi, the rhamphotheca has been preserved only as a two-dimensional trace, whereas ungual sheaths are preserved in three dimensions. In contrast to the traces preserved in C. dui, the rhamphotheca in the discussed specimen of C. sanctus is straight rather than upturned. This hints towards hidden morphological diversity within the thousands of Confuciusornis specimens, in which species may be further differentiated by soft tissue features or behaviors, much like many living birds, that cannot be detected in fossils, even with exceptional preservation.
Collapse
|
9
|
Zhang C, Wang M. Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182062. [PMID: 31417697 PMCID: PMC6689603 DOI: 10.1098/rsos.182062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/21/2019] [Indexed: 05/27/2023]
Abstract
Recently, comprehensive morphological datasets including nearly all the well-recognized Mesozoic birds became available, making it feasible for statistically rigorous methods to unveil finer evolutionary patterns during early avian evolution. Here, we exploited the advantage of Bayesian tip dating under relaxed morphological clocks to estimate both the divergence times and evolutionary rates while accounting for their uncertainties. We further subdivided the characters into six body regions (i.e. skull, axial skeleton, pectoral girdle and sternum, forelimb, pelvic girdle and hindlimb) to assess evolutionary rate heterogeneity both along the lineages and across partitions. We observed extremely high rates of morphological character changes during early avian evolution, and the clock rates are quite heterogeneous among the six regions. The branch subtending Pygostylia shows an extremely high rate in the axial skeleton, while the branches subtending Ornithothoraces and Enantiornithes show notably high rates in the pectoral girdle and sternum and moderately high rates in the forelimb. The extensive modifications in these body regions largely correspond to refinement of the flight capability. This study reveals the power and flexibility of Bayesian tip dating implemented in MrBayes to investigate evolutionary dynamics in deep time.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, People's Republic of China
| |
Collapse
|