1
|
Williams T, Parker D, Taubman B. Characterization of Unmalted Barley Treated with Aspergillus oryzae. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1978045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tom Williams
- A.R. Smith Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, U.S.A
| | - Daniel Parker
- A.R. Smith Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, U.S.A
| | - Brett Taubman
- A.R. Smith Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, U.S.A
| |
Collapse
|
2
|
Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods 2021; 10:foods10081831. [PMID: 34441608 PMCID: PMC8391379 DOI: 10.3390/foods10081831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023] Open
Abstract
Selected biological resources used as raw materials in beer production are important drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, local/regional ingredients have several benefits, such as strengthening the connection with territories, enhancing the added value of the final products, and reducing supply costs and environmental impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more generally, sensory attributes of the final products. In particular, of interest are ingredients with features attributable and/or linked to a specific geographical origin. This review encompasses the potential contribution and exploitation of biodiversity in the main classes of beer inputs, such as cereals, hops, microbes, and adjuncts, with a specific emphasis on autochthonous biological resources, detailing the innovative paths already explored and documented in the scientific literature. This dissertation proposes an overview of the impact on beer quality for each raw material category, highlighting the benefits and limitations that influence its concrete applications and scale-up, from the field to the stain. The topics explored promote, in the sector of craft beers, trends already capitalised in the production of other alcoholic beverages, such as the preservation and revalorisation of minor and autochthonous varieties, the exploitation of yeast and bacteria strains isolated from specific sites/plant varieties, and the valorisation of the effects of peculiar terroirs on the quality of agricultural products. Finally, the examined tendencies contribute toward reducing the environmental impacts of craft beer manufacturing, and are in line with sustainable development of food systems, increasing the economic driver of biodiversity preservation.
Collapse
|
3
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
4
|
Abstract
Brewing is among the oldest biotechnological processes, in which barley malt and—to a lesser extent—wheat malt are used as conventional raw materials. Worldwide, 85–90% of beer production is now produced with adjuvants, with wide variations on different continents. This review proposes the use of two other cereals as raw materials in the manufacture of beer, corn and sorghum, highlighting the advantages it recommends in this regard and the disadvantages, so that they are removed in technological practice. The use of these cereals as adjuvants in brewing has been known for a long time. Recently, research has intensified regarding the use of these cereals (including in the malted form) to obtain new assortments of beer from 100% corn malt or 100% sorghum malt. There is also great interest in obtaining gluten-free beer assortments, new nonalcoholic or low-alcohol beer assortments, and beers with an increased shelf life, by complying with current food safety regulations, under which maize and sorghum can be used in manufacturing recipes.
Collapse
|
5
|
Rubio-Flores M, García-Arellano AR, Perez-Carrillo E, Serna-Saldivar SO. Use of Aspergillus oryzae during sorghum malting to enhance yield and quality of gluten-free lager beers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractSorghum has been used for brewing European beers but its malt generally lower beer yields and alcohol contents. The aim of this research was to produce lager beers using worts from sorghum malted with and without Aspergillus oryzae inoculation. Worts adjusted to 15° Plato from the sorghum malt inoculated with 1% A. oryzae yielded 21.5% and 5% more volume compared to sorghum malt and barley malt worts, respectively. The main fermentable carbohydrate in all worts was maltose. Glucose was present in higher amounts in both sorghum worts compared to barley malt worts. Sorghum–A. oryzae beer had similar specific gravity and alcohol compared to the barley malt beer. Sorghum–A. oryzae beer contained lower amounts of hydrogen sulfide, methanethiol, butanedione, and pentanedione compared to barley malt beer. Sorghum–A. oryzae lager beer had similar yield and alcohol content compared to the barley malt beer but differed in color, key volatiles and aromatic compounds.
Collapse
|
6
|
Gonzalez Viejo C, Villarreal-Lara R, Torrico DD, Rodríguez-Velazco YG, Escobedo-Avellaneda Z, Ramos-Parra PA, Mandal R, Pratap Singh A, Hernández-Brenes C, Fuentes S. Beer and Consumer Response Using Biometrics: Associations Assessment of Beer Compounds and Elicited Emotions. Foods 2020; 9:foods9060821. [PMID: 32580405 PMCID: PMC7353658 DOI: 10.3390/foods9060821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Some chemical compounds, especially alcohol, sugars, and alkaloids such as hordenine, have been reported as elicitors of different emotional responses. This preliminary study was based on six commercial beers selected according to their fermentation type, with two beers of each type (spontaneous, bottom, and top). Chemometry and sensory analysis were performed for all samples to determine relationships and patterns between chemical composition and emotional responses from consumers. The results showed that sweeter samples were associated with higher perceived liking by consumers and positive emotions, which corresponded to spontaneous fermentation beers. There was high correlation (R = 0.91; R2 = 0.83) between hordenine and alcohol content. Beers presenting higher concentrations of both, and higher bitterness, were related to negative emotions. Further studies should be conducted, giving more time for emotional response analysis between beer samples, and comparing alcoholic and non-alcoholic beers with similar styles, to separate the effects of alcohol and hordenine. This preliminary study was a first attempt to associate beer compounds with the emotional responses of consumers using non-invasive biometrics.
Collapse
Affiliation(s)
- Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Sciences Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence:
| | - Raúl Villarreal-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico; (R.V.-L.); (Y.G.R.-V.); (Z.E.-A.); (P.A.R.-P.); (C.H.-B.)
- SensoLab Solutions, Centro de Innovación y Transferencia Tecnológica (CIT2), Ave. Eugenio Garza Sada #427 Col. Altavista, Monterrey 64849, N.L., Mexico
| | - Damir D. Torrico
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Yaressi G. Rodríguez-Velazco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico; (R.V.-L.); (Y.G.R.-V.); (Z.E.-A.); (P.A.R.-P.); (C.H.-B.)
| | - Zamantha Escobedo-Avellaneda
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico; (R.V.-L.); (Y.G.R.-V.); (Z.E.-A.); (P.A.R.-P.); (C.H.-B.)
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico; (R.V.-L.); (Y.G.R.-V.); (Z.E.-A.); (P.A.R.-P.); (C.H.-B.)
| | - Ronit Mandal
- Food, Nutrition, and Health, Faculty of Land and Food Systems, University of British Columbia, 2205, East Mall, Vancouver, BC V6T 1W4, Canada; (R.M.); (A.P.S.)
| | - Anubhav Pratap Singh
- Food, Nutrition, and Health, Faculty of Land and Food Systems, University of British Columbia, 2205, East Mall, Vancouver, BC V6T 1W4, Canada; (R.M.); (A.P.S.)
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico; (R.V.-L.); (Y.G.R.-V.); (Z.E.-A.); (P.A.R.-P.); (C.H.-B.)
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Sciences Group, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
7
|
Abstract
Celiac disease (CD) is an immune-mediated gluten-sensitive enteropathy. Currently, it affects around 1% of world population, but it is constantly growing. Celiac patients have to follow a strict gluten-free (GF) diet. Beer is one of the most consumed beverages worldwide, but it is not safe for people with CD. It has a gluten content usually above the safe threshold (20 ppm), determined by the official method for hydrolyzed foods (R5-competitive-ELISA). The demand on the market for GF beers is increasingly growing. This review aims to provide a comprehensive overview of different strategies to produce GF beer, highlighting strengths and weaknesses of each approach and taking into account technological and sensory issues. GF cereals or pseudocereals have poor brewing attitudes (if used as main raw material) and give the beer unusual flavour. Instead, enzymatic treatments allow traditional brewing process followed by gluten content reduction. A survey on 185 GF-producing breweries (both industrial and craft) from all over the world have been considered to assess which approach is most used. Beers brewed with GF cereals and pseudocereals (used in well-balanced proportions) are more common than gluten-removed (GR) beers, obtained by enzymatic treatment.
Collapse
|