1
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
2
|
Wang H, Chen Q, Wei T. Complex interactions among insect viruses-insect vector-arboviruses. INSECT SCIENCE 2024; 31:683-693. [PMID: 37877630 DOI: 10.1111/1744-7917.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus-host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Yan W, Wang S, Liu J, Zhai D, Lu H, Li J, Bai R, Lei C, Song L, Zhao C, Yan F. Managing Super Pests: Interplay between Pathogens and Symbionts Informs Biocontrol of Whiteflies. Microorganisms 2024; 12:887. [PMID: 38792717 PMCID: PMC11123976 DOI: 10.3390/microorganisms12050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts-dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (W.Y.); (S.W.); (J.L.); (D.Z.); (H.L.); (J.L.); (R.B.); (C.L.); (L.S.)
| | - Fengming Yan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (W.Y.); (S.W.); (J.L.); (D.Z.); (H.L.); (J.L.); (R.B.); (C.L.); (L.S.)
| |
Collapse
|
4
|
An X, Gu Q, Wang J, Chang T, Zhang W, Wang JJ, Niu J. Insect-specific RNA virus affects the stylet penetration activity of brown citrus aphid (Aphis citricidus) to facilitate its transmission. INSECT SCIENCE 2024; 31:255-270. [PMID: 37358052 DOI: 10.1111/1744-7917.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiaoying Gu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jing Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Tengyu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Xoconostle-Cázares B, Ramírez-Pool JA, Núñez-Muñoz LA, Calderón-Pérez B, Vargas-Hernández BY, Bujanos-Muñiz R, Ruiz-Medrano R. The Characterization of Melanaphis sacchari Microbiota and Antibiotic Treatment Effect on Insects. INSECTS 2023; 14:807. [PMID: 37887819 PMCID: PMC10607097 DOI: 10.3390/insects14100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Insects are under constant selective pressure, which has resulted in adaptations to novel niches such as crops. This is the case of the pest Melanaphis sacchari, the sugarcane aphid, native to Africa and currently spreading worldwide. The aphid undergoes successful parthenogenesis, causing important damage to a variety of crops and leading to important economic losses for farmers. A natural M. sacchari population grown in sorghum was studied to identify its microbiome through the sequencing of its 16S rDNA metagenome. A high proportion of Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria, was observed. We also detected Wolbachia, which correlates with the asexual reproduction of its host. M. sacchari was challenged in a bioassay with the antibiotics oxytetracycline and streptomycin, resulting in a dose-dependent decay of its survival rate. The possibility of controlling this pest by altering its microbiota is proposed.
Collapse
Affiliation(s)
- Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| | - Brenda Yazmín Vargas-Hernández
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| | - Rafael Bujanos-Muñiz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Celaya-San Miguel de Allende km 6.5, Celaya Guanajuato 38110, Mexico;
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados Av., Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (B.X.-C.); (J.A.R.-P.); (L.A.N.-M.); (B.C.-P.)
| |
Collapse
|
6
|
Berman TS, Izraeli Y, Lalzar M, Mozes-Daube N, Lepetit D, Tabic A, Varaldi J, Zchori-Fein E. RNA Viruses Are Prevalent and Active Tenants of the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae). MICROBIAL ECOLOGY 2023; 86:2060-2072. [PMID: 37020129 DOI: 10.1007/s00248-023-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Many arthropod species harbor a diverse range of viruses. While much is known about pathogenic viruses of some economically important insects and arthropods involved in disease transmission, viruses associated with mites have rarely been studied. The main objective of this study was to characterize the virome of Phytoseiulus persimilis (Phytoseiidae), a predatory mite commercially used worldwide for the biological control of the key pest Tetranychus urticae (Tetranichidae). A combination of de novo transcriptome assembly and virion sequencing, revealed that RNA viruses are highly prevalent and active tenants of commercial populations of P. persimilis, comprising on average 9% of the mite's total mRNA. Seventeen RNA viruses dominated the mite's virome (i.e., were highly transcribed) with over half (n = 10) belonging to the order Picornavirales, + ssRNA viruses that infect a large range of hosts, including arthropods. Screening of the 17 dominant virus sequences in P. persimilis and T. urticae revealed that three viruses (two Picornavirales of the families Iflaviridae and Dicistroviridae, and one unclassified Riboviria) are unique to P. persimilis and three others (two unclassified Picornavirales and one unclassified Riboviria) are present in both mite species. Most of the sequences were related to viruses previously documented in economically important arthropods, while others have rarely been documented before in arthropods. These findings demonstrate that P. persimilis, like many other arthropods, harbors a diverse RNA virome, which might affect the mite's physiology and consequently its efficiency as a biological control agent.
Collapse
Affiliation(s)
- Tali Sarah Berman
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
| | - Yehuda Izraeli
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, 3498838, Haifa, Israel
| | - Netta Mozes-Daube
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon Université Lyon 1, CNRS, Villeurbanne, France
| | | | - Julien Varaldi
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel.
| |
Collapse
|
7
|
Guo H, Zhang Y, Li B, Li C, Shi Q, Zhu-Salzman K, Ge F, Sun Y. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proc Natl Acad Sci U S A 2023; 120:e2222040120. [PMID: 36976769 PMCID: PMC10083582 DOI: 10.1073/pnas.2222040120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanjing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingyu Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Chenwei Li
- School of Life Sciences, Hebei University, Baoding071002, China
| | - Qingyun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture Sciences, Jinan250100, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Higashi CHV, Nichols WL, Chevignon G, Patel V, Allison SE, Kim KL, Strand MR, Oliver KM. An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen. Mol Ecol 2023; 32:936-950. [PMID: 36458425 PMCID: PMC10107813 DOI: 10.1111/mec.16801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.
Collapse
Affiliation(s)
| | - William L Nichols
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Suzanne E Allison
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kyungsun Lee Kim
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| |
Collapse
|
9
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
10
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
12
|
Lu H, Li J, Yang P, Jiang F, Liu H, Cui F. Mutation in the RNA-Dependent RNA Polymerase of a Symbiotic Virus Is Associated With the Adaptability of the Viral Host. Front Microbiol 2022; 13:883436. [PMID: 35432275 PMCID: PMC9005967 DOI: 10.3389/fmicb.2022.883436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Host adaptation has the potential to cause rapid genetic variation in symbiotic microorganisms in insects. How mutations in symbiotic viruses favor viral fitness in hosts and even influence host adaptability to new environments remains elusive. Here, we explored the role of genetic divergence at one site of a symbiotic virus, Acyrthosiphon pisum virus (APV), in the host aphid's adaptation to unfavorable plants. Based on the transcriptomes of the pea aphid Vicia faba colony and Vicia villosa colony, 46 single nucleotide polymorphism (SNP) sites were found in the APV genomes from the two aphid colonies. One SNP at site 5,990, G5990A, located at the RNA-dependent RNA polymerase (RdRp) domain, demonstrated a predominance from G to A when the host aphids were shifted from V. faba to the low-fitness plants V. villosa or Medicago sativa. This SNP resulted in a substitution from serine (S) to asparagine (N) at site 196 in RdRp. Although S196N was predicted to be located at a random coil far away from conserved functional motifs, the polymerase activity of the N196 type of RdRp was increased by 44.5% compared to that of the S196 type. The promoted enzymatic activity of RdRp was associated with a higher replication level of APV, which was beneficial for aphids as APV suppressed plant's resistance reactions toward aphids. The findings showed a novel case in which mutations selected in a symbiotic virus may confer a favor on the host as the host adapts to new environmental conditions.
Collapse
Affiliation(s)
- Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongran Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang W, Zhang YC, Wang ZG, Gu QY, Niu JZ, Wang JJ. The Diversity of Viral Community in Invasive Fruit Flies (Bactrocera and Zeugodacus) Revealed by Meta-transcriptomics. MICROBIAL ECOLOGY 2022; 83:739-752. [PMID: 34173031 DOI: 10.1007/s00248-021-01790-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
RNA viruses are extremely diverse and rapidly evolving in various organisms. Our knowledge on viral evolution with interacted hosts in the manner of ecology is still limited. In the agricultural ecosystem, invasive insect species are posing a great threat to sustainable crop production. Among them, fruit flies (Diptera: Tephritidae Bactrocera and Zeugodacus) are destructive to fruits and vegetables, which are also closely related and often share similar ecological niches. Thus, they are ideal models for investigating RNA virome dynamics in host species. Using meta-transcriptomics, we found 39 viral sequences in samples from 12 fly species. These viral species represented the diversity of the viromes including Dicistroviridae, negev-like virus clades, Thika virus clades, Solemoviridae, Narnaviridae, Nodaviridae, Iflaviridae, Orthomyxoviridae, Bunyavirales, Partitiviridae, and Reoviridae. In particular, dicistrovirus, negev-like virus, orthomyxovirus, and orbivirus were common in over four of the fly species, which suggests a positive interaction between fly viromes that exist under the same ecological conditions. For most of the viruses, the virus-derived small RNAs displayed significantly high peaks in 21 nt and were symmetrically distributed throughout the viral genome. These results suggest that infection by these viruses can activate the host's RNAi immunity. Our study provides RNA virome diversity and evidence on their infection activity in ecologically associated invasive fruit fly species, which could help our understanding of interactions between complex species and viruses.
Collapse
Affiliation(s)
- Wei Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yan-Chun Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zi-Guo Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiao-Ying Gu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jin-Zhi Niu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering College of Plant Protection, Southwest University, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Hernández-Pelegrín L, Llopis-Giménez Á, Crava CM, Ortego F, Hernández-Crespo P, Ros VID, Herrero S. Expanding the Medfly Virome: Viral Diversity, Prevalence, and sRNA Profiling in Mass-Reared and Field-Derived Medflies. Viruses 2022; 14:v14030623. [PMID: 35337030 PMCID: PMC8955247 DOI: 10.3390/v14030623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an agricultural pest of a wide range of fruits. The advent of high-throughput sequencing has boosted the discovery of RNA viruses infecting insects. In this article, we aim to characterize the RNA virome and viral sRNA profile of medfly. By means of transcriptome mining, we expanded the medfly RNA virome to 13 viruses, including two novel positive ssRNA viruses and the first two novel dsRNA viruses reported for medfly. Our analysis across multiple laboratory-reared and field-collected medfly samples showed the presence of a core RNA virome comprised of Ceratitis capitata iflavirus 2 and Ceratitis capitata negev-like virus 1. Furthermore, field-collected flies showed a higher viral diversity in comparison to the laboratory-reared flies. Based on the small RNA sequencing, we detected small interfering RNAs mapping to all the viruses present in each sample, except for Ceratitis capitata nora virus. Although the identified RNA viruses do not cause obvious symptoms in medflies, the outcome of their interaction may still influence the medfly’s fitness and ecology, becoming either a risk or an opportunity for mass-rearing and SIT applications.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Ángel Llopis-Giménez
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
| | - Cristina Maria Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
| | - Félix Ortego
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (F.O.); (P.H.-C.)
| | - Pedro Hernández-Crespo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (F.O.); (P.H.-C.)
| | - Vera I. D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Valencia, Spain; (L.H.-P.); (Á.L.-G.); (C.M.C.)
- Correspondence: ; Tel.: +34-963-54-30-06
| |
Collapse
|
15
|
Guo Y, Ji N, Bai L, Ma J, Li Z. Aphid Viruses: A Brief View of a Long History. FRONTIERS IN INSECT SCIENCE 2022; 2:846716. [PMID: 38468755 PMCID: PMC10926426 DOI: 10.3389/finsc.2022.846716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 03/13/2024]
Abstract
Aphids are common agricultural pests with a wide range of hosts from agriculture to forestry plants. As known, aphids also serve as the major vectors to transmit plant viruses. Although numerous studies have focused on interactions between aphids and plant viruses, little is known about the aphid viruses, i.e., the insect viruses that are infectious to aphids. In the past four decades, several aphid viruses have been identified in diverse aphid species. In this review, we present a brief view of the aphid pathogenic viruses from several aspects, including classification of aphid viruses and characters of the viral genome, integration of viral sequences in host genomes, infection symptoms and influence on aphids, as well as host range and transmission modes. Taken together, these studies have increased our understanding of the rarely known aphid viruses, and will potentially contribute to the development of new strategies for controlling aphid populations.
Collapse
Affiliation(s)
| | | | | | | | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N. Virome Analysis of Aphid Populations That Infest the Barley Field: The Discovery of Two Novel Groups of Nege/Kita-Like Viruses and Other Novel RNA Viruses. Front Microbiol 2020; 11:509. [PMID: 32318034 PMCID: PMC7154061 DOI: 10.3389/fmicb.2020.00509] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aphids (order Hemiptera) are important insect pests of crops and are also vectors of many plant viruses. However, little is known about aphid-infecting viruses, particularly their diversity and relationship to plant viruses. To investigate the aphid viromes, we performed deep sequencing analyses of the aphid transcriptomes from infested barley plants in a field in Japan. We discovered virus-like sequences related to nege/kita-, flavi-, tombus-, phenui-, mononega-, narna-, chryso-, partiti-, and luteoviruses. Using RT-PCR and sequence analyses, we determined almost complete sequences of seven nege/kitavirus-like virus genomes; one of which was a variant of the Wuhan house centipede virus (WHCV-1). The other six seem to belong to four novel viruses distantly related to Wuhan insect virus 9 (WhIV-9) or Hubei nege-like virus 4 (HVLV-4). We designated the four viruses as barley aphid RNA virus 1 to 4 (BARV-1 to -4). Moreover, some nege/kitavirus-like sequences were found by searches on the transcriptome shotgun assembly (TSA) libraries of arthropods and plants. Phylogenetic analyses showed that BARV-1 forms a clade with WHCV-1 and HVLV-4, whereas BARV-2 to -4 clustered with WhIV-9 and an aphid virus, Aphis glycines virus 3. Both virus groups (tentatively designated as Centivirus and Aphiglyvirus, respectively), together with arthropod virus-like TSAs, fill the phylogenetic gaps between the negeviruses and kitaviruses lineages. We also characterized the flavi/jingmen-like and tombus-like virus sequences as well as other RNA viruses, including six putative novel viruses, designated as barley aphid RNA viruses 5 to 10. Interestingly, we also discovered that some aphid-associated viruses, including nege/kita-like viruses, were present in different aphid species, raising a speculation that these viruses might be distributed across different aphid species with plants being the reservoirs. This study provides novel information on the diversity and spread of nege/kitavirus-related viruses and other RNA viruses that are associated with aphids.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| |
Collapse
|
17
|
Boulain H, Legeai F, Jaquiéry J, Guy E, Morlière S, Simon JC, Sugio A. Differential Expression of Candidate Salivary Effector Genes in Pea Aphid Biotypes With Distinct Host Plant Specificity. FRONTIERS IN PLANT SCIENCE 2019; 10:1301. [PMID: 31695713 PMCID: PMC6818229 DOI: 10.3389/fpls.2019.01301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 05/13/2023]
Abstract
Effector proteins play crucial roles in determining the outcome of various plant-parasite interactions. Aphids inject salivary effector proteins into plants to facilitate phloem feeding, but some proteins might trigger defense responses in certain plants. The pea aphid, Acyrthosiphon pisum, forms multiple biotypes, and each biotype is specialized to feed on a small number of closely related legume species. Interestingly, all the previously identified biotypes can feed on Vicia faba; hence, it serves as a universal host plant of A. pisum. We hypothesized that the salivary effector proteins have a key role in determining the compatibility between specific host species and A. pisum biotypes and that each biotype produces saliva containing a specific mixture of effector proteins due to differential expression of encoding genes. As the first step to address these hypotheses, we conducted two sets of RNA-seq experiments. RNA-seq analysis of dissected salivary glands (SGs) from reference alfalfa- and pea-specialized A. pisum lines revealed common and line-specific repertoires of candidate salivary effector genes. Based on the results, we created an extended catalogue of A. pisum salivary effector candidates. Next, we used aphid head samples, which contain SGs, to examine biotype-specific expression patterns of candidate salivary genes. RNA-seq analysis of head samples of alfalfa- and pea-specialized biotypes, each represented by three genetically distinct aphid lines reared on either a universal or specific host plant, showed that a majority of the candidate salivary effector genes was expressed in both biotypes at a similar level. Nonetheless, we identified small sets of genes that were differentially regulated in a biotype-specific manner. Little host plant effect (universal vs. specific) was observed on the expression of candidate salivary genes. Analysis of previously obtained genome re-sequenced data of the two biotypes revealed the copy number variations that might explain the differential expression of some candidate salivary genes. In addition, at least four candidate effector genes that were present in the alfalfa biotype but might not be encoded in the pea biotype were identified. This work sets the stage for future functional characterization of candidate genes potentially involved in the determination of plant specificity of pea aphid biotypes.
Collapse
Affiliation(s)
- Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- University of Rennes 1, Inria, CNRS, IRISA, Rennes, France
| | - Julie Jaquiéry
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- *Correspondence: Akiko Sugio,
| |
Collapse
|