1
|
Giroux L, Isayenka I, Lerat S, Beaudoin N, Beaulieu C. Proteomics fingerprinting reveals importance of iron and oxidative stress in Streptomyces scabies- Solanum tuberosum interactions. Front Microbiol 2024; 15:1466927. [PMID: 39417082 PMCID: PMC11479980 DOI: 10.3389/fmicb.2024.1466927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The Gram-positive actinobacterium Streptomyces scabies is the major causal agent of potato common scab. The main pathogenicity factor is thaxtomin A, a phytotoxin that causes atypical cell death, although other secondary metabolites have been described to play a role in S. scabies virulence. Despite this, many aspects of the interaction between S. scabies and its primary host Solanum tuberosum L. remain to be elucidated. Methods Intracellular proteins of S. scabies EF-35 grown in the presence of in vitro produced tubers (microtubers) of the Russet Burbank and Yukon Gold potato cultivars were extracted and analysed by electrospray mass spectrometry (ES MS/MS). Based on the results of proteomic analysis, iron quantification by ICP-MS and nitrite quantification using Griess reagent in growth media as well as RT-qPCR analysis of the siderophore pyochelin gene expression were performed in the presence and absence of microtubers. Hydrogen peroxide accumulation was also determined in the nutrient medium used for co-cultivation of bacteria and potato microtubers. Results Potato microtubers caused an increase in the content of bacterial proteins involved in stress and defense, secondary metabolism, and cell differentiation, as well as secreted proteins. Co-cultivation with potato microtubers induced the accumulation of S. scabies proteins implicated in siderophore pyochelin biosynthesis, nitrite production and oxidative stress perception and response. The increase in the abundance of proteins related to pyochelin biosynthesis was consistent with a significant decrease in the iron content in the culture medium, as well as with induction of expression of pyochelin biosynthesis genes. Elevated nitrite/sulfite reductase protein levels were associated with increased nitrite excretion by S. scabies cells in the presence of host microtubers. The increase in the levels of proteins associated with signaling and oxidative stress response could have been caused by the accumulation of ROS, in particular hydrogen peroxide, detected in the studied system. Discussion These findings show that interactions of S. scabies with living potato microtubers induce the production of secondary metabolites, defense responses, and protection from oxidative stress. This study suggests the importance of iron during host - S. scabies interactions, resulting in competition between pathogen and its host.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Kaneko K, Mieda M, Jiang Y, Takahashi N, Kakeya H. Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei. J Antibiot (Tokyo) 2024; 77:353-364. [PMID: 38523145 DOI: 10.1038/s41429-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Hachinohe College of Technology, Aomori, 039-1192, Japan
| | - Marika Mieda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yulu Jiang
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Soares NR, Huguet-Tapia JC, Guan D, Clark CA, Yang KT, Kluchka OR, Thombal RS, Kartika R, Badger JH, Pettis GS. Comparative genomics of the niche-specific plant pathogen Streptomyces ipomoeae reveal novel genome content and organization. Appl Environ Microbiol 2023; 89:e0030823. [PMID: 38009923 PMCID: PMC10734452 DOI: 10.1128/aem.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.
Collapse
Affiliation(s)
- Natasha R. Soares
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Dongli Guan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christopher A. Clark
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Kuei-Ting Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Olivia R. Kluchka
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Raju S. Thombal
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rendy Kartika
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jonathan H. Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregg S. Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Haq IU, Mukhtar Z, Anwar-Ul-Haq M, Liaqat S. Deciphering host-pathogen interaction during Streptomyces spp. infestation of potato. Arch Microbiol 2023; 205:222. [PMID: 37149838 DOI: 10.1007/s00203-023-03560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
- Ayub Agricultural Research Institute, Faisalabad, Pakistan.
| | - Zahid Mukhtar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | | | - Sana Liaqat
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
6
|
Liu J, Wang Y, He H, Dong S, Tang L, Yang E, Wang W, Zhang B. The leucine-responsive regulatory protein SCAB_Lrp modulates thaxtomin biosynthesis, pathogenicity, and morphological development in Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2023; 24:167-178. [PMID: 36478143 PMCID: PMC9831280 DOI: 10.1111/mpp.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Streptomyces scabies is the best-characterized plant-pathogenic streptomycete, which is a special species among the large genus Streptomyces. The pathogenicity of S. scabies relies on the production of the secondary metabolite thaxtomin A. Little is known about the molecular mechanisms underlying the regulation of thaxtomin biosynthesis in S. scabies beyond the pathway-specific activator TxtR and the cellulose utilization repressor CebR. The leucine-responsive regulatory protein (Lrp) family modulates secondary metabolism in nonpathogenic streptomycetes. However, the regulatory relationship between the Lrp and pathogenic streptomycetes remains unknown. In this study, we demonstrated that SCAB_Lrp (SCAB_77931) from S. scabies significantly affects thaxtomin biosynthesis, pathogenicity, and morphological development. SCAB_Lrp deletion resulted in a dramatic decline in thaxtomin A production and a low-virulence phenotype of S. scabies. An in-depth dissection of the regulatory mechanism of SCAB_Lrp revealed that it positively regulates the transcription of the thaxtomin biosynthetic gene cluster by directly binding to the promoter of the cluster-situated regulator gene txtR. SCAB_Lrp also controls the morphological development of S. scabies by directly activating the transcription of amfC, whiB, and ssgB. SCAB_Lrp directly controls the transcription of its own gene by binding a specific sequence (5'-GGACAGTCGCCGTGCTACG-3'). Moreover, phenylalanine and methionine have been characterized as SCAB_Lrp effectors by strengthening the binding affinity and complex status between SCAB_Lrp and DNA. Our findings characterize a multifunctional regulatory protein, SCAB_Lrp, that controls secondary metabolism, pathogenicity, and sporulation in S. scabies and provide new insights into the complex regulatory network that modulates thaxtomin phytotoxins in pathogenic Streptomyces.
Collapse
Affiliation(s)
- Jing Liu
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Yunxia Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Haoyang He
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Shengnan Dong
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Lijuan Tang
- Institute of Physical Science and Information Technology, School of Life SciencesAnhui UniversityHefeiChina
| | - Endong Yang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Weiyun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - Buchang Zhang
- Institute of Physical Science and Information Technology, School of Life SciencesAnhui UniversityHefeiChina
| |
Collapse
|
7
|
Clarke CR, Kramer CG, Kotha RR, Luthria DL. The Phytotoxin Thaxtomin A Is the Primary Virulence Determinant for Scab Disease of Beet, Carrot, and Radish Caused by Streptomyces scabiei. PHYTOPATHOLOGY 2022; 112:2288-2295. [PMID: 35694886 DOI: 10.1094/phyto-03-22-0072-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Several species of Streptomyces cause common scab, a major disease of potato, primarily through the phytotoxic effects of the phytotoxin thaxtomin A. Several phytopathogenic Streptomyces species have also been implicated as the causative agents of scab diseases of taproot crops including beet, carrot, radish, parsnip, and turnip. But the molecular mechanisms employed by Streptomyces to infect these crops is unknown. In this work, we tested the hypothesis that thaxtomin A biosynthesis is also necessary for Streptomyces-caused scab of beet, carrot, radish, and turnip. Thaxtomin A induced plant stunting and cell death of all four of these species. Streptomyces mutants in which the transcriptional regulator of thaxtomin A biosynthesis is disrupted were nonvirulent on all four crops, and complementation of the transcriptional regulator rescued thaxtomin A biosynthesis and plant pathogenicity to wild-type levels. These results demonstrate that thaxtomin A is the primary virulence determinant of scab disease of these other crops.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| | - Charles G Kramer
- Genetic Improvement for Fruits and Vegetables Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| | - Raghavendhar R Kotha
- Food Composition and Methods Development Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| |
Collapse
|
8
|
Zhao X, Zong Y, Wei W, Lou C. Multiplexed Promoter Engineering for Improving Thaxtomin A Production in Heterologous Streptomyces Hosts. Life (Basel) 2022; 12:689. [PMID: 35629358 PMCID: PMC9146380 DOI: 10.3390/life12050689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaxtomin A is a potent bioherbicide in both organic and conventional agriculture; however, its low yield hinders its wide application. Here, we report the direct cloning and heterologous expression of the thaxtomin A gene cluster in three well-characterized Streptomyces hosts. Then, we present an efficient, markerless and multiplex large gene cluster editing method based on in vitro CRISPR/Cas9 digestion and yeast homologous recombination. With this method, we successfully engineered the thaxtomin A cluster by simultaneously replacing the native promoters of the txtED operon, txtABH operon and txtC gene with strong constitutive promoters, and the yield of thaxtomin A improved to 289.5 µg/mL in heterologous Streptomyces coelicolor M1154. To further optimize the biosynthetic pathway, we used constraint-based combinatorial design to build 27 refactored gene clusters by varying the promoter strength of every operon, and the highest titer of thaxtomin A production reached 504.6 μg/mL. Taken altogether, this work puts forward a multiplexed promoter engineering strategy to engineer secondary metabolism gene clusters for efficiently improving fermentation titers.
Collapse
Affiliation(s)
- Xuejin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Chunbo Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Pacios-Michelena S, Aguilar González CN, Alvarez-Perez OB, Rodriguez-Herrera R, Chávez-González M, Arredondo Valdés R, Ascacio Valdés JA, Govea Salas M, Ilyina A. Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.696518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the relevant problems in today's agriculture is related to phytopathogenic microorganisms that cause between 30–40% of crop losses. Synthetic chemical pesticides and antibiotics have brought human and environmental health problems and microbial resistance to these treatments. So, the search for natural alternatives is necessary. The genus Streptomyces have broad biotechnological potential, being a promising candidate for the biocontrol of phytopathogenic microorganisms. The efficacy of some species of this genus in plant protection and their continued presence in the intensely competitive rhizosphere is due to its great potential to produce a wide variety of soluble bioactive secondary metabolites and volatile organic compounds. However, more attention is still needed to develop novel formulations that could increase the shelf life of streptomycetes, ensuring their efficacy as a microbial pesticide. In this sense, encapsulation offers an advantageous and environmentally friendly option. The present review aims to describe some phytopathogenic microorganisms with economic importance that require biological control. In addition, it focuses mainly on the Streptomyces genus as a great producer of secondary metabolites that act on other microorganisms and plants, exercising its role as biological control. The review also covers some strategies and products based on Streptomyces and the problems of its application in the field.
Collapse
|
10
|
Planckaert S, Deflandre B, de Vries AM, Ameye M, Martins JC, Audenaert K, Rigali S, Devreese B. Identification of Novel Rotihibin Analogues in Streptomyces scabies, Including Discovery of Its Biosynthetic Gene Cluster. Microbiol Spectr 2021; 9:e0057121. [PMID: 34346752 PMCID: PMC8552735 DOI: 10.1128/spectrum.00571-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces scabies is a phytopathogen associated with common scab disease. This is mainly attributed to its ability to produce the phytotoxin thaxtomin A, the biosynthesis of which is triggered by cellobiose. During a survey of other metabolites released in the presence of cellobiose, we discovered additional compounds in the thaxtomin-containing extract from Streptomyces scabies. Structural analysis by mass spectrometry (MS) and nuclear magnetic resonance (NMR) revealed that these compounds are amino acid sequence variants of the TOR (target of rapamycin) kinase (TORK) pathway-inhibitory lipopeptide rotihibin A, and the main compounds were named rotihibins C and D. In contrast to thaxtomin, the production of rotihibins C and D was also elicited in the presence of glucose, indicating different regulation of their biosynthesis. Through a combination of shotgun and targeted proteomics, the putative rotihibin biosynthetic gene cluster rth was identified in the publicly available genome of S. scabies 87-22. This cluster spans 33 kbp and encodes 2 different nonribosomal peptide synthetases (NRPSs) and 12 additional enzymes. Homologous rth biosynthetic gene clusters were found in other publicly available and complete actinomycete genomes. Rotihibins C and D display herbicidal activity against Lemna minor and Arabidopsis thaliana at low concentrations, shown by monitoring the effects on growth and the maximal photochemistry efficiency of photosystem II. IMPORTANCE Rotihibins A and B are plant growth inhibitors acting on the TORK pathway. We report the isolation and characterization of new sequence analogues of rotihibin from Streptomyces scabies, a major cause of common scab in potato and other tuber and root vegetables. By combining proteomics data with genomic analysis, we found a cryptic biosynthetic gene cluster coding for enzyme machinery capable of rotihibin production. This work may lead to the biotechnological production of variants of this lipopeptide to investigate the exact mechanism by which it can target the plant TORK pathway in Arabidopsis thaliana. In addition, bioinformatics revealed the existence of other variants in plant-associated Streptomyces strains, both pathogenic and nonpathogenic species, raising new questions about the actual function of this lipopeptide. The discovery of a module in the nonribosomal peptide synthetase (NRPS) that incorporates the unusual citrulline residue may improve the prediction of peptides encoded by cryptic NRPS gene clusters.
Collapse
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Benoit Deflandre
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | | | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Group, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Sébastien Rigali
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Hudec C, Biessy A, Novinscak A, St-Onge R, Lamarre S, Blom J, Filion M. Comparative Genomics of Potato Common Scab-Causing Streptomyces spp. Displaying Varying Virulence. Front Microbiol 2021; 12:716522. [PMID: 34413844 PMCID: PMC8369830 DOI: 10.3389/fmicb.2021.716522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Common scab of potato causes important economic losses worldwide following the development of necrotic lesions on tubers. In this study, the genomes of 14 prevalent scab-causing Streptomyces spp. isolated from Prince Edward Island, one of the most important Canadian potato production areas, were sequenced and annotated. Their phylogenomic affiliation was determined, their pan-genome was characterized, and pathogenic determinants involved in their virulence, ranging from weak to aggressive, were compared. 13 out of 14 strains clustered with Streptomyces scabiei, while the last strain clustered with Streptomyces acidiscabies. The toxicogenic and colonization genomic regions were compared, and while some atypical gene organizations were observed, no clear correlation with virulence was observed. The production of the phytotoxin thaxtomin A was also quantified and again, contrary to previous reports in the literature, no clear correlation was found between the amount of thaxtomin A secreted, and the virulence observed. Although no significant differences were observed when comparing the presence/absence of the main virulence factors among the strains of S. scabiei, a distinct profile was observed for S. acidiscabies. Several mutations predicted to affect the functionality of some virulence factors were identified, including one in the bldA gene that correlates with the absence of thaxtomin A production despite the presence of the corresponding biosynthetic gene cluster in S. scabiei LBUM 1485. These novel findings obtained using a large number of scab-causing Streptomyces strains are challenging some assumptions made so far on Streptomyces’ virulence and suggest that other factors, yet to be characterized, are also key contributors.
Collapse
Affiliation(s)
- Cindy Hudec
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
12
|
Liu J, Nothias LF, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen Streptomyces scabiei. ACS OMEGA 2021; 6:11474-11487. [PMID: 34056303 PMCID: PMC8153979 DOI: 10.1021/acsomega.1c00526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Streptomyces scabiei is a key causative agent of common scab disease, which causes significant economic losses to potato growers worldwide. This organism produces several phytotoxins that are known or suspected to contribute to host-pathogen interactions and disease development; however, the full metabolic potential of S. scabiei has not been previously investigated. In this study, we used a combined metabolomic and genomic approach to investigate the metabolites that are produced by S. scabiei. The genome sequence was analyzed using antiSMASH and DeepBGC to identify specialized metabolite biosynthetic gene clusters. Using untargeted liquid chromatography-coupled tandem mass spectrometry (LC-MS2), the metabolic profile of S. scabiei was compared after cultivation on three different growth media. MS2 data were analyzed using Feature-Based Molecular Networking and hierarchical clustering in BioDendro. Metabolites were annotated by performing a Global Natural Products Social Molecular Networking (GNPS) spectral library search or using Network Annotation Propagation, SIRIUS, MetWork, or Competitive Fragmentation Modeling for Metabolite Identification. Using this approach, we were able to putatively identify new analogues of known metabolites as well as molecules that were not previously known to be produced by S. scabiei. To our knowledge, this study represents the first global analysis of specialized metabolites that are produced by this important plant pathogen.
Collapse
Affiliation(s)
- Jingyu Liu
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Louis-Félix Nothias
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California
San Diego, La Jolla, San Diego, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California
San Diego, La Jolla, San Diego, California 92093, United States
| | - Kapil Tahlan
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Dawn R. D. Bignell
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| |
Collapse
|
13
|
Weisberg AJ, Kramer CG, Kotha RR, Luthria DL, Chang JH, Clarke CR. A Novel Species-Level Group of Streptomyces Exhibits Variation in Phytopathogenicity Despite Conservation of Virulence Loci. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:39-48. [PMID: 33030393 DOI: 10.1094/mpmi-06-20-0164-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genus Streptomyces includes several phytopathogenic species that cause common scab, a devastating disease of tuber and root crops, in particular potato. The diversity of species that cause common scab is unknown. Likewise, the genomic context necessary for bacteria to incite common scab symptom development is not fully characterized. Here, we phenotyped and sequenced the genomes of five strains from a poorly studied Streptomyces lineage. These strains form a new species-level group. When genome sequences within just these five strains are compared, there are no polymorphisms of loci implicated in virulence. Each genome contains the pathogenicity island that encodes for the production of thaxtomin A, a phytotoxin necessary for common scab. Yet, not all sequenced strains produced thaxtomin A. Strains varied from nonpathogenic to highly virulent on two hosts. Unexpectedly, one strain that produced thaxtomin A and was pathogenic on radish was not aggressively pathogenic on potato. Therefore, while thaxtomin A biosynthetic genes and production of thaxtomin A are necessary, they are not sufficient for causing common scab of potato. Additionally, results show that even within a species-level group of Streptomyces strains, there can be aggressively pathogenic and nonpathogenic strains despite conservation of virulence genes.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, OR 97331, U.S.A
| | - Charles G Kramer
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Raghavendhar R Kotha
- Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Devanand L Luthria
- Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, OR 97331, U.S.A
- Center for Genome Research and Biocomputing, Oregon State University, OR 97331, U.S.A
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| |
Collapse
|
14
|
Makitrynskyy R, Tsypik O, Nuzzo D, Paululat T, Zechel DL, Bechthold A. Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes. Nucleic Acids Res 2020; 48:1583-1598. [PMID: 31956908 PMCID: PMC7026642 DOI: 10.1093/nar/gkz1220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
Cyclic dimeric 3'-5' guanosine monophosphate, c-di-GMP, is a ubiquitous second messenger controlling diverse cellular processes in bacteria. In streptomycetes, c-di-GMP plays a crucial role in a complex morphological differentiation by modulating an activity of the pleiotropic regulator BldD. Here we report that c-di-GMP plays a key role in regulating secondary metabolite production in streptomycetes by altering the expression levels of bldD. Deletion of cdgB encoding a diguanylate cyclase in Streptomycesghanaensis reduced c-di-GMP levels and the production of the peptidoglycan glycosyltransferase inhibitor moenomycin A. In contrast to the cdgB mutant, inactivation of rmdB, encoding a phosphodiesterase for the c-di-GMP hydrolysis, positively correlated with the c-di-GMP and moenomycin A accumulation. Deletion of bldD adversely affected the synthesis of secondary metabolites in S. ghanaensis, including the production of moenomycin A. The bldD-deficient phenotype is partly mediated by an increase in expression of the pleiotropic regulatory gene wblA. Genetic and biochemical analyses demonstrate that a complex of c-di-GMP and BldD effectively represses transcription of wblA, thus preventing sporogenesis and sustaining antibiotic synthesis. These results show that manipulation of the expression of genes controlling c-di-GMP pool has the potential to improve antibiotic production as well as activate the expression of silent gene clusters.
Collapse
Affiliation(s)
- Roman Makitrynskyy
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Olga Tsypik
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Desirèe Nuzzo
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Thomas Paululat
- Organic Chemistry, University of Siegen, Siegen 57068, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg 79104, Germany
| |
Collapse
|
15
|
Cheng Z, Bown L, Piercey B, Bignell DRD. Positive and Negative Regulation of the Virulence-Associated Coronafacoyl Phytotoxin in the Potato Common Scab Pathogen Streptomyces scabies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1348-1359. [PMID: 31107631 DOI: 10.1094/mpmi-03-19-0070-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potato common scab pathogen Streptomyces scabies produces N-coronafacoyl-l-isoleucine (CFA-Ile), which is a member of the coronafacoyl family of phytotoxins that are synthesized by multiple plant pathogenic bacteria. The CFA-Ile biosynthetic gene cluster contains a regulatory gene, cfaR, which directly controls the expression of the phytotoxin structural genes. In addition, a gene designated orf1 encodes a predicted ThiF family protein and is cotranscribed with cfaR, suggesting that it also plays a role in the regulation of CFA-Ile production. In this study, we demonstrated that CfaR is an essential activator of coronafacoyl phytotoxin production, while ORF1 is dispensable for phytotoxin production and may function as a helper protein for CfaR. We also showed that CFA-Ile inhibits the ability of CfaR to bind to the promoter region driving expression of the phytotoxin biosynthetic genes and that elevated CFA-Ile production by overexpression of both cfaR and orf1 in S. scabies increases the severity of disease symptoms induced by the pathogen during colonization of potato tuber tissue. Overall, our study reveals novel insights into the regulatory mechanisms controlling CFA-Ile production in S. scabies and it provides further evidence that CFA-Ile is an important virulence factor for this organism.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Brandon Piercey
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
16
|
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. MICROBIOLOGY-SGM 2019; 165:1025-1040. [PMID: 31162023 DOI: 10.1099/mic.0.000818] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Gustavo Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|
17
|
Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, Devreese B. Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in Streptomyces scabies. J Proteome Res 2018; 17:3837-3852. [DOI: 10.1021/acs.jproteome.8b00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Samuel Jourdan
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University Bakersfield, Bakersfield, California 93311-1022, United States
| | - Benoit Deflandre
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
18
|
Zhang Y, Jiang G, Ding Y, Loria R. Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. MOLECULAR PLANT PATHOLOGY 2018; 19:1733-1741. [PMID: 29316196 PMCID: PMC6638181 DOI: 10.1111/mpp.12656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 05/30/2023]
Abstract
With few exceptions, thaxtomin A (ThxA), a nitrated diketopiperazine, is the pathogenicity determinant for plant-pathogenic Streptomyces species. In Streptomyces scabiei (syn. S. scabies), the ThxA biosynthetic cluster is located within a 177-kb mobile pathogenicity island (PAI), called the toxicogenic region (TR). In S. turgidiscabies, the ThxA biosynthetic cluster is located within a 674-kb pathogenicity island (PAIst). The emergence of new plant pathogens occurs in this genus, but not frequently. This raises the question of whether the mobilization of these pathogenicity regions, through mating, is widespread and whether TR and PAIst can confer plant pathogenicity. We showed that ThxA biosynthetic clusters on TR and PAIst were transferred into strains from five non-pathogenic Streptomyces species through mating with S. scabiei and S. turgidiscabies. However, not all of the transconjugants produced ThxA and exhibited the virulence phenotype, indicating that the genetic background of the recipient strains affects the functionality of the ThxA biosynthetic cluster and therefore would be expected to affect the emergence of novel pathogenic Streptomyces species. Thxs have been patented as natural herbicides, but have yet to be commercialized. Our results also demonstrated the potential of the heterologous production of ThxA as a natural and biodegradable herbicide in non-pathogenic Streptomyces species.
Collapse
Affiliation(s)
- Yucheng Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFL32611USA
| | - Guangde Jiang
- Department of Medicinal ChemistryUniversity of FloridaGainesvilleFL32610USA
| | - Yousong Ding
- Department of Medicinal ChemistryUniversity of FloridaGainesvilleFL32610USA
| | - Rosemary Loria
- Department of Plant PathologyUniversity of FloridaGainesvilleFL32611USA
| |
Collapse
|
19
|
Bignell DRD, Cheng Z, Bown L. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities. Antonie van Leeuwenhoek 2018; 111:649-666. [PMID: 29307013 DOI: 10.1007/s10482-017-1009-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.
Collapse
Affiliation(s)
- Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
20
|
Abstract
The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to becoming a plant pathogen. More subtle mutations are also required for the perception of cues signifying the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not "taken lightly" and involves efficient systems monitoring environmental conditions. But how can a pathogen trigger the expression of virulence genes in a timely manner if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies, which is responsible for common scab disease on tuber and root crops. We propose here a series of hypotheses of how S. scabies could optimally distinguish whether cello-oligosaccharides originate from decomposing lignocellulose (nutrient sources, saprophyte) or, instead, emanate from living and expanding plant tissue (virulence signals, pathogen) and accordingly adapt its physiological response.
Collapse
|
21
|
Rey T, Dumas B. Plenty Is No Plague: Streptomyces Symbiosis with Crops. TRENDS IN PLANT SCIENCE 2017; 22:30-37. [PMID: 27916552 DOI: 10.1016/j.tplants.2016.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 05/19/2023]
Abstract
Streptomyces spp. constitute a major clade of the phylum Actinobacteria. These Gram-positive, filamentous prokaryotes are ubiquitous in soils and marine sediments, and are commonly found in the rhizosphere or inside plant roots. Plant-interacting Streptomyces have received limited attention, in contrast to Streptomyces spp. extensively investigated for decades in medicine given their rich potential for secondary metabolite biosynthesis. Recent genomic, metabolomic, and biotechnological advances have produced key insights into Streptomyces spp., paving the way to the use of their metabolites in agriculture. In this Opinion article we propose how Streptomyces spp. could dominate future aspects of crop nutrition and protection. Risks and benefits of the use of these microorganisms in agriculture are also discussed.
Collapse
Affiliation(s)
- Thomas Rey
- De Sangosse, Bonnel, 47480 Pont-Du-Casse, France; Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| |
Collapse
|
22
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
23
|
Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S, Frère JM, Matagne A, Kerff F, Devreese B, Loria R, Rigali S. The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity. Sci Rep 2016; 6:27144. [PMID: 27250236 PMCID: PMC4890002 DOI: 10.1038/srep27144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 11/15/2022] Open
Abstract
Streptomyces scabies is an economically important plant pathogen well-known for damaging root and tuber crops by causing scab lesions. Thaxtomin A is the main causative agent responsible for the pathogenicity of S. scabies and cello-oligosaccharides are environmental triggers that induce the production of this phytotoxin. How cello-oligosaccharides are sensed or transported in order to induce the virulent behavior of S. scabies? Here we report that the cellobiose and cellotriose binding protein CebE, and MsiK, the ATPase providing energy for carbohydrates transport, are the protagonists of the cello-oligosaccharide mediated induction of thaxtomin production in S. scabies. Our work provides the first example where the transport and not the sensing of major constituents of the plant host is the central mechanism associated with virulence of the pathogen. Our results allow to draw a complete pathway from signal transport to phytotoxin production where each step of the cascade is controlled by CebR, the cellulose utilization regulator. We propose the high affinity of CebE to cellotriose as possible adaptation of S. scabies to colonize expanding plant tissue. Our work further highlights how genes associated with primary metabolism in nonpathogenic Streptomyces species have been recruited as basic elements of virulence in plant pathogenic species.
Collapse
Affiliation(s)
- Samuel Jourdan
- Centre for Protein Engineering, Integrative Biological Sciences (InBioS) Research Unit, University of Liège, Institut de Chimie B6a, B-4000, Liège, Belgium
| | - Isolde Maria Francis
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311-1022, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0180, USA
| | - Min Jung Kim
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0180, USA
| | - Joren Jeico C. Salazar
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311-1022, USA
| | - Sören Planckaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Jean-Marie Frère
- Centre for Protein Engineering, Integrative Biological Sciences (InBioS) Research Unit, University of Liège, Institut de Chimie B6a, B-4000, Liège, Belgium
| | - André Matagne
- Centre for Protein Engineering, Integrative Biological Sciences (InBioS) Research Unit, University of Liège, Institut de Chimie B6a, B-4000, Liège, Belgium
| | - Frédéric Kerff
- Centre for Protein Engineering, Integrative Biological Sciences (InBioS) Research Unit, University of Liège, Institut de Chimie B6a, B-4000, Liège, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Rosemary Loria
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0180, USA
| | - Sébastien Rigali
- Centre for Protein Engineering, Integrative Biological Sciences (InBioS) Research Unit, University of Liège, Institut de Chimie B6a, B-4000, Liège, Belgium
| |
Collapse
|
24
|
Thangavel T, Tegg RS, Wilson CR. Toughing It Out--Disease-Resistant Potato Mutants Have Enhanced Tuber Skin Defenses. PHYTOPATHOLOGY 2016; 106:474-83. [PMID: 26780437 DOI: 10.1094/phyto-08-15-0191-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Common scab, a globally important potato disease, is caused by infection of tubers with pathogenic Streptomyces spp. Previously, disease-resistant potato somaclones were obtained through cell selections against the pathogen's toxin, known to be essential for disease. Further testing revealed that these clones had broad-spectrum resistance to diverse tuber-invading pathogens, and that resistance was restricted to tuber tissues. The mechanism of enhanced disease resistance was not known. Tuber periderm tissues from disease-resistant clones and their susceptible parent were examined histologically following challenge with the pathogen and its purified toxin. Relative expression of genes associated with tuber suberin biosynthesis and innate defense pathways within these tissues were also examined. The disease-resistant somaclones reacted to both pathogen and toxin by producing more phellem cell layers in the tuber periderm, and accumulating greater suberin polyphenols in these tissues. Furthermore, they had greater expression of genes associated with suberin biosynthesis. In contrast, signaling genes associated with innate defense responses were not differentially expressed between resistant and susceptible clones. The resistance phenotype is due to induction of increased periderm cell layers and suberization of the tuber periderm preventing infection. The somaclones provide a valuable resource for further examination of suberization responses and its genetic control.
Collapse
Affiliation(s)
- Tamilarasan Thangavel
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, New Town Research Laboratories, 13 St John's Avenue, Tasmania 7008, Australia
| |
Collapse
|
25
|
Abstract
The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria.
Collapse
|
26
|
Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies. PLoS One 2015; 10:e0122450. [PMID: 25826255 PMCID: PMC4380410 DOI: 10.1371/journal.pone.0122450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria.
Collapse
|
27
|
Abstract
A relatively small number of species in the large genus Streptomyces are pathogenic; the best characterized of these is Streptomyces scabies. The pathogenicity of S. scabies strains is dependent on the production of the nitrated diketopiperazine thaxtomin A, which is a potent plant cellulose synthesis inhibitor. Much is known about the genetic loci associated with plant virulence; however, the molecular mechanisms by which S. scabies triggers expression of thaxtomin biosynthetic genes, beyond the pathway-specific activator TxtR, are not well understood. In this study, we demonstrate that binding sites for the cellulose utilization repressor CebR occur and function within the thaxtomin biosynthetic cluster. This was an unexpected result, as CebR is devoted to primary metabolism and nutritive functions in nonpathogenic streptomycetes. In S. scabies, cellobiose and cellotriose inhibit the DNA-binding ability of CebR, leading to an increased expression of the thaxtomin biosynthetic and regulatory genes txtA, txtB, and txtR. Deletion of cebR results in constitutive thaxtomin A production and hypervirulence of S. scabies. The pathogenicity of S. scabies is thus under dual direct positive and negative transcriptional control where CebR is the cellobiose-sensing key that locks the expression of txtR, the key necessary to unlock the production of the phytotoxin. Interestingly, CebR-binding sites also lie upstream of and within the thaxtomin biosynthetic clusters in Streptomyces turgidiscabies and Streptomyces acidiscabies, suggesting that CebR is most likely an important regulator of virulence in these plant-pathogenic species as well. What makes a microorganism pathogenic is not limited to the genes acquired for virulence. Using the main causative agent of scab lesions on root and tuber crops as an example, our work identified the subtle but essential genetic changes that generate the cis-acting elements necessary for proper timing of the expression of the cluster of genes responsible for the biosynthesis of thaxtomin A, the primary virulence factor in plant-pathogenic streptomycetes. These data illustrate a situation in which a regulator associated with primary metabolism in nonpathogens, CebR, has been coopted as a master regulator of virulence in pathogenic species. Furthermore, the manipulation of CebR-mediated control of thaxtomin production will facilitate overproduction of this natural and biodegradable herbicide for commercial purposes. Our work thus provides a concrete example of how a strictly theoretical and computational work was able to elucidate a regulatory mechanism associated with the virulence of a plant pathogen and to generate solutions to purely agro-industrial concerns.
Collapse
|