1
|
Amirbekov A, Vrchovecka S, Riha J, Petrik I, Friedecky D, Novak O, Cernik M, Hrabak P, Sevcu A. Assessing HCH isomer uptake in Alnus glutinosa: implications for phytoremediation and microbial response. Sci Rep 2024; 14:4187. [PMID: 38378833 PMCID: PMC10879209 DOI: 10.1038/s41598-024-54235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, β, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in β-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in β-HCH and control rhizosphere samples but was lowest in δ-HCH samples.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Ivan Petrik
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 20, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Science, Humanities and Education, Technical University of Liberec, 460 01, Liberec, Czech Republic.
| |
Collapse
|
2
|
Zhang W, Li J, Li H, Zhang D, Zhu B, Yuan H, Gao T. Transcriptomic analysis of humic acid in relieving the inhibitory effect of high nitrogen on soybean nodulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1196939. [PMID: 37564385 PMCID: PMC10410467 DOI: 10.3389/fpls.2023.1196939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Introduction Nitrogen fertilizer intake promotes soybean growth before the formation of nodules, but excess nitrogen has an inhibitory effect on soybean nodulation. It is important to balance nitrogen levels to meet both growth and nodulation needs. Methods the nitrogen level suitable for soybean growth and nodulation was studied, the role of humic acid (HA) in alleviating the inhibition of high nitrogen on soybean nodulation was analyzed, and transcriptomic analysis was performed to understand its mechanism. Results The results showed that a lower level of nitrogen with 36.4 mg urea per pot could increase the number of nodules of soybean, and a higher level of nitrogen with 145.9 mg urea per pot (U4 group) had the best growth indicators but inhibited nodulation significantly. HA relieved the inhibitory effect at high nitrogen level, and the number of nodules increased by 122.1% when 1.29 g HA was added (H2 group) compared with the U4 group. The transcriptome analysis was subsequently performed on the H2 and U4 groups, showing that there were 2995 differentially expressed genes (DEGs) on the 25th day, accounting for 6.678% of the total annotated genes (44,848) under the test conditions. These DEGs were enriched in mitogen-activated protein kinase signaling pathway-plant, flavonoid biosynthesis, and plant hormone signal transduction based on the -log10 (P adjusted) value in the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). Discussion HA balanced the nitrogen level through the above pathways in soybean planting to control the number of nodules.
Collapse
Affiliation(s)
- Wenhua Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jia Li
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Hongya Li
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dongdong Zhang
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Baocheng Zhu
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongguo Gao
- Hebei Engineering Research Center for Resource Utilization of Agricultural Waste, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Wekesa C, Kiprotich K, Okoth P, Asudi GO, Muoma JO, Furch ACU, Oelmüller R. Molecular Characterization of Indigenous Rhizobia from Kenyan Soils Nodulating with Common Beans. Int J Mol Sci 2023; 24:ijms24119509. [PMID: 37298462 DOI: 10.3390/ijms24119509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Kenya is the seventh most prominent producer of common beans globally and the second leading producer in East Africa. However, the annual national productivity is low due to insufficient quantities of vital nutrients and nitrogen in the soils. Rhizobia are symbiotic bacteria that fix nitrogen through their interaction with leguminous plants. Nevertheless, inoculating beans with commercial rhizobia inoculants results in sparse nodulation and low nitrogen supply to the host plants because these strains are poorly adapted to the local soils. Several studies describe native rhizobia with much better symbiotic capabilities than commercial strains, but only a few have conducted field studies. This study aimed to test the competence of new rhizobia strains that we isolated from Western Kenya soils and for which the symbiotic efficiency was successfully determined in greenhouse experiments. Furthermore, we present and analyze the whole-genome sequence for a promising candidate for agricultural application, which has high nitrogen fixation features and promotes common bean yields in field studies. Plants inoculated with the rhizobial isolate S3 or with a consortium of local isolates (COMB), including S3, produced a significantly higher number of seeds and seed dry weight when compared to uninoculated control plants at two study sites. The performance of plants inoculated with commercial isolate CIAT899 was not significantly different from uninoculated plants (p > 0.05), indicating tight competition from native rhizobia for nodule occupancy. Pangenome analysis and the overall genome-related indices showed that S3 is a member of R. phaseoli. However, synteny analysis revealed significant differences in the gene order, orientation, and copy numbers between S3 and the reference R. phaseoli. Isolate S3 is phylogenomically similar to R. phaseoli. However, it has undergone significant genome rearrangements (global mutagenesis) to adapt to harsh conditions in Kenyan soils. Its high nitrogen fixation ability shows optimal adaptation to Kenyan soils, and the strain can potentially replace nitrogenous fertilizer application. We recommend that extensive fieldwork in other parts of the country over a period of five years be performed on S3 to check on how the yield changes with varying whether conditions.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Kelvin Kiprotich
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - George O Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - John O Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Alexandra C U Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
4
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
5
|
Pathania N, Kumar A, Sharma P, Kaur A, Sharma S, Jain R. Harnessing rhizobacteria to fulfil inter-linked nutrient dependency on soil and alleviate stresses in plants. J Appl Microbiol 2022; 133:2694-2716. [PMID: 35656999 DOI: 10.1111/jam.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Plant rhizo-microbiome comprises of complex microbial communities that colonizes at the interphase of plant roots and soil. Plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere provides important ecosystem services ranging from release of essential nutrients for enhancing soil quality and improving plant health to imparting protection to plants against rising biotic and abiotic stresses. Hence, PGPR serve as restoring agents to rejuvenate soil health and mediate plant fitness in the facet of changing climate. Though, it is evident that nutrients availability in soil are managed through inter-linked mechanisms, how PGPR expediate these processes remain less recognized. Promising results of PGPR inoculation on plant growth are continually reported in controlled environmental conditions, however, their field application often fails due to competition with native microbiota and low colonization efficiency in roots. The development of highly efficient and smart bacterial synthetic communities by integrating bacterial ecological and genetic features provides better opportunities for successful inoculant formulations. This review provides an overview of the inter-play between nutrient availability and disease suppression governed by rhizobacteria in soil followed by the role of synthetic bacterial communities in developing efficient microbial inoculants. Moreover, an outlook on the beneficial activities of rhizobacteria in modifying soil characteristics to sustainably boost agroecosystem functioning is also provided.
Collapse
Affiliation(s)
- Neemisha Pathania
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Avneet Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Sandeep Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
6
|
|
7
|
Nouwen N, Chaintreuil C, Fardoux J, Giraud E. A glutamate synthase mutant of Bradyrhizobium sp. strain ORS285 is unable to induce nodules on Nod factor-independent Aeschynomene species. Sci Rep 2021; 11:20910. [PMID: 34686745 PMCID: PMC8536739 DOI: 10.1038/s41598-021-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The Bradyrhizobium sp. strain ORS285 is able to establish a nitrogen-fixing symbiosis with both Nod factor (NF) dependent and NF-independent Aeschynomene species. Here, we have studied the growth characteristics and symbiotic interaction of a glutamate synthase (GOGAT; gltD::Tn5) mutant of Bradyrhizobium ORS285. We show that the ORS285 gltD::Tn5 mutant is unable to use ammonium, nitrate and many amino acids as nitrogen source for growth and is unable to fix nitrogen under free-living conditions. Moreover, on several nitrogen sources, the growth rate of the gltB::Tn5 mutant was faster and/or the production of the carotenoid spirilloxanthin was much higher as compared to the wild-type strain. The absence of GOGAT activity has a drastic impact on the symbiotic interaction with NF-independent Aeschynomene species. With these species, inoculation with the ORS285 gltD::Tn5 mutant does not result in the formation of nodules. In contrast, the ORS285 gltD::Tn5 mutant is capable to induce nodules on NF-dependent Aeschynomene species, but these nodules were ineffective for nitrogen fixation. Interestingly, in NF-dependent and NF-independent Aeschynomene species inoculation with the ORS285 gltD::Tn5 mutant results in browning of the plant tissue at the site of the infection suggesting that the mutant bacteria induce plant defence responses.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France.
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| |
Collapse
|
8
|
Frébortová J, Frébort I. Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria. Microorganisms 2021; 9:microorganisms9061314. [PMID: 34208724 PMCID: PMC8234997 DOI: 10.3390/microorganisms9061314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
It has been known for quite some time that cytokinins, hormones typical of plants, are also produced and metabolized in bacteria. Most bacteria can only form the tRNA-bound cytokinins, but there are examples of plant-associated bacteria, both pathogenic and beneficial, that actively synthesize cytokinins to interact with their host. Similar to plants, bacteria produce diverse cytokinin metabolites, employing corresponding metabolic pathways. The identification of genes encoding the enzymes involved in cytokinin biosynthesis and metabolism facilitated their detailed characterization based on both classical enzyme assays and structural approaches. This review summarizes the present knowledge on key enzymes involved in cytokinin biosynthesis, modifications, and degradation in bacteria, and discusses their catalytic properties in relation to the presence of specific amino acid residues and protein structure.
Collapse
|
9
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
10
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
11
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
12
|
Nouwen N, Arrighi JF, Gully D, Giraud E. RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:88-99. [PMID: 33226302 DOI: 10.1094/mpmi-07-20-0209-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Jean-Francois Arrighi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Gibb M, Kisiala AB, Morrison EN, Emery RJN. The Origins and Roles of Methylthiolated Cytokinins: Evidence From Among Life Kingdoms. Front Cell Dev Biol 2020; 8:605672. [PMID: 33240900 PMCID: PMC7680852 DOI: 10.3389/fcell.2020.605672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Cytokinins (CKs) are a group of adenine-derived, small signaling molecules of crucial importance for growth and multiple developmental processes in plants. Biological roles of classical CKs: isopentenyladenine (iP), trans and cis isomers of zeatin (tZ, cZ), and dihydrozeatin, have been studied extensively and their functions are well defined in many aspects of plant physiology. In parallel, extensive knowledge exists for genes involved in tRNA modifications that lead to the production of tRNA-bound methylthiolated CKs, especially in bacterial and mammalian systems. However, not much is known about the origins, fates, and possible functions of the unbound methylthiolated CKs (2MeS-CKs) in biological systems. 2MeS-CKs are the free base or riboside derivatives of iP or Z-type CKs, modified by the addition of a thiol group (–SH) at position 2 of the adenine ring that is subsequently methylated. Based on the evidence to date, these distinctive CK conjugates are derived exclusively via the tRNA degradation pathway. This review summarizes the knowledge on the probable steps involved in the biosynthesis of unbound 2MeS-CKs across diverse kingdoms of life. Furthermore, it provides examples of CK profiles of organisms from which the presence of 2MeS-CKs have been detected and confirms a close association and balance between the production of classical CKs and 2MeS-CKs. Finally, it discusses available reports regarding the possible physiological functions of 2MeS-CKs in different biological systems.
Collapse
Affiliation(s)
- Maya Gibb
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Erin N Morrison
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
14
|
Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J, Stamler RA, Kilcrease J, Randall JJ. Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11:14. [PMID: 32082278 PMCID: PMC7002392 DOI: 10.3389/fmicb.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA, United States
| | - Paul Q Lambert
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jolien Venneman
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - James Kilcrease
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
15
|
Nouwen N, Gargani D, Giraud E. The Modification of the Flavonoid Naringenin by Bradyrhizobium sp. Strain ORS285 Changes the nod Genes Inducer Function to a Growth Stimulator. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1517-1525. [PMID: 31265361 DOI: 10.1094/mpmi-05-19-0133-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As inducers of nodulation (nod) genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of nod genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic Bradyrhizobium sp. strain ORS285. This growth-stimulating effect was still observed for strain ORS285 with nodD1, nodD2, or the naringenin-degrading fde operon deleted. Phenotypic microarray analysis indicates that in cells grown in the presence of naringenin, the glycerol and fatty acid metabolism is activated. Moreover, electron microscopic and enzymatic analyses show that polyhydroxy alkanoate metabolism is altered in cells grown in the presence of naringenin. Although strain ORS285 was able to degrade naringenin, a fraction was converted into an intensely yellow-colored molecule with an m/z (+) of 363.0716. Further analysis indicates that this molecule is a hydroxylated and O-methylated form of naringenin. In contrast to naringenin, this derivative did not induce nod gene expression, but it did stimulate the growth of strain ORS285. We hypothesize that the growth stimulation and metabolic changes induced by naringenin are part of a mechanism to facilitate the colonization and infection of naringenin-exuding host plants.
Collapse
Affiliation(s)
- Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | | | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| |
Collapse
|
16
|
Daudu D, Kisiala A, Werner Ribeiro C, Mélin C, Perrot L, Clastre M, Courdavault V, Papon N, Oudin A, Courtois M, Dugé de Bernonville T, Gaucher M, Degrave A, Lanoue A, Lanotte P, Schouler C, Brisset MN, Emery RN, Pichon O, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. J Biotechnol 2019; 289:103-111. [DOI: 10.1016/j.jbiotec.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
17
|
Berrabah F, Ratet P, Gourion B. Legume Nodules: Massive Infection in the Absence of Defense Induction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:35-44. [PMID: 30252618 DOI: 10.1094/mpmi-07-18-0205-fi] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs, the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen-scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active, and do not develop defense reactions. Here, we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial-associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.
Collapse
Affiliation(s)
- Fathi Berrabah
- 1 Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Ziane Achour, 17000 Djelfa, Algeria
| | - Pascal Ratet
- 2 Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- 3 Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; and
| | - Benjamin Gourion
- 4 LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
18
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
19
|
Kundu A, DasGupta M. Silencing of Putative Cytokinin Receptor Histidine Kinase1 Inhibits Both Inception and Differentiation of Root Nodules in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:187-199. [PMID: 28876173 DOI: 10.1094/mpmi-06-17-0144-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rhizobia-legume interaction activates the SYM pathway that recruits cytokinin signaling for induction of nodule primordia in the cortex. In Arachis hypogaea, bradyrhizobia invade through natural cracks developed in the lateral root base and are directly endocytosed in the cortical cells to generate the nodule primordia. To unravel the role of cytokinin signaling in A. hypogaea, RNA-interference (RNAi) of cytokinin receptor histidine-kinase1 (AhHK1) was done. AhHK1-RNAi downregulated the expression of type-A response regulators such as AhRR5 and AhRR3 along with several symbiotic genes, indicating that both cytokinin signaling and the SYM pathway were affected. Accordingly, there was a drastic downregulation of nodulation in AhHK1-RNAi roots and the nodules that developed were ineffective. These nodules were densely packed, with infected cells having a higher nucleo-cytoplasmic ratio and distinctively high mitotic index, where the rod-shaped rhizobia failed to differentiate into bacteroids within spherical symbiosomes. In accordance with the proliferating state, expression of a mitotic-cyclin AhCycB2.1 was higher in AhHK1-RNAi nodules, whereas expression of a retinoblastoma-related (AhRBR) nodule that restrains proliferation was lower. Also, higher expression of the meristem maintenance factor WUSCHEL-RELATED HOMEOBOX5 correlated with the undifferentiated state of AhHK1-RNAi nodules. Our results suggest that AhHK1-mediated cytokinin signaling is important for both inception and differentiation during nodule development in A. hypogaea.
Collapse
Affiliation(s)
- Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
20
|
|
21
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
22
|
Zhang H, Guiguet A, Dubreuil G, Kisiala A, Andreas P, Emery RJN, Huguet E, Body M, Giron D. Dynamics and origin of cytokinins involved in plant manipulation by a leaf-mining insect. INSECT SCIENCE 2017; 24:1065-1078. [PMID: 28636152 DOI: 10.1111/1744-7917.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 05/22/2023]
Abstract
Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria-specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.
Collapse
Affiliation(s)
- Hui Zhang
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
- Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
- Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Canada
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Mélanie Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
23
|
Busset N, Di Lorenzo F, Palmigiano A, Sturiale L, Gressent F, Fardoux J, Gully D, Chaintreuil C, Molinaro A, Silipo A, Giraud E. The Very Long Chain Fatty Acid (C 26:25OH) Linked to the Lipid A Is Important for the Fitness of the Photosynthetic Bradyrhizobium Strain ORS278 and the Establishment of a Successful Symbiosis with Aeschynomene Legumes. Front Microbiol 2017; 8:1821. [PMID: 28983292 PMCID: PMC5613085 DOI: 10.3389/fmicb.2017.01821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
In rhizobium strains, the lipid A is modified by the addition of a very long-chain fatty acid (VLCFA) shown to play an important role in rigidification of the outer membrane, thereby facilitating their dual life cycle, outside and inside the plant. In Bradyrhizobium strains, the lipid A is more complex with the presence of at least two VLCFAs, one covalently linked to a hopanoid molecule, but the importance of these modifications is not well-understood. In this study, we identified a cluster of VLCFA genes in the photosynthetic Bradyrhizobium strain ORS278, which nodulates Aeschynomene plants in a Nod factor-independent process. We tried to mutate the different genes of the VLCFA gene cluster to prevent the synthesis of the VLCFAs, but only one mutant in the lpxXL gene encoding an acyltransferase was obtained. Structural analysis of the lipid A showed that LpxXL is involved in the transfer of the C26:25OH VLCFA to the lipid A but not in the one of the C30:29OH VLCFA which harbors the hopanoid molecule. Despite maintaining the second VLCFA, the ability of the mutant to cope with various stresses (low pH, high temperature, high osmolarity, and antimicrobial peptides) and to establish an efficient nitrogen-fixing symbiosis was drastically reduced. In parallel, we investigated whether the BRADO0045 gene, which encodes a putative acyltransferase displaying a weak identity with the apo-lipoprotein N-acyltransferase Lnt, could be involved in the transfer of the C30:29OH VLCFA to the lipid A. Although the mutant exhibited phenotypes similar to the lpxXL mutant, no difference in the lipid A structure was observed from that in the wild-type strain, indicating that this gene is not involved in the modification of lipid A. Our results advance our knowledge of the biosynthesis pathway and the role of VLCFAs-modified lipid A in free-living and symbiotic states of Bradyrhizobium strains.
Collapse
Affiliation(s)
- Nicolas Busset
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| | - Flaviana Di Lorenzo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico IINaples, Italy
| | - Angelo Palmigiano
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle RicercheCatania, Italy
| | - Luisa Sturiale
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle RicercheCatania, Italy
| | - Frederic Gressent
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| | - Joël Fardoux
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| | - Djamel Gully
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| | - Clémence Chaintreuil
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico IINaples, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico IINaples, Italy
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, Université de Montpellier, CIRADMontpellier, France
| |
Collapse
|
24
|
Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in Symbiotic Nodulation: When, Where, What For? TRENDS IN PLANT SCIENCE 2017; 22:792-802. [PMID: 28739135 DOI: 10.1016/j.tplants.2017.06.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 05/21/2023]
Abstract
Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review.
Collapse
Affiliation(s)
- Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France; INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Brígido C, Glick BR, Oliveira S. Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. MICROBIAL ECOLOGY 2017; 73:900-915. [PMID: 27904921 DOI: 10.1007/s00248-016-0891-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Rhizobia may possess other plant growth-promoting mechanisms besides nitrogen fixation. These mechanisms and the tolerance to different environmental factors, such as metals, may contribute to the use of rhizobia inocula to establish a successful legume-rhizobia symbiosis. Our goal was to characterize a collection of native Portuguese chickpea Mesorhizobium isolates in terms of plant growth-promoting (PGP) traits and tolerance to different metals as well as to investigate whether these characteristics are related to the biogeography of the isolates. The occurrence of six PGP mechanisms and tolerance to five metals were evaluated in 61 chickpea Mesorhizobium isolates previously obtained from distinct provinces in Portugal and assigned to different species clusters. Chickpea microsymbionts show high diversity in terms of PGP traits as well as in their ability to tolerate different metals. All isolates synthesized indoleacetic acid, 50 isolates produced siderophores, 19 isolates solubilized phosphate, 12 isolates displayed acid phosphatase activity, and 22 exhibited cytokinin activity. Most isolates tolerated Zn or Pb but not Ni, Co, or Cu. Several associations between specific PGP mechanisms and the province of origin and species clusters of the isolates were found. Our data suggests that the isolate's tolerance to metals and ability to solubilize inorganic phosphate and to produce IAA may be responsible for the persistence and distribution of the native Portuguese chickpea Mesorhizobium species. Furthermore, this study revealed several chickpea microsymbionts with potential as PGP rhizobacteria as well as for utilization in phytoremediation strategies.
Collapse
Affiliation(s)
- Clarisse Brígido
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal
- IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002-554, Évora, Portugal
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Solange Oliveira
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554, Évora, Portugal.
| |
Collapse
|
26
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
27
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
28
|
Hinsch J, Galuszka P, Tudzynski P. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. THE NEW PHYTOLOGIST 2016; 211:980-992. [PMID: 27074411 DOI: 10.1111/nph.13960] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
In plants, cytokinins (CKs) are synthesized de novo or by the degradation of modified tRNAs. Recently, the first fungal de novo pathway was identified within the plant pathogen Claviceps purpurea. As the deletion of the de novo pathway did not lead to a complete loss of CKs, this work focuses on the tRNA-modifying protein tRNA-isopentenyltransferase (CptRNA-IPT). The contribution of this enzyme to the CK pool of Claviceps and the role of CKs in the host-pathogen interaction are emphasized. The effects of the deletion of cptRNA-ipt and the double deletion of cptRNA-ipt and the key gene of de novo biosynthesis cpipt-log on growth, CK biosynthesis and virulence were analyzed. In addition, the sites of action of CptRNA-IPT were visualized using reporter gene fusions. In addition to CK-independent functions, CptRNA-IPT was essential for the biosynthesis of cis-zeatin (cZ) and contributed to the formation of isopentenyladenine (iP) and trans-zeatin (tZ). Although ΔcptRNA-ipt was reduced in virulence, the 'CK-free' double deletion mutant was nearly apathogenic. The results prove a redundancy of the CK biosynthesis pathway in C. purpurea for iP and tZ formation. Moreover, we show, for the first time, that CKs are required for the successful establishment of a host-fungus interaction.
Collapse
Affiliation(s)
- Janine Hinsch
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Petr Galuszka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Paul Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
29
|
Yuan K, Miwa H, Iizuka M, Yokoyama T, Fujii Y, Okazaki S. Genetic Diversity and Symbiotic Phenotype of Hairy Vetch Rhizobia in Japan. Microbes Environ 2016; 31:121-6. [PMID: 27151657 PMCID: PMC4912146 DOI: 10.1264/jsme2.me15184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hairy vetch (Vicia villosa Roth) is a leguminous crop widely used as green manure and a cover crop in Japan. It exhibits strong weed-suppressing activity, high resistance to insect pests, and the ability to fix nitrogen through symbiotic interactions with soil bacteria known as rhizobia. Few studies have investigated the rhizobia that form nodules on hairy vetch in Japan, and the biological resources available for selecting high nitrogen-fixing rhizobia are limited. In the present study, we isolated 110 hairy vetch rhizobia from 13 different areas in Japan. Based on their 16S rRNA gene sequences, 73% of the isolates were identified as Rhizobium leguminosarum. A comparative analysis of nodC and 16S rRNA gene phylogenies revealed that several isolates possessed congruent nodC sequences despite having divergent 16S rRNA gene sequences, suggesting that the horizontal transfer of nod genes occurred during the evolution of rhizobia. Inoculation tests showed that isolates closely related to R. leguminosarum had better plant growth-promoting effects than other strains, thereby providing a promising agricultural resource for inoculating crops.
Collapse
Affiliation(s)
- Kun Yuan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | | | | | | | | | | |
Collapse
|
30
|
Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 2016; 6:23310. [PMID: 26984671 PMCID: PMC4794740 DOI: 10.1038/srep23310] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Richard Tafner
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - María V Moreno
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Sebastian A Stenglein
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Inés E García de Salamone
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires 1417, Argentina
| | - Louise M Nelson
- Department of Biology, Irving K Barber School of Arts and Sciences, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eric van der Graaff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
31
|
Busset N, De Felice A, Chaintreuil C, Gully D, Fardoux J, Romdhane S, Molinaro A, Silipo A, Giraud E. The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes. PLoS One 2016; 11:e0148884. [PMID: 26849805 PMCID: PMC4743980 DOI: 10.1371/journal.pone.0148884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene.
Collapse
Affiliation(s)
- Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonia De Felice
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Sana Romdhane
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
- * E-mail:
| |
Collapse
|
32
|
Kulkarni G, Busset N, Molinaro A, Gargani D, Chaintreuil C, Silipo A, Giraud E, Newman DK. Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens. mBio 2015. [PMID: 26489859 DOI: 10.1128/mbio.01251-1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
UNLABELLED A better understanding of how bacteria resist stresses encountered during the progression of plant-microbe symbioses will advance our ability to stimulate plant growth. Here, we show that the symbiotic system comprising the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens and the legume Aeschynomene afraspera requires hopanoid production for optimal fitness. While methylated (2Me) hopanoids contribute to growth under plant-cell-like microaerobic and acidic conditions in the free-living state, they are dispensable during symbiosis. In contrast, synthesis of extended (C35) hopanoids is required for growth microaerobically and under various stress conditions (high temperature, low pH, high osmolarity, bile salts, oxidative stress, and antimicrobial peptides) in the free-living state and also during symbiosis. These defects might be due to a less rigid membrane resulting from the absence of free or lipidA-bound C35 hopanoids or the accumulation of the C30 hopanoid diploptene. Our results also show that C35 hopanoids are necessary for symbiosis only with the host Aeschynomene afraspera but not with soybean. This difference is likely related to the presence of cysteine-rich antimicrobial peptides in Aeschynomene nodules that induce drastic modification in bacterial morphology and physiology. The study of hopanoid mutants in plant symbionts thus provides an opportunity to gain insight into host-microbe interactions during later stages of symbiotic progression, as well as the microenvironmental conditions for which hopanoids provide a fitness advantage. IMPORTANCE Because bradyrhizobia provide fixed nitrogen to plants, this work has potential agronomical implications. An understanding of how hopanoids facilitate bacterial survival in soils and plant hosts may aid the engineering of more robust agronomic strains, especially relevant in regions that are becoming warmer and saline due to climate change. Moreover, this work has geobiological relevance: hopanes, molecular fossils of hopanoids, are enriched in ancient sedimentary rocks at discrete intervals in Earth history. This is the first study to uncover roles for 2Me- and C35 hopanoids in the context of an ecological niche that captures many of the stressful environmental conditions thought to be important during (2Me)-hopane deposition. Though much remains to be done to determine whether the conditions present within the plant host are shared with niches of relevance to the rock record, our findings represent an important step toward identifying conserved mechanisms whereby hopanoids contribute to fitness.
Collapse
Affiliation(s)
- Gargi Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | | | - Clemence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA Howard Hughes Medical Institute, Pasadena, California, USA Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
33
|
Kulkarni G, Busset N, Molinaro A, Gargani D, Chaintreuil C, Silipo A, Giraud E, Newman DK. Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens. mBio 2015; 6:e01251-15. [PMID: 26489859 PMCID: PMC4620461 DOI: 10.1128/mbio.01251-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A better understanding of how bacteria resist stresses encountered during the progression of plant-microbe symbioses will advance our ability to stimulate plant growth. Here, we show that the symbiotic system comprising the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens and the legume Aeschynomene afraspera requires hopanoid production for optimal fitness. While methylated (2Me) hopanoids contribute to growth under plant-cell-like microaerobic and acidic conditions in the free-living state, they are dispensable during symbiosis. In contrast, synthesis of extended (C35) hopanoids is required for growth microaerobically and under various stress conditions (high temperature, low pH, high osmolarity, bile salts, oxidative stress, and antimicrobial peptides) in the free-living state and also during symbiosis. These defects might be due to a less rigid membrane resulting from the absence of free or lipidA-bound C35 hopanoids or the accumulation of the C30 hopanoid diploptene. Our results also show that C35 hopanoids are necessary for symbiosis only with the host Aeschynomene afraspera but not with soybean. This difference is likely related to the presence of cysteine-rich antimicrobial peptides in Aeschynomene nodules that induce drastic modification in bacterial morphology and physiology. The study of hopanoid mutants in plant symbionts thus provides an opportunity to gain insight into host-microbe interactions during later stages of symbiotic progression, as well as the microenvironmental conditions for which hopanoids provide a fitness advantage. IMPORTANCE Because bradyrhizobia provide fixed nitrogen to plants, this work has potential agronomical implications. An understanding of how hopanoids facilitate bacterial survival in soils and plant hosts may aid the engineering of more robust agronomic strains, especially relevant in regions that are becoming warmer and saline due to climate change. Moreover, this work has geobiological relevance: hopanes, molecular fossils of hopanoids, are enriched in ancient sedimentary rocks at discrete intervals in Earth history. This is the first study to uncover roles for 2Me- and C35 hopanoids in the context of an ecological niche that captures many of the stressful environmental conditions thought to be important during (2Me)-hopane deposition. Though much remains to be done to determine whether the conditions present within the plant host are shared with niches of relevance to the rock record, our findings represent an important step toward identifying conserved mechanisms whereby hopanoids contribute to fitness.
Collapse
Affiliation(s)
- Gargi Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | | | - Clemence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Naples, Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA Howard Hughes Medical Institute, Pasadena, California, USA Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
34
|
Hinsch J, Vrabka J, Oeser B, Novák O, Galuszka P, Tudzynski P. De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ Microbiol 2015; 17:2935-51. [PMID: 25753486 DOI: 10.1111/1462-2920.12838] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/28/2015] [Indexed: 01/08/2023]
Abstract
Disease symptoms of some phytopathogenic fungi are associated with changes in cytokinin (CK) levels. Here, we show that the CK profile of ergot-infected rye plants is also altered, although no pronounced changes occur in the expression of the host plant's CK biosynthesis genes. Instead, we demonstrate a clearly different mechanism: we report on the first fungal de novo CK biosynthesis genes, prove their functions and constitute a biosynthetic pathway. The ergot fungus Claviceps purpurea produces substantial quantities of CKs in culture and, like plants, expresses enzymes containing the isopentenyltransferase and lonely guy domains necessary for de novo isopentenyladenine production. Uniquely, two of these domains are combined in one bifunctional enzyme, CpIPT-LOG, depicting a novel and potent mechanism for CK production. The fungus also forms trans-zeatin, a reaction catalysed by a CK-specific cytochrome P450 monooxygenase, which is encoded by cpp450 forming a small cluster with cpipt-log. Deletion of cpipt-log and cpp450 did not affect virulence of the fungus, but Δcpp450 mutants exhibit a hyper-sporulating phenotype, implying that CKs are environmental factors influencing fungal development.
Collapse
Affiliation(s)
- Janine Hinsch
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Josef Vrabka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Birgitt Oeser
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Ondřej Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Petr Galuszka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Paul Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
35
|
Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat Commun 2014; 5:5106. [PMID: 25355435 DOI: 10.1038/ncomms6106] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023] Open
Abstract
Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.
Collapse
|
36
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
37
|
Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 2014; 40:826-35. [PMID: 24944001 DOI: 10.1007/s10886-014-0466-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Recently, a renewed interest in cytokinins (CKs) has allowed the characterization of these phytohormones as key regulatory molecules in plant biotic interactions. They have been proved to be instrumental in microbe- and insect-mediated plant phenotypes that can be either beneficial or detrimental for the host-plant. In parallel, insect endosymbiotic bacteria have emerged as key players in plant-insect interactions mediating directly or indirectly fundamental aspects of insect nutrition, such as insect feeding efficiency or the ability to manipulate plant physiology to overcome food nutritional imbalances. However, mechanisms that regulate CK production and the role played by insects and their endosymbionts remain largely unknown. Against this backdrop, studies on plant-associated bacteria have revealed fascinating and complex molecular mechanisms that lead to the production of bacterial CKs and the modulation of plant-borne CKs which ultimately result in profound metabolic and morphological plant modifications. This review highlights major strategies used by plant-associated bacteria that impact the CK homeostasis of their host-plant, to raise parallels with strategies used by phytophagous insects and to discuss the possible role played by endosymbiotic bacteria in these CK-mediated plant phenotypes. We hypothesize that insects employ a CK-mix production strategy that manipulates the phytohormonal balance of their host-plant and overtakes plant gene expression causing a metabolic and morphological habitat modification. In addition, insect endosymbiotic bacteria may prove to be instrumental in these manipulations through the production of bacterial CKs, including specific forms that challenge the CK-degrading capacity of the plant (thus ensuring persistent effects) and the CK-mediated plant defenses.
Collapse
|
38
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
39
|
Sardesai N, Lee LY, Chen H, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 2013; 6:ra100. [PMID: 24255177 DOI: 10.1126/scisignal.2004518] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium-mediated transformation is the most widely used technique for generating transgenic plants. However, many crops remain recalcitrant. We found that an Arabidopsis myb family transcription factor (MTF1) inhibited plant transformation susceptibility. Mutating MTF1 increased attachment of several Agrobacterium strains to roots and increased both stable and transient transformation in both susceptible and transformation-resistant Arabidopsis ecotypes. Cytokinins from Agrobacterium tumefaciens decreased the expression of MTF1 through activation of the cytokinin response regulator ARR3. Mutating AHK3 and AHK4, genes that encode cytokinin-responsive kinases, increased the expression of MTF1 and impaired plant transformation. Mutant mtf1 plants also had increased expression of AT14A, which encodes a putative transmembrane receptor for cell adhesion molecules. Plants overexpressing AT14A exhibited increased susceptibility to transformation, whereas at14a mutant plants exhibited decreased attachment of bacteria to roots and decreased transformation, suggesting that AT14A may serve as an anchor point for Agrobacteria. Thus, by promoting bacterial attachment and transformation of resistant plants and increasing such processes in susceptible plants, treating roots with cytokinins may help engineer crops with improved features or yield.
Collapse
Affiliation(s)
- Nagesh Sardesai
- 1Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kisiala A, Laffont C, Emery RJN, Frugier F. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1225-31. [PMID: 24001254 DOI: 10.1094/mpmi-02-13-0054-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacteria present in the rhizosphere of plants often synthesize phytohormones, and these signals can consequently affect root system development. In legumes, plants adapt to nitrogen starvation by forming lateral roots as well as a new organ, the root nodule, following a symbiotic interaction with bacteria collectively referred to as rhizobia. As cytokinin (CK) phytohormones were shown to be necessary and sufficient to induce root nodule organogenesis, the relevance of CK production by symbiotic rhizobia was questioned. In this study, we analyzed quantitatively, by liquid chromatography-tandem mass spectrometry, the production of 25 forms of CK in nine rhizobia strains belonging to four different species. All bacterial strains were able to synthesize a mix of CK, and bioactive forms of CK, such as iP, were notably found to be secreted in bacterial culture supernatants. Use of a mutant affected in extracellular polysaccharide (EPS) production revealed a negative correlation of EPS production with the ability to secrete CK. In addition, analysis of a nonnodulating Sinorhizobium meliloti strain revealed a similar pattern of CK production and secretion when compared with a related nodulating strain. This indicates that bacterially produced CK are not sufficient to induce symbiotic nodulation.
Collapse
|