1
|
Sousa LJD, Santos IR, Luz IS, Ribeiro DG, Oliveira-Neto OBD, Fontes W, Blum LEB, Mehta A. New potential susceptibility factors contributing to tomato bacterial spot disease. J Proteomics 2025; 314:105387. [PMID: 39863247 DOI: 10.1016/j.jprot.2025.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai). The results revealed that most of the identified proteins showed increased abundance in the infected group and were classified into different gene ontology groups. Eight of these proteins were related to susceptibility in other pathosystems, suggesting their potential involvement in the development of bacterial spot in tomato. Some of these proteins are involved in the negative regulation of salicylic acid, PR proteins and reactive oxygen species (ROS), as well as contributing to the acquisition of sugars by the pathogen. The results obtained in this study provided us with valuable information for understanding the molecular mechanisms that lead to tomato susceptibility to Xep and will help in developing tomato cultivars resistant to bacterial spot. SIGNIFICANCE: Our proteomic study of tomato plants during infection by Xep allowed for the identification of potential proteins that contribute to bacterial spot tomato disease development. These proteins can act in different ways to favor the pathogen, such as the negative modulation of phytohormones involved in plant defense, the inhibition of PR proteins and reactive oxygen species, as well as to collaborate in the acquisition of sugar for pathogen nutrition.
Collapse
Affiliation(s)
- Lucas José de Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil
| | - Isabelle Souza Luz
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Luiz Eduardo Bassay Blum
- Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil.
| |
Collapse
|
2
|
Reveguk T, Fatiukha A, Potapenko E, Reveguk I, Sela H, Klymiuk V, Li Y, Pozniak C, Wicker T, Coaker G, Fahima T. Tandem kinase proteins across the plant kingdom. Nat Genet 2025; 57:254-262. [PMID: 39779952 DOI: 10.1038/s41588-024-02032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Plant pathogens pose a continuous threat to global food production. Recent discoveries in plant immunity research unveiled a unique protein family characterized by an unusual resistance protein structure that combines two kinase domains. This study demonstrates the widespread occurrence of tandem kinase proteins (TKPs) across the plant kingdom. An examination of 104 plant species' genomes uncovered 2,682 TKPs. The majority (95.6%) of these kinase domains are part of the receptor-like kinase-Pelle family, which is crucial for cell surface responses in plant immunity. Notably, 90% of TKPs comprise dual kinase domains, with over 50% being pseudokinases. Over 56% of these proteins harbor 127 different integrated domains, and over 47% include a transmembrane domain. TKP pseudokinases and/or integrated domains probably serve as decoys, engaging with pathogen effectors to trigger plant immunity. The TKP Atlas we created sheds light on the mechanisms of TKP convergent molecular evolution and potential function.
Collapse
Affiliation(s)
- Tamara Reveguk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Evgenii Potapenko
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Ivan Reveguk
- Laboratory of the Structural Biology of the Cell (BIOC), École Polytechnique, Paris, France
| | - Hanan Sela
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yinghui Li
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Abbas S, Li Y, Lu J, Hu J, Zhang X, Lv X, Shahzad A, Ao D, Abbas M, Wu Y, Zhang L, Fayyaz M. Evaluation of stripe rust resistance and analysis of resistance genes in wheat genotypes from Pakistan and Southwest China. FRONTIERS IN PLANT SCIENCE 2024; 15:1494566. [PMID: 39717730 PMCID: PMC11663667 DOI: 10.3389/fpls.2024.1494566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Introduction Stripe rust, caused by Puccinia striiformis f. sp. tritici, poses a significant threat to wheat quality and production worldwide. The rapid evolution of Pst races caused several resistance genes to be ineffective. Methods This study evaluated stripe rust resistance genes in 349 Pakistan and Southwest China genotypes. We utilized previously published functional and linked molecular markers to detect 13 major stripe rust resistance genes: Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, Yr26, Yr29, Yr30, Yr36, Yr48, Yr65, and YrSp. Field evaluations assessed IT and resistance levels, while the impact of gene combinations on resistance was also analyzed. Results Field evaluations showed that over 60% of Chuanyu wheat, 50% of recent Pakistani cultivars, and 20% of historic Pakistani lines were resistant to current stripe rust races. In Chuanyu wheat, the dominant genes were Yr17, YrSp, and Yr48; however, Yr17, Yr26, and YrSp were overused, while Yr36 was absent, and Yr18 was rare. In historic lines, Yr5, Yr17, Yr18, and Yr26 were prevalent, with Yr15, Yr26, and YrSp demonstrating effective resistance against current stripe rust races. Furthermore, the study identified specific combinations of Yr genes (Yr26+Yr48, Yr29+Yr5, Yr26+Yr30, and Yr30+Yr17) that enhanced resistance to Pst. Discussion This research highlights effective resistance genes and gene combinations for stripe rust in wheat and emphasizes the deployment of durable resistance. The findings guide the strategic use of these genes in breeding programs aimed at developing durable resistance in wheat genotypes in Pakistan and Southwest China.
Collapse
Affiliation(s)
- Sakina Abbas
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianming Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinnuo Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Lv
- University of Chinese Academy of Sciences, Beijing, China
| | - Armghan Shahzad
- National Institute of Genomics and Advance Biotechnology, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Donghui Ao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maryam Abbas
- Department of Computer Science, Iqra University, Islamabad, Pakistan
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Muhammad Fayyaz
- Crop Diseases Research Institute, Pakistan Agriculture Research Council, Islamabad, Pakistan
| |
Collapse
|
4
|
Sharma D, Avni R, Gutierrez-Gonzalez J, Kumar R, Sela H, Prusty MR, Shatil-Cohen A, Molnár I, Holušová K, Said M, Doležel J, Millet E, Khazan-Kost S, Landau U, Bethke G, Sharon O, Ezrati S, Ronen M, Maatuk O, Eilam T, Manisterski J, Ben-Yehuda P, Anikster Y, Matny O, Steffenson BJ, Mascher M, Brabham HJ, Moscou MJ, Liang Y, Yu G, Wulff BBH, Muehlbauer G, Minz-Dub A, Sharon A. A single NLR gene confers resistance to leaf and stripe rust in wheat. Nat Commun 2024; 15:9925. [PMID: 39548072 PMCID: PMC11568145 DOI: 10.1038/s41467-024-54068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
Collapse
Affiliation(s)
- Davinder Sharma
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Raz Avni
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Juan Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Rakesh Kumar
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, USA
| | - Hanan Sela
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Manas Ranjan Prusty
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Arava Shatil-Cohen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Eitan Millet
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Sofia Khazan-Kost
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Udi Landau
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Gerit Bethke
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Or Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Ezrati
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ronen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oxana Maatuk
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Eilam
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Manisterski
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Pnina Ben-Yehuda
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Yehoshua Anikster
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helen J Brabham
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
- 2Blades, Evanston, IL, USA
| | - Matthew J Moscou
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Yong Liang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Anna Minz-Dub
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
| | - Amir Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, Gardener C, Quiroz-Chávez J, Rustamova SM, Elkot AF, Patpour M, Rasheed A, Mao L, Lagudah ES, Periyannan SK, Sharon A, Himmelbach A, Reif JC, Knauft M, Mascher M, Stein N, Chayut N, Ghosh S, Perovic D, Putra A, Perera AB, Hu CY, Yu G, Ahmed HI, Laquai KD, Rivera LF, Chen R, Wang Y, Gao X, Liu S, Raupp WJ, Olson EL, Lee JY, Chhuneja P, Kaur S, Zhang P, Park RF, Ding Y, Liu DC, Li W, Nasyrova FY, Dvorak J, Abbasi M, Li M, Kumar N, Meyer WB, Boshoff WHP, Steffenson BJ, Matny O, Sharma PK, Tiwari VK, Grewal S, Pozniak CJ, Chawla HS, Ens J, Dunning LT, Kolmer JA, Lazo GR, Xu SS, Gu YQ, Xu X, Uauy C, Abrouk M, Bougouffa S, Brar GS, Wulff BBH, Krattinger SG. Origin and evolution of the bread wheat D genome. Nature 2024; 633:848-855. [PMID: 39143210 PMCID: PMC11424481 DOI: 10.1038/s41586-024-07808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.
Collapse
Affiliation(s)
- Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea González-Muñoz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Adil Salhi
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Samira M Rustamova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmed Fawzy Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- International Maize and Wheat Improvement Centre (CIMMYT), c/o CAAS, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
| | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
- Centre for Crop Health School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Amir Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Dragan Perovic
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Alexander Putra
- Bioscience Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ana B Perera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chia-Yi Hu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre d'anthropobiologie et de génomique de Toulouse (CAGT), Laboratoire d'Anthropobiologie et d'Imagerie de Synthèse, CNRS UMR 5288, Faculté de Médecine de Purpan, Toulouse, France
| | - Konstanze D Laquai
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis F Rivera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - W John Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Yi Ding
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Deng-Cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Firuza Y Nasyrova
- Institute of Botany, Plant Physiology and Genetics, Tajik National Academy of Sciences, Dushanbe, Tajikistan
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Meng Li
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Naveen Kumar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Surbhi Grewal
- Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Harmeet Singh Chawla
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Ens
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Xianyang Xu
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, USA
| | | | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
He H, Chen Z, Fan R, Zhang J, Zhu S, Wang J, Zhang Q, Gao A, Gong S, Zhang L, Li Y, Zhao Y, Krattinger SG, Shen QH, Li H, Wang Y. A kinase fusion protein from Aegilops longissima confers resistance to wheat powdery mildew. Nat Commun 2024; 15:6512. [PMID: 39095395 PMCID: PMC11297308 DOI: 10.1038/s41467-024-50909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Many disease resistance genes have been introgressed into wheat from its wild relatives. However, reduced recombination within the introgressed segments hinders the cloning of the introgressed genes. Here, we have cloned the powdery mildew resistance gene Pm13, which is introgressed into wheat from Aegilops longissima, using a method that combines physical mapping with radiation-induced chromosomal aberrations and transcriptome sequencing analysis of ethyl methanesulfonate (EMS)-induced loss-of-function mutants. Pm13 encodes a kinase fusion protein, designated MLKL-K, with an N-terminal domain of mixed lineage kinase domain-like protein (MLKL_NTD domain) and a C-terminal serine/threonine kinase domain bridged by a brace. The resistance function of Pm13 is validated through transient and stable transgenic complementation assays. Transient over-expression analyses in Nicotiana benthamiana leaves and wheat protoplasts reveal that the fragment Brace-Kinase122-476 of MLKL-K is capable of inducing cell death, which is dependent on a functional kinase domain and the three α-helices in the brace region close to the N-terminus of the kinase domain.
Collapse
Affiliation(s)
- Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| | - Zhaozhao Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shanying Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiale Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qianyuan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Anli Gao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yitong Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Wang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Plant Science Program, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
8
|
Zhao Y, Dong Z, Miao J, Liu Q, Ma C, Tian X, He J, Bi H, Yao W, Li T, Gill HS, Zhang Z, Cao A, Liu B, Li H, Sehgal SK, Liu W. Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance. Nat Commun 2024; 15:4796. [PMID: 38839783 PMCID: PMC11153570 DOI: 10.1038/s41467-024-49257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Powdery mildew is a devastating disease that affects wheat yield and quality. Wheat wild relatives represent valuable sources of disease resistance genes. Cloning and characterization of these genes will facilitate their incorporation into wheat breeding programs. Here, we report the cloning of Pm57, a wheat powdery mildew resistance gene from Aegilops searsii. It encodes a tandem kinase protein with putative kinase-pseudokinase domains followed by a von Willebrand factor A domain (WTK-vWA), being ortholog of Lr9 that mediates wheat leaf rust resistance. The resistance function of Pm57 is validated via independent mutants, gene silencing, and transgenic assays. Stable Pm57 transgenic wheat lines and introgression lines exhibit high levels of all-stage resistance to diverse isolates of the Bgt fungus, and no negative impacts on agronomic parameters are observed in our experimental set-up. Our findings highlight the emerging role of kinase fusion proteins in plant disease resistance and provide a valuable gene for wheat breeding.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Jingnan Miao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qianwen Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiubin Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinqiu He
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Bi
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huanhuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Li M, Zhang H, Xiao H, Zhu K, Shi W, Zhang D, Wang Y, Yang L, Wu Q, Xie J, Chen Y, Qiu D, Guo G, Lu P, Li B, Dong L, Li W, Cui X, Li L, Tian X, Yuan C, Li Y, Yu D, Nevo E, Fahima T, Li H, Dong L, Zhao Y, Liu Z. A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew. Nat Commun 2024; 15:3124. [PMID: 38600164 PMCID: PMC11006675 DOI: 10.1038/s41467-024-47497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huixin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Shi
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dong Zhang
- Beijing PlantTech Biotechnology Co., Ltd., Beijing, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lingchuan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya City, Hainan Province, China.
| |
Collapse
|
10
|
Healey AL, Garsmeur O, Lovell JT, Shengquiang S, Sreedasyam A, Jenkins J, Plott CB, Piperidis N, Pompidor N, Llaca V, Metcalfe CJ, Doležel J, Cápal P, Carlson JW, Hoarau JY, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, Boston LB, Webber J, Keymanesh K, Tejomurthula S, Rajasekar S, Suchecki R, Furtado A, May G, Parakkal P, Simmons BA, Barry K, Henry RJ, Grimwood J, Aitken KS, Schmutz J, D'Hont A. The complex polyploid genome architecture of sugarcane. Nature 2024; 628:804-810. [PMID: 38538783 PMCID: PMC11041754 DOI: 10.1038/s41586-024-07231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.
Collapse
Affiliation(s)
- A L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - O Garsmeur
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - J T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Shengquiang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - C B Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - N Piperidis
- Sugar Research Australia, Te Kowai, Queensland, Australia
| | - N Pompidor
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - V Llaca
- Corteva Agriscience, Johnston, IA, USA
| | - C J Metcalfe
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - P Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - J W Carlson
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Y Hoarau
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- ERCANE, Sainte-Clotilde, La Réunion, France
| | - C Hervouet
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Zini
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Dievart
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - A Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - L B Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - J Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Tejomurthula
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Rajasekar
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - R Suchecki
- CSIRO Agriculture and Food, Urrbrae, South Australia, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - G May
- Corteva Agriscience, Johnston, IA, USA
| | | | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - K Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, Queensland, Australia
| | - J Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - K S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Queensland, Australia
| | - J Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - A D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
11
|
Li H, Men W, Ma C, Liu Q, Dong Z, Tian X, Wang C, Liu C, Gill HS, Ma P, Zhang Z, Liu B, Zhao Y, Sehgal SK, Liu W. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun 2024; 15:2449. [PMID: 38503771 PMCID: PMC10951266 DOI: 10.1038/s41467-024-46814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, PR China
| | - Xiubin Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, PR China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
12
|
Bernasconi Z, Stirnemann U, Heuberger M, Sotiropoulos AG, Graf J, Wicker T, Keller B, Sánchez-Martín J. Mutagenesis of Wheat Powdery Mildew Reveals a Single Gene Controlling Both NLR and Tandem Kinase-Mediated Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:264-276. [PMID: 37934013 DOI: 10.1094/mpmi-09-23-0136-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (Pm) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify Avr genes in Bgt by generating gain-of-virulence mutants on Pm genes. We first identified six Bgt mutants with gain of virulence on Pm3b and Pm3c. They all had point mutations, deletions or insertions of transposable elements within the corresponding AvrPm3b2/c2 gene or its promoter region. We further selected six mutants on Pm3a, aiming to identify the yet unknown AvrPm3a3 recognized by Pm3a, in addition to the previously described AvrPm3a2/f2. Surprisingly, Pm3a virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene WTK4. No virulence toward 11 additional R genes tested was observed, indicating that the gain of virulence was specific for Pm3a and WTK4. Several independently obtained Pm3a-WTK4 mutants have mutations in Bgt-646, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that Bgt-646 regulates a subset of effector genes. We conclude that Bgt-646 is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ursin Stirnemann
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alexandros G Sotiropoulos
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Fernández-Melero B, Del Moral L, Todesco M, Rieseberg LH, Owens GL, Carrère S, Chabaud M, Muños S, Velasco L, Pérez-Vich B. Development and characterization of a new sunflower source of resistance to race G of Orobanche cumana Wallr. derived from Helianthus anomalus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:56. [PMID: 38386181 PMCID: PMC10884359 DOI: 10.1007/s00122-024-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.
Collapse
Affiliation(s)
- Belén Fernández-Melero
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Lidia Del Moral
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Leonardo Velasco
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Begoña Pérez-Vich
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
14
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
15
|
Abstract
Two studies describe kinase fusion proteins (KFPs) that regulate the perception and deception of wheat pathogens. These highlight the emergence of KFPs as plant immune regulators and emphasize the importance of crop wild relatives as a reservoir for resistance breeding and global food security.
Collapse
Affiliation(s)
- Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Yu G, Matny O, Gourdoupis S, Rayapuram N, Aljedaani FR, Wang YL, Nürnberger T, Johnson R, Crean EE, Saur IML, Gardener C, Yue Y, Kangara N, Steuernagel B, Hayta S, Smedley M, Harwood W, Patpour M, Wu S, Poland J, Jones JDG, Reuber TL, Ronen M, Sharon A, Rouse MN, Xu S, Holušová K, Bartoš J, Molnár I, Karafiátová M, Hirt H, Blilou I, Jaremko Ł, Doležel J, Steffenson BJ, Wulff BBH. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat Genet 2023:10.1038/s41588-023-01402-1. [PMID: 37217714 DOI: 10.1038/s41588-023-01402-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
To safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool1. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum2,3. Sr43 encodes an active protein kinase fused to two domains of unknown function. The gene, which is unique to the Triticeae, appears to have arisen through a gene fusion event 6.7 to 11.6 million years ago. Transgenic expression of Sr43 in wheat conferred high levels of resistance to a wide range of isolates of the pathogen causing stem rust, highlighting the potential value of Sr43 in resistance breeding and engineering.
Collapse
Affiliation(s)
- Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Spyridon Gourdoupis
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Fatimah R Aljedaani
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Yan L Wang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Ryan Johnson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Emma E Crean
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Isabel M-L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yajuan Yue
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Shuangye Wu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - T Lynne Reuber
- 2Blades Foundation, Evanston, IL, USA
- Enko Chem, Mystic, CT, USA
| | - Moshe Ronen
- Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- Institute for Cereal Crops Research, and the School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Matthew N Rouse
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- USDA-ARS, Cereal Disease Laboratory, St. Paul, MN, USA
| | - Steven Xu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Western Regional Research Center, Albany, CA, USA
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Jan Bartoš
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - István Molnár
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Centre for Agricultural Research, ELKH, Agricultural Institute, Martonvásár, Hungary
| | - Miroslava Karafiátová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Heribert Hirt
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Ikram Blilou
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Smart Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
- Red Sea Research Center, BESE, KAUST, Thuwal, Saudi Arabia
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA.
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia.
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
17
|
Wang Y, Abrouk M, Gourdoupis S, Koo DH, Karafiátová M, Molnár I, Holušová K, Doležel J, Athiyannan N, Cavalet-Giorsa E, Jaremko Ł, Poland J, Krattinger SG. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 2023:10.1038/s41588-023-01401-2. [PMID: 37217716 DOI: 10.1038/s41588-023-01401-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The introgression of chromosome segments from wild relatives is an established strategy to enrich crop germplasm with disease-resistance genes1. Here we use mutagenesis and transcriptome sequencing to clone the leaf rust resistance gene Lr9, which was introduced into bread wheat from the wild grass species Aegilops umbellulata2. We established that Lr9 encodes an unusual tandem kinase fusion protein. Long-read sequencing of a wheat Lr9 introgression line and the putative Ae. umbellulata Lr9 donor enabled us to assemble the ~28.4-Mb Lr9 translocation and to identify the translocation breakpoint. We likewise cloned Lr58, which was reportedly introgressed from Aegilops triuncialis3, but has an identical coding sequence compared to Lr9. Cytogenetic and haplotype analyses corroborate that the two genes originate from the same translocation event. Our work sheds light on the emerging role of kinase fusion proteins in wheat disease resistance, expanding the repertoire of disease-resistance genes for breeding.
Collapse
Affiliation(s)
- Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
18
|
Klymiuk V, Haile T, Ens J, Wiebe K, N’Diaye A, Fatiukha A, Krugman T, Ben-David R, Hübner S, Cloutier S, Pozniak CJ. Genetic architecture of rust resistance in a wheat ( Triticum turgidum) diversity panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1145371. [PMID: 36998679 PMCID: PMC10043469 DOI: 10.3389/fpls.2023.1145371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Introduction Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teketel Haile
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrii Fatiukha
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) – The Volcani Center, Rishon LeZion, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Sinha A, Singh L, Rawat N. Current understanding of atypical resistance against fungal pathogens in wheat. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102247. [PMID: 35716636 DOI: 10.1016/j.pbi.2022.102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Pathogens and pests are a major challenge to global food security. Around one hundred different pests and pathogens challenge wheat, one of the most important food crops in the world. Traditional worldwide use of a few key resistance genes in wheat cultivars has necessitated a diversification of the toolbox of resistance genes in wheat varieties over the coming decades to meet the global production demands. Recent advances in gene discovery and functional characterization of genetic resistance mechanisms in wheat reveal great diversity in the types and effectiveness of the underlying resistance genes. This article summarizes the recent developments in the discovery of non-traditional "atypical" resistance genes in wheat against diverse fungal pathogens.
Collapse
Affiliation(s)
- Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
22
|
Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem 2022; 66:561-569. [PMID: 35670039 DOI: 10.1042/ebc20210081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Plant immunity is triggered following the perception of pathogen-derived molecules by plant receptor proteins. Two protein families, membrane-localized receptor-like kinases (RLK) and intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, play key roles in pathogen perception and in the initiation of downstream signaling cascades that lead to defense responses. In addition to RLKs and NLRs, recent research has identified additional protein families that function as plant resistance (R) proteins. In particular, the botanical tribe Triticeae, which includes the globally important crop species wheat and barley, has played a significant role in the discovery of 'unconventional' R proteins. In this review, we will summarize the current knowledge on unconventional R genes in Triticeae and the proteins they encode. The knowledge on unconventional R proteins will not only broaden our understanding of plant-pathogen interactions but also have great implications for disease resistance breeding in crops.
Collapse
|
23
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|
24
|
Chapman AVE, Elmore JM, McReynolds M, Walley JW, Wise RP. SGT1-Specific Domain Mutations Impair Interactions with the Barley MLA6 Immune Receptor in Association with Loss of NLR Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:274-289. [PMID: 34889653 DOI: 10.1094/mpmi-08-21-0217-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Mla (Mildew resistance locus a) of barley (Hordeum vulgare L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function. However, functional analysis of Sgt1 has been particularly difficult, as deletions are often lethal. Recently, we identified rar3 (required for Mla6 resistance 3), an in-frame Sgt1ΔKL308-309 mutation in the SGT1-specific domain, that alters resistance conferred by MLA but without lethality. Here, we use autoactive MLA6 and recombinant yeast-two-hybrid strains with stably integrated HvRar1 and HvHsp90 to determine that this mutation weakens but does not entirely disrupt the interaction between SGT1 and MLA. This causes a concomitant reduction in MLA6 protein accumulation below the apparent threshold required for effective resistance. The ΔKL308-309 deletion had a lesser effect on intramolecular interactions than alanine or arginine substitutions, and MLA variants that display diminished interactions with SGT1 appear to be disproportionately affected by the SGT1ΔKL308-309 mutation. We hypothesize that those dimeric plant CC-NLRs that appear unaffected by Sgt1 silencing are those with the strongest intermolecular interactions with it. Combining our data with recent work in CC-NLRs, we propose a cyclical model of the MLA-HRS resistosome interactions.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - J Mitch Elmore
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Maxwell McReynolds
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Justin W Walley
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, U.S.A
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA 50011, U.S.A
| |
Collapse
|