1
|
Zhao M, Liu Z, Gan J, Yang C, Lu A, Han Q, Yang H, Xu Y, Sun G, Wu D. Identification and expression analysis of XIP gene family members in rice. Genetica 2024; 152:83-100. [PMID: 38743131 DOI: 10.1007/s10709-024-00207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Xylanase inhibitor proteins (XIP) are widely distributed in the plant kingdom, and also exist in rice. However, a systematic bioinformatics analysis of this gene family in rice (OsXIP) has not been conducted to date. In this study, we identified 32 members of the OsXIP gene family and analyzed their physicochemical properties, chromosomal localization, gene structure, protein structure, expression profiles, and interaction networks. Our results indicated that OsXIP genes exhibit an uneven distribution across eight rice chromosomes. These genes generally feature a low number of introns or are intronless, all family members, except for OsXIP20, contain two highly conserved motifs, namely Motif 8 and Motif 9. In addition, it is worth noting that the promoter regions of OsXIP gene family members feature a widespread presence of abscisic acid response elements (ABRE) and gibberellin response elements (GARE-motif and TATC-box). Quantitative Real-time PCR (qRT-PCR) analysis unveiled that the expression of OsXIP genes exhibited higher levels in leaves and roots, with considerable variation in the expression of each gene in these tissues both prior to and following treatments with abscisic acid (ABA) and gibberellin (GA3). Protein interaction studies and microRNA (miRNA) target prediction showed that OsXIP engages with key elements within the hormone-responsive and drought signaling pathways. The qRT-PCR suggested osa-miR2927 as a potential key regulator in the rice responding to drought stress, functioning as tissue-specific and temporally regulation. This study provides a theoretical foundation for further analysis of the functions within the OsXIP gene family.
Collapse
Affiliation(s)
- Manman Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhiwei Liu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiangtao Gan
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Chen Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ai Lu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingqing Han
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Haitao Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yonghan Xu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, Canada.
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Lin J, Ruan S, Guo Q, Zhang Y, Fang M, Li T, Luo G, Tian Z, Zhang Y, Tandayu E, Chen C, Lu J, Ma C, Si H. Comprehensive genome-wide analysis of wheat xylanase inhibitor protein (XIP) genes: unveiling their role in Fusarium head blight resistance and plant immune mechanisms. BMC PLANT BIOLOGY 2024; 24:462. [PMID: 38802731 PMCID: PMC11129392 DOI: 10.1186/s12870-024-05176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.
Collapse
Affiliation(s)
- Juan Lin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Shuang Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Yonglin Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Mengyuan Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Tiantian Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Gan Luo
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Zhuangbo Tian
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yi Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Erwin Tandayu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| |
Collapse
|
3
|
Zhao X, Wang Y, Yuan B, Zhao H, Wang Y, Tan Z, Wang Z, Wu H, Li G, Song W, Gupta R, Tsuda K, Ma Z, Gao X, Gu Q. Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion. Nat Commun 2024; 15:231. [PMID: 38182582 PMCID: PMC10770383 DOI: 10.1038/s41467-023-44491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Bivalent histone modifications, including functionally opposite H3K4me3 and H3K27me3 marks simultaneously on the same nucleosome, control various cellular processes by fine-tuning the gene expression in eukaryotes. However, the role of bivalent histone modifications in fungal virulence remains elusive. By mapping the genome-wide landscape of H3K4me3 and H3K27me3 dynamic modifications in Fusarium graminearum (Fg) during invasion, we identify the infection-related bivalent chromatin-marked genes (BCGs). BCG1 gene, which encodes a secreted Fusarium-specific xylanase containing a G/Q-rich motif, displays the highest increase of bivalent modification during Fg infection. We report that the G/Q-rich motif of BCG1 is a stimulator of its xylanase activity and is essential for the full virulence of Fg. Intriguingly, this G/Q-rich motif is recognized by pattern-recognition receptors to trigger plant immunity. We discover that Fg employs H3K4me3 modification to induce BCG1 expression required for host cell wall degradation. After breaching the cell wall barrier, this active chromatin state is reset to bivalency by co-modifying with H3K27me3, which enables epigenetic silencing of BCG1 to escape from host immune surveillance. Collectively, our study highlights how fungal pathogens deploy bivalent epigenetic modification to achieve temporally-coordinated activation and suppression of a critical fungal gene, thereby facilitating successful infection and host immune evasion.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yiming Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hanxi Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhiyuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Wei Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China.
| |
Collapse
|
4
|
Chen C, Guo Q, He Q, Tian Z, Hao W, Shan X, Lu J, Barkla BJ, Ma C, Si H. Comparative transcriptomic analysis of wheat cultivars differing in their resistance to Fusarium head blight infection during grain-filling stages reveals unique defense mechanisms at play. BMC PLANT BIOLOGY 2023; 23:433. [PMID: 37715120 PMCID: PMC10504723 DOI: 10.1186/s12870-023-04451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease that poses a significant threat to wheat production, causing substantial yield losses. Understanding the molecular mechanisms of wheat resistance to FHB is crucial for developing effective disease management strategies. This study aimed to investigate the mechanisms of FHB resistance and the patterns of toxin accumulation in three wheat cultivars, Annong8455, Annong1589, and Sumai3, with different levels of resistance, ranging from low to high respectively, under natural field conditions. Samples were taken at three different grain-filling stages (5, 10, and 15 DPA) for gene expression analysis and phenotypic observation. Results found that toxin concentration was inversely correlated with varietal resistance but not correlated with disease phenotypes, indicating that toxin analysis is a more accurate measure of disease status in wheat ears and grains. Transcriptomic data showed that Sumai3 exhibited a stronger immune response during all stages of grain filling by upregulating genes involved in the active destruction of pathogens and removal of toxins. In contrast, Annong1589 showed a passive prevention of the spread of toxins into cells by the upregulation of genes involved in tyramine biosynthesis at the early stage (5 DPA), which may be involved in cell wall strengthening. Our study demonstrates the complexity of FHB resistance in wheat, with cultivars exhibiting unique and overlapping defense mechanisms, and highlights the importance of considering the temporal and spatial dynamics of gene expression in breeding programs for developing more resistant wheat cultivars.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, 2480 NSW, Australia
| | - Qifang He
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Zhuangbo Tian
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyu Shan
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, 2480 NSW, Australia
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
6
|
Platel R, Lucau-Danila A, Baltenweck R, Maia-Grondard A, Chaveriat L, Magnin-Robert M, Randoux B, Trapet P, Halama P, Martin P, Hilbert JL, Höfte M, Hugueney P, Reignault P, Siah A. Bioinspired Rhamnolipid Protects Wheat Against Zymoseptoria tritici Through Mainly Direct Antifungal Activity and Without Major Impact on Leaf Physiology. FRONTIERS IN PLANT SCIENCE 2022; 13:878272. [PMID: 35720601 PMCID: PMC9204090 DOI: 10.3389/fpls.2022.878272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Rhamnolipids (RLs), glycolipids biosynthesized by the Pseudomonas and Burkholderia genera, are known to display various activities against a wide range of pathogens. Most previous studies on RLs focused on their direct antimicrobial activity, while only a few reports described the mechanisms by which RLs induce resistance against phytopathogens and the related fitness cost on plant physiology. Here, we combined transcriptomic and metabolomic approaches to unravel the mechanisms underlying RL-induced resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici, a major pathogen of this crop. Investigations were carried out by treating wheat plants with a bioinspired synthetic mono-RL with a 12-carbon fatty acid tail, dodecanoyl α/β-L-rhamnopyranoside (Rh-Est-C12), under both infectious and non-infectious conditions to examine its potential wheat defense-eliciting and priming bioactivities. Whereas, Rh-Est-C12 conferred to wheat a significant protection against Z. tritici (41% disease severity reduction), only a slight effect of this RL on wheat leaf gene expression and metabolite accumulation was observed. A subset of 24 differentially expressed genes (DEGs) and 11 differentially accumulated metabolites (DAMs) was scored in elicitation modalities 2, 5, and 15 days post-treatment (dpt), and 25 DEGs and 17 DAMs were recorded in priming modalities 5 and 15 dpt. Most changes were down-regulations, and only a few DEGs and DAMs associated with resistance to pathogens were identified. Nevertheless, a transient early regulation in gene expression was highlighted at 2 dpt (e.g., genes involved in signaling, transcription, translation, cell-wall structure, and function), suggesting a perception of the RL by the plant upon treatment. Further in vitro and in planta bioassays showed that Rh-Est-C12 displays a significant direct antimicrobial activity toward Z. tritici. Taken together, our results suggest that Rh-Est-C12 confers protection to wheat against Z. tritici through direct antifungal activity and, to a lesser extent, by induction of plant defenses without causing major alterations in plant metabolism. This study provides new insights into the modes of action of RLs on the wheat-Z. tritici pathosystem and highlights the potential interest in Rh-Est-C12, a low-fitness cost molecule, to control this pathogen.
Collapse
Affiliation(s)
- Rémi Platel
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| | - Anca Lucau-Danila
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| | | | | | - Ludovic Chaveriat
- Univ. Artois, UniLasalle, ULR 7519–Unité Transformations and Agroressources, Béthune, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d'Opale, Calais, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d'Opale, Calais, France
| | - Pauline Trapet
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| | - Patrice Halama
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| | - Patrick Martin
- Univ. Artois, UniLasalle, ULR 7519–Unité Transformations and Agroressources, Béthune, France
| | - Jean-Louis Hilbert
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | | | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d'Opale, Calais, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, Univ. Artois, ULCO, INRAE, Lille, France
| |
Collapse
|
7
|
Mandalà G, Ceoloni C, Busato I, Favaron F, Tundo S. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111059. [PMID: 34763853 DOI: 10.1016/j.plantsci.2021.111059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Fusarium Head Blight (FHB) and Crown Rot (FCR) are major diseases of wheat crops, causing extensive damages and mycotoxin contamination. In this work, we investigated the possibility to improve resistance to either or both diseases by combining different resistance mechanisms. To this aim, we stacked in the same wheat genotype transgenes controlling the DON-to-D3G conversion by specific UDP-glucosyltransferases (UGT) and the inhibition of cell wall degrading enzymes (CWDEs) by glycosidase inhibitors. We obtained: i) a durum wheat UGT+PMEI double-transgenic line constitutively expressing the HvUGT13248 and AcPMEI genes, coding for a barley UGT and a kiwi pectin methylesterase inhibitor, respectively; ii) a bread wheat UGT+PGIP line, expressing in floral tissues the HvUGT13248 gene and constitutively the PvPGIP2 gene, coding for a bean polygalacturonase inhibiting protein. We observed that both UGT+PMEI and UGT+PGIP plants exhibited increased resistance against Fusarium graminearum in FHB, further reducing by 10-20 % FHB symptoms as compared to the lines carrying the individual transgenes, and of up to 50 % as compared to wild-type plants. On the other hand, double-transgenic UGT+PMEI seedlings exhibited similar FCR symptoms as the UGT single transgenic line after infection with F. culmorum, indicating no contribution of the PMEI transgene to FCR resistance. This result is also supported by the inability of AcPMEI or PvPGIP2, constitutively expressed in durum wheat transgenic lines, to counteract F. graminearum in FCR. We also verified that F. graminearum produces PG and PME activity on infected wheat crown. We conclude that CWDEs inhibition combined with UGT-based DON detoxification contribute in an additive manner to limiting F. graminearum in FHB. Conversely, UGT-based DON detoxification is the only mechanism contributing to resistance observed against FCR. Indeed, the reinforcement of pectin does not enhance resistance against FCR.
Collapse
Affiliation(s)
- Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Isabella Busato
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, 35020, Legnaro, Padova, Italy.
| |
Collapse
|
8
|
Tundo S, Paccanaro MC, Bigini V, Savatin DV, Faoro F, Favaron F, Sella L. The Fusarium graminearum FGSG_03624 Xylanase Enhances Plant Immunity and Increases Resistance against Bacterial and Fungal Pathogens. Int J Mol Sci 2021; 22:10811. [PMID: 34639149 PMCID: PMC8509205 DOI: 10.3390/ijms221910811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Maria Chiara Paccanaro
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Daniel V. Savatin
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milano, Via Celoria 2, 20133 Milano, MI, Italy;
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| |
Collapse
|
9
|
Li T, Mann R, Kaur J, Spangenberg G, Sawbridge T. Transcriptome Analyses of Barley Roots Inoculated with Novel Paenibacillus sp. and Erwinia gerundensis Strains Reveal Beneficial Early-Stage Plant-Bacteria Interactions. PLANTS 2021; 10:plants10091802. [PMID: 34579335 PMCID: PMC8467301 DOI: 10.3390/plants10091802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting bacteria can improve host plant traits including nutrient uptake and metabolism and tolerance to biotic and abiotic stresses. Understanding the molecular basis of plant–bacteria interactions using dual RNA-seq analyses provides key knowledge of both host and bacteria simultaneously, leading to future enhancements of beneficial interactions. In this study, dual RNA-seq analyses were performed to provide insights into the early-stage interactions between barley seedlings and three novel bacterial strains (two Paenibacillus sp. strains and one Erwinia gerundensis strain) isolated from the perennial ryegrass seed microbiome. Differentially expressed bacterial and barley genes/transcripts involved in plant–bacteria interactions were identified, with varying species- and strain-specific responses. Overall, transcriptome profiles suggested that all three strains improved stress response, signal transduction, and nutrient uptake and metabolism of barley seedlings. Results also suggested potential improvements in seedling root growth via repressing ethylene biosynthesis in roots. Bacterial secondary metabolite gene clusters producing compounds that are potentially associated with interactions with the barley endophytic microbiome and associated with stress tolerance of plants under nutrient limiting conditions were also identified. The results of this study provided the molecular basis of plant growth-promoting activities of three novel bacterial strains in barley, laid a solid foundation for the future development of these three bacterial strains as biofertilisers, and identified key differences between bacterial strains of the same species in their responses to plants.
Collapse
Affiliation(s)
- Tongda Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-3-9032-7088
| | - Ross Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Timothy Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Liu Y, Han N, Wang S, Chen C, Lu J, Riaz MW, Si H, Sun G, Ma C. Genome-Wide Identification of Triticum aestivum Xylanase Inhibitor Gene Family and Inhibitory Effects of XI-2 Subfamily Proteins on Fusarium graminearum GH11 Xylanase. FRONTIERS IN PLANT SCIENCE 2021; 12:665501. [PMID: 34381472 PMCID: PMC8350787 DOI: 10.3389/fpls.2021.665501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Triticum aestivum xylanase inhibitor (TaXI) gene plays an important role in plant defense. Recently, TaXI-III inhibitor has been shown to play a dual role in wheat resistance to Fusarium graminearum infection. Thus, identifying the members of the TaXI gene family and clarifying its role in wheat resistance to stresses are essential for wheat resistance breeding. However, to date, no comprehensive research on TaXIs in wheat (Triticum aestivum L.) has been conducted. In this study, a total of 277 TaXI genes, including six genes that we cloned, were identified from the recently released wheat genome database (IWGSC RefSeq v1.1), which were unevenly located on 21 chromosomes of wheat. Phylogenetic analysis divided these genes into six subfamilies, all the six genes we cloned belonged to XI-2 subfamily. The exon/intron structure of most TaXI genes and the conserved motifs of proteins in the same subfamily are similar. The TaXI gene family contains 92 homologous gene pairs or clusters, 63 and 193 genes were identified as tandem replication and segmentally duplicated genes, respectively. Analysis of the cis-acting elements in the promoter of TaXI genes showed that they are involved in wheat growth, hormone-mediated signal transduction, and response to biotic and abiotic stresses. RNA-seq data analysis revealed that TaXI genes exhibited expression preference or specificity in different organs and developmental stages, as well as in diverse stress responses, which can be regulated or induced by a variety of plant hormones and stresses. In addition, the qRT-PCR data and heterologous expression analysis of six TaXI genes revealed that the genes of XI-2 subfamily have double inhibitory effect on GH11 xylanase of F. graminearum, suggesting their potential important roles in wheat resistance to F. graminearum infection. The outcomes of this study not only enhance our understanding of the TaXI gene family in wheat, but also help us to screen more candidate genes for further exploring resistance mechanism in wheat.
Collapse
Affiliation(s)
- Yang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Nannan Han
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Sheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Muhammad Waheed Riaz
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Biology Department, Saint Mary’s University, Halifax, NS, Canada
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, China
- Anhui Key Laboratory of Crop Biology, Hefei, China
| |
Collapse
|
11
|
Miao J, Feng Q, Li Y, Zhao Q, Zhou C, Lu H, Fan D, Yan J, Lu Y, Tian Q, Li W, Weng Q, Zhang L, Zhao Y, Huang T, Li L, Huang X, Sang T, Han B. Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome. Nat Commun 2021; 12:2458. [PMID: 33911077 PMCID: PMC8080599 DOI: 10.1038/s41467-021-22738-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022] Open
Abstract
Miscanthus, a rhizomatous perennial plant, has great potential for bioenergy production for its high biomass and stress tolerance. We report a chromosome-scale assembly of Miscanthus lutarioriparius genome by combining Oxford Nanopore sequencing and Hi-C technologies. The 2.07-Gb assembly covers 96.64% of the genome, with contig N50 of 1.71 Mb. The centromere and telomere sequences are assembled for all 19 chromosomes and chromosome 10, respectively. Allotetraploid origin of the M. lutarioriparius is confirmed using centromeric satellite repeats. The tetraploid genome structure and several chromosomal rearrangements relative to sorghum are clearly demonstrated. Tandem duplicate genes of M. lutarioriparius are functional enriched not only in terms related to stress response, but cell wall biosynthesis. Gene families related to disease resistance, cell wall biosynthesis and metal ion transport are greatly expanded and evolved. The expansion of these families may be an important genomic basis for the enhancement of remarkable traits of M. lutarioriparius.
Collapse
Affiliation(s)
- Jiashun Miao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yan Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Hengyun Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Juan Yan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Wenjun Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Laigeng Li
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China.
| |
Collapse
|
12
|
Kozieł E, Otulak-Kozieł K, Bujarski JJ. Plant Cell Wall as a Key Player During Resistant and Susceptible Plant-Virus Interactions. Front Microbiol 2021; 12:656809. [PMID: 33776985 PMCID: PMC7994255 DOI: 10.3389/fmicb.2021.656809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023] Open
Abstract
The cell wall is a complex and integral part of the plant cell. As a structural element it sustains the shape of the cell and mediates contact among internal and external factors. We have been aware of its involvement in both abiotic (like drought or frost) and biotic stresses (like bacteria or fungi) for some time. In contrast to bacterial and fungal pathogens, viruses are not mechanical destructors of host cell walls, but relatively little is known about remodeling of the plant cell wall in response to viral biotic stress. New research results indicate that the cell wall represents a crucial active component during the plant’s response to different viral infections. Apparently, cell wall genes and proteins play key roles during interaction, having a direct influence on the rebuilding of the cell wall architecture. The plant cell wall is involved in both susceptibility as well as resistance reactions. In this review we summarize important progress made in research on plant virus impact on cell wall remodeling. Analyses of essential defensive wall associated proteins in susceptible and resistant responses demonstrate that the components of cell wall metabolism can affect the spread of the virus as well as activate the apoplast- and symplast-based defense mechanisms, thus contributing to the complex network of the plant immune system. Although the cell wall reorganization during the plant-virus interaction remains a challenging task, the use of novel tools and methods to investigate its composition and structure will greatly contribute to our knowledge in the field.
Collapse
Affiliation(s)
- Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Józef Julian Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
13
|
Basińska-Barczak A, Błaszczyk L, Szentner K. Plant Cell Wall Changes in Common Wheat Roots as a Result of Their Interaction with Beneficial Fungi of Trichoderma. Cells 2020; 9:E2319. [PMID: 33086614 PMCID: PMC7603241 DOI: 10.3390/cells9102319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023] Open
Abstract
Plant cell walls play an important role in shaping the defense strategies of plants. This research demonstrates the influence of two differentiators: the lifestyle and properties of the Trichoderma species on cell wall changes in common wheat seedlings. The methodologies used in this investigation include microscopy observations and immunodetection. In this study was shown that the plant cell wall was altered due to its interaction with Trichoderma. The accumulation of lignins and reorganization of pectin were observed. The immunocytochemistry indicated that low methyl-esterified pectins appeared in intercellular spaces. Moreover, it was found that the arabinogalactan protein epitope JIM14 can play a role in the interaction of wheat roots with both the tested Trichoderma strains. Nevertheless, we postulate that modifications, such as the appearance of lignins, rearrangement of low methyl-esterified pectins, and arabinogalactan proteins due to the interaction with Trichoderma show that tested strains can be potentially used in wheat seedlings protection to pathogens.
Collapse
Affiliation(s)
- Aneta Basińska-Barczak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-625 Poznan, Poland;
| | - Lidia Błaszczyk
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-625 Poznan, Poland;
| | - Kinga Szentner
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland;
| |
Collapse
|
14
|
Townsend RV, Rioux RA, Kabbage M, Stephens C, Kerns JP, Koch P. Oxalic Acid Production in Clarireedia jacksonii Is Dictated by pH, Host Tissue, and Xylan. Front Microbiol 2020; 11:1732. [PMID: 32849370 PMCID: PMC7418575 DOI: 10.3389/fmicb.2020.01732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022] Open
Abstract
Dollar spot is caused by the fungus Clarireedia jacksonii and is the most common disease of golf course turfgrass in temperate climates. Oxalic acid (OA) is an important pathogenicity factor in other fungal plant pathogens, such as the dicot pathogen Sclerotinia sclerotiorum, but its role in C. jacksonii pathogenicity on monocot hosts remains unclear. Herein, we assess fungal growth, OA concentration, and pH change in potato dextrose broth (PDB) following incubation of C. jacksonii. In addition, OA production by C. jacksonii and S. sclerotiorum was compared in PDB amended with creeping bentgrass or common plant cell wall components (cellulose, lignin, pectin, or xylan). Our results show that OA production is highly dependent on the environmental pH, with twice as much OA produced at pH 7 than pH 4 and a corresponding decrease in PDB pH from 7 to 5 following 96 h of C. jacksonii incubation. In contrast, no OA was produced or changes in pH observed when C. jacksonii was incubated in PDB at a pH of 4. Interestingly, C. jacksonii increased OA production in response to PDB amended with creeping bentgrass tissue and the cell wall component xylan, a major component of grass cell walls. S. sclerotiorum produced large amounts of OA relative to C. jacksonii regardless of treatment, and no treatment increased OA production by this fungus, though pectin suppressed S. sclerotiorum’s OA production. These results suggest that OA production by C. jacksonii is reliant on host specific components within the infection court, as well as the ambient pH of the foliar environment during its pathogenic development.
Collapse
Affiliation(s)
- Ronald V Townsend
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Renee A Rioux
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron Stephens
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - James P Kerns
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Paul Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Tundo S, Paccanaro MC, Elmaghraby I, Moscetti I, D’Ovidio R, Favaron F, Sella L. The Xylanase Inhibitor TAXI-I Increases Plant Resistance to Botrytis cinerea by Inhibiting the BcXyn11a Xylanase Necrotizing Activity. PLANTS 2020; 9:plants9050601. [PMID: 32397168 PMCID: PMC7285161 DOI: 10.3390/plants9050601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Maria Chiara Paccanaro
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Ibrahim Elmaghraby
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
- Agricultural Research Center, Central Laboratory of Organic Agriculture, 9, Cairo Univ. St., Giza 12619, Egypt
| | - Ilaria Moscetti
- Department of Ecology and Biology (DEB), Biophysics and Nanoscience Centre, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Renato D’Ovidio
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
- Correspondence: ; Tel.: +39-049-8272893
| |
Collapse
|
16
|
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1541-1568. [PMID: 31900498 DOI: 10.1007/s00122-019-03525-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.
Collapse
Affiliation(s)
- Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Quan Xie
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiyang Zhou
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
In silico Identification of Resistance and Defense Related Genes for Bacterial Leaf Blight (BLB) in Rice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Silva MS, Arraes FBM, Campos MDA, Grossi-de-Sa M, Fernandez D, Cândido EDS, Cardoso MH, Franco OL, Grossi-de-Sa MF. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:72-84. [PMID: 29576088 DOI: 10.1016/j.plantsci.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Marilia Santos Silva
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil.
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil.
| | | | | | | | - Elizabete de Souza Cândido
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil; Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil.
| |
Collapse
|
19
|
Paccanaro MC, Sella L, Castiglioni C, Giacomello F, Martínez-Rocha AL, D'Ovidio R, Schäfer W, Favaron F. Synergistic Effect of Different Plant Cell Wall-Degrading Enzymes Is Important for Virulence of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:886-895. [PMID: 28800710 DOI: 10.1094/mpmi-07-17-0179-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.
Collapse
Affiliation(s)
- Maria Chiara Paccanaro
- 1 Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università degli Studi di Padova, Viale dell'Università 16-35020 Legnaro (PD), Italy
- 2 Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Ohnhorststr. 18-22609, Hamburg, Germany; and
| | - Luca Sella
- 1 Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università degli Studi di Padova, Viale dell'Università 16-35020 Legnaro (PD), Italy
| | - Carla Castiglioni
- 1 Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università degli Studi di Padova, Viale dell'Università 16-35020 Legnaro (PD), Italy
| | - Francesca Giacomello
- 1 Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università degli Studi di Padova, Viale dell'Università 16-35020 Legnaro (PD), Italy
| | - Ana Lilia Martínez-Rocha
- 2 Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Ohnhorststr. 18-22609, Hamburg, Germany; and
| | - Renato D'Ovidio
- 3 Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Wilhelm Schäfer
- 2 Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Ohnhorststr. 18-22609, Hamburg, Germany; and
| | - Francesco Favaron
- 1 Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Università degli Studi di Padova, Viale dell'Università 16-35020 Legnaro (PD), Italy
| |
Collapse
|
20
|
Ceoloni C, Forte P, Kuzmanović L, Tundo S, Moscetti I, De Vita P, Virili ME, D'Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2005-2024. [PMID: 28656363 DOI: 10.1007/s00122-017-2939-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
A major locus for resistance to different Fusarium diseases was mapped to the most distal end of Th. elongatum 7EL and pyramided with Th. ponticum beneficial genes onto wheat 7DL. Perennial Triticeae species of the Thinopyrum genus are among the richest sources of valuable genes/QTL for wheat improvement. One notable and yet unexploited attribute is the exceptionally effective resistance to a major wheat disease worldwide, Fusarium head blight, associated with the long arm of Thinopyrum elongatum chromosome 7E (7EL). We targeted the transfer of the temporarily designated Fhb-7EL locus into bread wheat, pyramiding it with a Th. ponticum 7el1L segment stably inserted into the 7DL arm of wheat line T4. Desirable genes/QTL mapped along the T4 7el1L segment determine resistance to wheat rusts (Lr19, Sr25) and enhancement of yield-related traits. Mapping of the Fhb-7EL QTL, prerequisite for successful pyramiding, was established here on the basis of a bioassay with Fusarium graminearum of different 7EL-7el1L bread wheat recombinant lines. These were obtained without resorting to any genetic pairing promotion, but relying on the close 7EL-7el1L homoeology, resulting in 20% pairing frequency between the two arms. Fhb-7EL resided in the telomeric portion and resistant recombinants could be isolated with useful combinations of more proximally located 7el1L genes/QTL. The transferred Fhb-7EL locus was shown to reduce disease severity and fungal biomass in grains of infected recombinants by over 95%. The same Fhb-7EL was, for the first time, proved to be effective also against F. culmorum and F. pseudograminearum, predominant agents of crown rot. Prebreeding lines possessing a suitable 7EL-7el1L gene/QTL assembly showed very promising yield performance in preliminary field tests.
Collapse
Affiliation(s)
- Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy.
| | - Paola Forte
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Ljiljana Kuzmanović
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Ilaria Moscetti
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | | | - Maria Elena Virili
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Renato D'Ovidio
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| |
Collapse
|
21
|
Anderson JP, Sperschneider J, Win J, Kidd B, Yoshida K, Hane J, Saunders DGO, Singh KB. Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Sci Rep 2017; 7:10410. [PMID: 28874693 PMCID: PMC5585356 DOI: 10.1038/s41598-017-10405-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Rhizoctonia solani is a fungal pathogen causing substantial damage to many of the worlds’ largest food crops including wheat, rice, maize and soybean. Despite impacting global food security, little is known about the pathogenicity mechanisms employed by R. solani. To enable prediction of effectors possessing either broad efficacy or host specificity, a combined secretome was constructed from a monocot specific isolate, a dicot specific isolate and broad host range isolate infecting both monocot and dicot hosts. Secretome analysis suggested R. solani employs largely different virulence mechanisms to well-studied pathogens, despite in many instances infecting the same host plants. Furthermore, the secretome of the broad host range AG8 isolate may be shaped by maintaining functions for saprophytic life stages while minimising opportunities for host plant recognition. Analysis of possible co-evolution with host plants and in-planta up-regulation in particular, aided identification of effectors including xylanase and inhibitor I9 domain containing proteins able to induce cell death in-planta. The inhibitor I9 domain was more abundant in the secretomes of a wide range of necrotising fungi relative to biotrophs. These findings provide novel targets for further dissection of the virulence mechanisms and potential avenues to control this under-characterised but important pathogen.
Collapse
Affiliation(s)
- Jonathan P Anderson
- CSIRO Agriculture and Food, Floreat, Western Australia, Australia. .,The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia.
| | | | - Joe Win
- The Sainsbury Laboratory, Norwich, UK
| | - Brendan Kidd
- CSIRO Agriculture and Food, Floreat, Western Australia, Australia
| | | | - James Hane
- CSIRO Agriculture and Food, Floreat, Western Australia, Australia.,Curtin University, Bentley, Western Australia, Australia
| | - Diane G O Saunders
- The Sainsbury Laboratory, Norwich, UK.,The John Innes Centre, Norwich, UK
| | - Karam B Singh
- CSIRO Agriculture and Food, Floreat, Western Australia, Australia.,The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
22
|
Zhan Y, Sun X, Rong G, Hou C, Huang Y, Jiang D, Weng X. Identification of two transcription factors activating the expression of OsXIP in rice defence response. BMC Biotechnol 2017; 17:26. [PMID: 28270131 PMCID: PMC5341196 DOI: 10.1186/s12896-017-0344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Xylanase inhibitors have been confirmed to be involved in plant defence. OsXIP is a XIP-type rice xylanase inhibitor, yet its transcriptional regulation remains unknown. Results Herbivore infestation, wounding and methyl jasmonate (MeJA) treatment enhanced mRNA levels and protein levels of OsXIP. By analyzing different 5’ deletion mutants of OsXIP promoter exposed to rice brown planthopper Nilaparvata lugens stress, a 562 bp region (–1451 – −889) was finally identified as the key sequence for the herbivores stress response. Using yeast one-hybrid screening, coupled with chromatin immunoprecipitation analysis, a basic helix-loop-helix protein (OsbHLH59) and an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor OsERF71 directly binding to the 562 bp key sequence to activate the expression of OsXIP were identified, which is further supported by transient expression assay. Moreover, transcriptional analysis revealed that mechanical wounding and treatment with MeJA resulted in an obvious increase in transcript levels of OsbHLH59 and OsERF71 in root and shoot tissues. Conclusions Our data shows that two proteins as direct transcriptional activators of OsXIP responding to stress were identified. These results reveal a coordinated regulatory mechanism of OsXIP, which may probably be involved in defence responses via a JA-mediated signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Zhan
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Sun
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guozeng Rong
- Cixi Agricultural Technology Promotion Center, Cixi, 315300, China
| | - Chunxiao Hou
- The Institute of Rural Development and Information Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingying Huang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Dean Jiang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Weng
- College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Dweba C, Figlan S, Shimelis H, Motaung T, Sydenham S, Mwadzingeni L, Tsilo T. Fusarium head blight of wheat: Pathogenesis and control strategies. CROP PROTECTION 2017. [PMID: 0 DOI: 10.1016/j.cropro.2016.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
24
|
Zega A, D'Ovidio R. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:1-11. [PMID: 27393991 DOI: 10.1016/j.plaphy.2016.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 05/20/2023]
Abstract
Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion.
Collapse
Affiliation(s)
- Alessandra Zega
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Renato D'Ovidio
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
25
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Tundo S, Kalunke R, Janni M, Volpi C, Lionetti V, Bellincampi D, Favaron F, D'Ovidio R. Pyramiding PvPGIP2 and TAXI-III But Not PvPGIP2 and PMEI Enhances Resistance Against Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:629-639. [PMID: 27366923 DOI: 10.1094/mpmi-05-16-0089-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant protein inhibitors counteract the activity of cell wall-degrading enzymes (CWDEs) secreted by pathogens to breach the plant cell-wall barrier. Transgenic plants expressing a single protein inhibitor restrict pathogen infections. However, since pathogens secrete a number of CWDEs at the onset of infection, we combined more inhibitors in a single wheat genotype to reinforce further the cell-wall barrier. We combined polygalacturonase (PG) inhibiting protein (PGIP) and pectin methyl esterase inhibitor (PMEI), both controlling the activity of PG, one of the first CWDEs secreted during infection. We also pyramided PGIP and TAXI-III, a xylanase inhibitor that controls the activity of xylanases, key factors for the degradation of xylan, a main component of cereal cell wall. We demonstrated that the pyramiding of PGIP and PMEI did not contribute to any further improvement of disease resistance. However, the presence of both pectinase inhibitors ensured a broader spectrum of disease resistance. Conversely, the PGIP and TAXI-III combination contributed to further improvement of Fusarium head blight (FHB) resistance, probably because these inhibitors target the activity of different types of CWDEs, i.e., PGs and xylanases. Worth mentioning, the reduction of FHB symptoms is accompanied by a reduction of deoxynivalenol accumulation with a foreseen great benefit to human and animal health.
Collapse
Affiliation(s)
- Silvio Tundo
- 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE) Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo
| | - Raviraj Kalunke
- 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE) Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo
| | - Michela Janni
- 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE) Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo
| | - Chiara Volpi
- 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE) Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo
| | - Vincenzo Lionetti
- 2 Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy; and
| | - Daniela Bellincampi
- 2 Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Roma, Italy; and
| | - Francesco Favaron
- 3 Dipartimento Territorio e Sistemi Agro-Forestali (TeSAF), Research group in Plant Pathology, Università di Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Renato D'Ovidio
- 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE) Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo
| |
Collapse
|
27
|
Chang HX, Yendrek CR, Caetano-Anolles G, Hartman GL. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanases and polygalacturonases of Fusarium virguliforme. BMC Microbiol 2016; 16:147. [PMID: 27405320 PMCID: PMC4941037 DOI: 10.1186/s12866-016-0761-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/02/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Plant cell wall degrading enzymes (PCWDEs) are a subset of carbohydrate-active enzymes (CAZy) produced by plant pathogens to degrade plant cell walls. To counteract PCWDEs, plants release PCWDEs inhibitor proteins (PIPs) to reduce their impact. Several transgenic plants expressing exogenous PIPs that interact with fungal glycoside hydrolase (GH)11-type xylanases or GH28-type polygalacturonase (PG) have been shown to enhance disease resistance. However, many plant pathogenic Fusarium species were reported to escape PIPs inhibition. Fusarium virguliforme is a soilborne pathogen that causes soybean sudden death syndrome (SDS). Although the genome of F. virguliforme was sequenced, there were limited studies focused on the PCWDEs of F. virguliforme. Our goal was to understand the genomic CAZy structure of F. viguliforme, and determine if exogenous PIPs could be theoretically used in soybean to enhance resistance against F. virguliforme. RESULTS F. virguliforme produces diverse CAZy to degrade cellulose and pectin, similar to other necrotorphic and hemibiotrophic plant pathogenic fungi. However, some common CAZy of plant pathogenic fungi that catalyze hemicellulose, such as GH29, GH30, GH44, GH54, GH62, and GH67, were deficient in F. virguliforme. While the absence of these CAZy families might be complemented by other hemicellulases, F. virguliforme contained unique families including GH131, polysaccharide lyase (PL) 9, PL20, and PL22 that were not reported in other plant pathogenic fungi or oomycetes. Sequence analysis revealed two GH11 xylanases of F. virguliforme, FvXyn11A and FvXyn11B, have conserved residues that allow xylanase inhibitor protein I (XIP-I) binding. Structural modeling suggested that FvXyn11A and FvXyn11B could be blocked by XIP-I that serves as good candidate for developing transgenic soybeans. In contrast, one GH28 PG, FvPG2, contains an amino acid substitution that is potentially incompatible with the bean polygalacturonase-inhibitor protein II (PvPGIP2). CONCLUSIONS Identification and annotation of CAZy provided advanced understanding of genomic composition of PCWDEs in F. virguliforme. Sequence and structural analyses of FvXyn11A and FvXyn11B suggested both xylanases were conserved in residues that allow XIP-I inhibition, and expression of both xylanases were detected during soybean roots infection. We postulate that a transgenic soybean expressing wheat XIP-I may be useful for developing root rot resistance to F. virguliforme.
Collapse
Affiliation(s)
- Hao-Xun Chang
- />Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | | | - Glen L. Hartman
- />Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- />USDA–Agricultural Research Services, Urbana, IL 61801 USA
- />National Soybean Research Center, University of Illinois, 1101 W. Peabody Dr., Urbana, IL 61801 USA
| |
Collapse
|
28
|
Tundo S, Moscetti I, Faoro F, Lafond M, Giardina T, Favaron F, Sella L, D'Ovidio R. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:161-9. [PMID: 26475196 DOI: 10.1016/j.plantsci.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 09/03/2015] [Indexed: 05/10/2023]
Abstract
To shed light on the role of Xylanase Inhibitors (XIs) during Fusarium graminearum infection, we first demonstrated that three out of four F. graminearum xylanases, in addition to their xylan degrading activity, have also the capacity to cause host cell death both in cell suspensions and wheat spike tissue. Subsequently, we demonstrated that TAXI-III and XIP-I prevented both the enzyme and host cell death activities of F. graminearum xylanases. In particular, we showed that the enzymatic inhibition by TAXI-III and XIP-I was competitive and only FGSG_11487 escaped inhibition. The finding that TAXI-III and XIP-I prevented cell death activity of heat inactivated xylanases and that XIP-I precluded the cell death activity of FGSG_11487 - even if XIP-I does not inhibit its enzyme activity - suggests that the catalytic and the cell death activities are separated features of these xylanases. Finally, the efficacy of TAXI-III or XIP-I to prevent host cell death caused by xylanases was confirmed in transgenic plants expressing separately these inhibitors, suggesting that the XIs could limit F. graminearum infection via direct inhibition of xylanase activity and/or by preventing host cell death.
Collapse
Affiliation(s)
- Silvio Tundo
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Ilaria Moscetti
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Mickaël Lafond
- ISM2/BiosCiences UMR CNRS7313, case 342, Aix-Marseille Université, 13397 Marseille cedex 20, France
| | - Thierry Giardina
- ISM2/BiosCiences UMR CNRS7313, case 342, Aix-Marseille Université, 13397 Marseille cedex 20, France
| | - Francesco Favaron
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Padova, Italy
| | - Luca Sella
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Padova, Italy.
| | - Renato D'Ovidio
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| |
Collapse
|
29
|
Moscetti I, Faoro F, Moro S, Sabbadin D, Sella L, Favaron F, D'Ovidio R. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants. MOLECULAR PLANT PATHOLOGY 2015; 16:583-92. [PMID: 25346411 PMCID: PMC6638430 DOI: 10.1111/mpp.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Davide Sabbadin
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Luca Sella
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro (PD), Padova, Italy
| | - Francesco Favaron
- Dipartimento del Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro (PD), Padova, Italy
| | - Renato D'Ovidio
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
30
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
31
|
Masci S, Laino P, Janni M, Botticella E, Di Carli M, Benvenuto E, Danieli PP, Lilley KS, Lafiandra D, D'Ovidio R. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3962-3969. [PMID: 25823882 DOI: 10.1021/jf506003t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.
Collapse
Affiliation(s)
- Stefania Masci
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| | - Paolo Laino
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| | - Michela Janni
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
- ⊥Institute of Biosciences and BioResources (IBBR), CNR, Via G. Amendola 165/A, Bari, Italy
| | - Ermelinda Botticella
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| | - Mariasole Di Carli
- §ENEA-Centro Ricerche Casaccia, Unità Tecnica BIORAD-FARM, via Anguillarese 301, 00123 Rome, Italy
| | - Eugenio Benvenuto
- §ENEA-Centro Ricerche Casaccia, Unità Tecnica BIORAD-FARM, via Anguillarese 301, 00123 Rome, Italy
| | - Pier Paolo Danieli
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| | - Kathryn S Lilley
- #Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Domenico Lafiandra
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| | - Renato D'Ovidio
- †Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, University of Tuscia, Viterbo, Italy
| |
Collapse
|
32
|
Lionetti V, Giancaspro A, Fabri E, Giove SL, Reem N, Zabotina OA, Blanco A, Gadaleta A, Bellincampi D. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC PLANT BIOLOGY 2015; 15:6. [PMID: 25597920 PMCID: PMC4298115 DOI: 10.1186/s12870-014-0369-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/05/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fusarium graminearum, one of the causal agents of Fusarium Head Blight (FHB, scab), leads to severe losses in grain yield and quality due to the production of mycotoxins which are harmful to human and livestock. Different traits for FHB resistance in wheat were identified for common wheat (Triticum aestivum L.) while the sources of FHB resistance in durum wheat (Triticum turgidum ssp. Durum), one of the cereals most susceptible to F. graminearum infection, have not been found. New lines of evidence indicate that content and composition of cell wall polymers affect the susceptibility of the wall to degrading enzymes produced by pathogens during infection and can play a role in the outcome of host-pathogen interactions. The objective of our research is to identify potential cell wall biochemical traits linked to Fusariosis resistance to be transferred from a resistant common wheat to a susceptible durum wheat line. RESULTS A detailed analysis of cell wall composition in spikes isolated from a highly resistant common wheat accession "02-5B-318", a breeding line derived from the FHB-resistant Chinese cv. Sumai-3 and a high susceptible durum wheat cv. Saragolla was performed. Significant differences in lignin monolignols composition, arabinoxylan (AX) substitutions and pectin methylesterification were found between resistant and susceptible plants. We isolated and characterized a pectin methylesterase gene WheatPME1, which we found being down regulated in the FHB-resistant line and induced by fungal infection in the susceptible wheat. CONCLUSIONS Our results indicate cell wall traits differing between the FHB sensitive and resistant wheat genotypes, possibly related to FHB-resistance, and identify the line 02-5B-318R as a potential resource of such traits. Evidence suggests that WheatPME1 is involved in wheat response to F. graminearum.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- />Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Angelica Giancaspro
- />Department of Soil, Plant and Food Science (DiSSPA), University of Bari “Aldo Moro”, Via G. Amendola 165/A - 70126, Bari, Italy
| | - Eleonora Fabri
- />Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Stefania L Giove
- />Department of Soil, Plant and Food Science (DiSSPA), University of Bari “Aldo Moro”, Via G. Amendola 165/A - 70126, Bari, Italy
| | - Nathan Reem
- />Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Olga A Zabotina
- />Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Antonio Blanco
- />Department of Soil, Plant and Food Science (DiSSPA), University of Bari “Aldo Moro”, Via G. Amendola 165/A - 70126, Bari, Italy
| | - Agata Gadaleta
- />Department of Soil, Plant and Food Science (DiSSPA), University of Bari “Aldo Moro”, Via G. Amendola 165/A - 70126, Bari, Italy
| | - Daniela Bellincampi
- />Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
33
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24904623 DOI: 10.3389/fpls.2017.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
- Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| |
Collapse
|
34
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:228. [PMID: 24904623 PMCID: PMC4036129 DOI: 10.3389/fpls.2014.00228] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
| | | | - Vincenzo Lionetti
- *Correspondence: Vincenzo Lionetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome 00185, Italy e-mail:
| |
Collapse
|