1
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Xiao Z, Zhao Q, Li W, Gao L, Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol 2023; 14:1146210. [PMID: 37125207 PMCID: PMC10134904 DOI: 10.3389/fmicb.2023.1146210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In the control of plant diseases, biocontrol has the advantages of being efficient and safe for human health and the environment. The filamentous fungus Trichoderma harzianum and its closely related species can inhibit the growth of many phytopathogenic fungi, and have been developed as commercial biocontrol agents for decades. In this review, we summarize studies on T. harzianum species complex from the perspective of strain improvement. To elevate the biocontrol ability, the production of extracellular proteins and compounds with antimicrobial or plant immunity-eliciting activities need to be enhanced. In addition, resistance to various environmental stressors should be strengthened. Engineering the gene regulatory system has the potential to modulate a variety of biological processes related to biocontrol. With the rapidly developing technologies for fungal genetic engineering, T. harzianum strains with increased biocontrol activities are expected to be constructed to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Shi X, Fang J, Du H, Zhang S, Liu F, Zhang Z, Kong X. Performance of two Ips bark beetles and their associated pathogenic fungi on hosts reflects a species-specific association in the beetle-fungus complex. FRONTIERS IN PLANT SCIENCE 2022; 13:1029526. [PMID: 36483952 PMCID: PMC9722963 DOI: 10.3389/fpls.2022.1029526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
When Ips bark beetles invade and colonize the host plants, their associated pathogenic fungal partners are carried into the phloem of the host trees. Host trees are lethally attacked by the beetle-fungus complex and the collective damage severely limits forestry production worldwide. It is of great importance to verify whether bark beetles and their associated fungi show concordant performance in terms of biology, physiology, and biochemistry on host trees. In this study, the two Ips bark beetles Ips typographus and Ips subelongatus (Coleoptera: Curculionidae, Scolytinae), their respective associated pathogenic fungi Endoconidiophora polonica and Endoconidiophora fujiensis, and their respective host plants Picea jezoensis and Larix olgensis were selected as test material. Cross-inoculation experiments were conducted indoors and outdoors to investigate the differences in reproduction and development of two beetles and infectivity of two fungi on two plants, as well as the differences in physiological responses of two plants to two fungal infections. The results showed that I. typographus and E. polonica had excellent host performance on P. jezoensis; however, neither successfully colonized and infected L. olgensis. In contrast, I. subelongatus and E. fujiensis showed strong host suitability on L. olgensis and some degree of suitability on P. jezoensis, although the host suitability of P. jezoensis for E. polonica was significantly higher than that for E. fujiensis. In addition, we found that the absolute amount of ergosterol accumulated on the lesion was positively correlated with lesion area. The ergosterol amount and lesion area were both strongly correlated with the release of host monoterpenes, but had no obvious correlation with the concentration of fungi-induced phenols on the lesion area and the side-chain oxidation of lignin in the xylem of the infected sites. Based on these results, we confirmed that "I. typographus-E. polonica" and "I. subelongatus-E. fujiensis" complexes both showed the most suitable consistent performances on their own traditional hosts, establishing a stable species-specific association relationship in these two beetle-fungus complexes, with the "I. subelongatus-E. fujiensis" complex showing broader host suitability. From the perspective of physiological responses of plants to fungal infections, monoterpenes are an important indicator of host suitability.
Collapse
|
5
|
Álvarez-García S, Manga-Robles A, Encina A, Gutiérrez S, Casquero PA. Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111286. [PMID: 35643620 DOI: 10.1016/j.plantsci.2022.111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
The field of plant-microbe interactions mediated by Biogenic Volatile Organic Compounds (BVOCs) still faces several limitations due to the lack of reliable equipment. We present a novel device designed to evaluate in vitro plant-microbe volatile interactions, the plant-microbe VOC Chamber. It was tested by evaluating the effects exerted on wheat development by volatiles from three Trichoderma harzianum strains, a wild type and two genetically modified strains; one expressing the tri5 gene, which leads to the synthesis and emission of the volatile trichodiene, and the other by silencing the erg1 gene, impairing ergosterol production. The wild type and the erg1-silenced strain enhanced fresh weight and length of the aerial part, but reduced root dry weight. Interestingly, no differences were found between them. Conversely, the tri5-transformant strain reduced root and aerial growth compared to the control and the other strains. No differences were observed regarding chlorophyll fluorescence quantum yield and leaf chlorophyll content, suggesting that the released BVOCs do not interfere with photosynthesis. The plant-microbe VOC Chamber proved to be a simple and reliable method to evaluate the in vitro effects of microbial BVOCs on plant development, perfect for the screening of microorganisms with interesting volatile traits.
Collapse
Affiliation(s)
- Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain.
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| |
Collapse
|
6
|
Rauf M, Ur-Rahman A, Arif M, Gul H, Ud-Din A, Hamayun M, Lee IJ. Immunomodulatory Molecular Mechanisms of Luffa cylindrica for Downy Mildews Resistance Induced by Growth-Promoting Endophytic Fungi. J Fungi (Basel) 2022; 8:689. [PMID: 35887445 PMCID: PMC9324744 DOI: 10.3390/jof8070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Asim Ur-Rahman
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Sandy M, Bui TI, Abá KS, Ruiz N, Paszalek J, Connor EW, Hawkes CV. Plant Host Traits Mediated by Foliar Fungal Symbionts and Secondary Metabolites. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02057-x. [PMID: 35713682 DOI: 10.1007/s00248-022-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fungal symbionts living inside plant leaves ("endophytes") can vary from beneficial to parasitic, but the mechanisms by which the fungi affect the plant host phenotype remain poorly understood. Chemical interactions are likely the proximal mechanism of interaction between foliar endophytes and the plant, as individual fungal strains are often exploited for their diverse secondary metabolite production. Here, we go beyond single strains to examine commonalities in how 16 fungal endophytes shift plant phenotypic traits such as growth and physiology, and how those relate to plant metabolomics profiles. We inoculated individual fungi on switchgrass, Panicum virgatum L. This created a limited range of plant growth and physiology (2-370% of fungus-free controls on average), but effects of most fungi overlapped, indicating functional similarities in unstressed conditions. Overall plant metabolomics profiles included almost 2000 metabolites, which were broadly correlated with plant traits across all the fungal treatments. Terpenoid-rich samples were associated with larger, more physiologically active plants and phenolic-rich samples were associated with smaller, less active plants. Only 47 metabolites were enriched in plants inoculated with fungi relative to fungus-free controls, and of these, Lasso regression identified 12 metabolites that explained from 14 to 43% of plant trait variation. Fungal long-chain fatty acids and sterol precursors were positively associated with plant photosynthesis, conductance, and shoot biomass, but negatively associated with survival. The phytohormone gibberellin, in contrast, was negatively associated with plant physiology and biomass. These results can inform ongoing efforts to develop metabolites as crop management tools, either by direct application or via breeding, by identifying how associations with more beneficial components of the microbiome may be affected.
Collapse
Affiliation(s)
- Moriah Sandy
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Tina I Bui
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kenia Segura Abá
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Nestor Ruiz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - John Paszalek
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Elise W Connor
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, College of Western Idaho, Nampa, ID, 83687, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
8
|
Álvarez-García S, Gutiérrez S, Casquero PA. Use of VOC Chambers to evaluate the impact of microbial volatile compounds on dry grain insect pests. MethodsX 2022; 9:101734. [PMID: 35637692 PMCID: PMC9144012 DOI: 10.1016/j.mex.2022.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain
- Corresponding author.
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain
| | - Pedro A. Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain
| |
Collapse
|
9
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Tian Y, Fu X, Zhang G, Zhang R, Kang Z, Gao K, Mendgen K. Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. J Fungi (Basel) 2022; 8:jof8020180. [PMID: 35205933 PMCID: PMC8878499 DOI: 10.3390/jof8020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.
Collapse
Affiliation(s)
- Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Xuesong Fu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Gongchen Zhang
- Qingdao Academy of Agricultural Science, Qingdao 266100, China;
| | - Rui Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Kexiang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
- Correspondence:
| | - Kurt Mendgen
- Department of Biology, University of Constance, 78457 Constance, Germany;
| |
Collapse
|
11
|
Taylor L, Gutierrez S, McCormick SP, Bakker MG, Proctor RH, Teresi J, Kurtzman B, Hao G, Vaughan MM. Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microb Biotechnol 2022; 15:513-527. [PMID: 33528888 PMCID: PMC8867995 DOI: 10.1111/1751-7915.13742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.
Collapse
Affiliation(s)
- Laurie Taylor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Santiago Gutierrez
- Molecular Biology DepartmentUniversity of LeonCampus de Ponferrada, Avda. Astorga s/n 24400PonferradaSpain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Matthew G. Bakker
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
- Present address:
Department of MicrobiologyUniversity of Manitoba45 Chancellor’s CircleWinnipegMBR3T 2N2Canada
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Jennifer Teresi
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Ben Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| |
Collapse
|
12
|
Volatile Organic Compound Chamber: A Novel Technology for Microbiological Volatile Interaction Assays. J Fungi (Basel) 2021; 7:jof7040248. [PMID: 33806125 PMCID: PMC8064445 DOI: 10.3390/jof7040248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The interest in the study of microbiological interactions mediated by volatile organic compounds (VOCs) has steadily increased in the last few years. Nevertheless, most assays still rely on the use of non-specific materials. We present a new tool, the volatile organic compound chamber (VOC chamber), specifically designed to perform these experiments. The novel devices were tested using four Trichoderma strains against Fusarium oxysporum and Rhizoctonia solani. We demonstrate that VOC chambers provide higher sensitivity and selectivity between treatments and higher homogeneity of results than the traditional method. VOC chambers are also able to test both vented and non-vented conditions. We prove that ventilation plays a very important role regarding volatile interactions, up to the point that some growth-inhibitory effects observed in closed environments switch to promoting ones when tested in vented conditions. This promoting activity seems to be related to the accumulation of squalene by T. harzianum. The VOC chambers proved to be an easy, homogeneous, flexible, and repeatable method, able to better select microorganisms with high biocontrol activity and to guide the future identification of new bioactive VOCs and their role in microbial interactions.
Collapse
|
13
|
Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi (Basel) 2021; 7:jof7010061. [PMID: 33477406 PMCID: PMC7830842 DOI: 10.3390/jof7010061] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection.
Collapse
|
14
|
Lindo L, Cardoza RE, Lorenzana A, Casquero PA, Gutiérrez S. Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:927-947. [PMID: 31436383 PMCID: PMC7383801 DOI: 10.1111/jipb.12862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 05/27/2023]
Abstract
Trichoderma biocontrol strains establish a complex network of interactions with plants, in which diverse fungal molecules are involved in the recognition of these fungi as nonpathogenic organisms. These molecules act as microbial-associated molecular patterns that trigger plant responses. Previous studies have reported the importance of ergosterol produced by Trichoderma spp. for the ability of these fungi to induce plant growth and defenses. In addition, squalene, a sterol biosynthetic intermediate, seems to play an important role in these interactions. Here, we analyzed the effect of different concentrations of ergosterol and squalene on tomato (Solanum lycopersicum) growth and on the transcription level of defense- and growth-related genes. We used an RNA-seq strategy to identify several tomato genes encoding predicted pattern recognition receptor proteins or WRKY transcription factors, both of which are putatively involved in the perception and response to ergosterol and squalene. Finally, an analysis of Arabidopsis thaliana mutants lacking the genes homologous to these tomato candidates led to the identification of a WRKY40 transcription factor that negatively regulates salicylic acid-related genes and positively regulates ethylene- and jasmonate-related genes in the presence of ergosterol and squalene.
Collapse
Affiliation(s)
- Laura Lindo
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Rosa E. Cardoza
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Alicia Lorenzana
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Pedro A. Casquero
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| | - Santiago Gutiérrez
- Area of MicrobiologyUniversity of León, Campus of PonferradaPonferradaSpain
- University Group of Research in Engineering and Sustainable AgricultureUniversity of LeónLeónSpain
| |
Collapse
|
15
|
|
16
|
Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl Microbiol Biotechnol 2019; 103:9287-9303. [DOI: 10.1007/s00253-019-10209-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
|
17
|
Meena M, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2017; 50:629-648. [DOI: 10.1080/03235408.2017.1357360] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 06/18/2023]
Affiliation(s)
- Mukesh Meena
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - R. S. Upadhyay
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SPRINGERPLUS 2016; 5:1939. [PMID: 27917337 PMCID: PMC5102998 DOI: 10.1186/s40064-016-3657-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/04/2016] [Indexed: 01/10/2023]
Abstract
The use of Trichoderma isolates with efficient antagonistic activity represents a potentially effective and alternative disease management strategy to replace health hazardous chemical control. In this context, twenty isolates were obtained from tomato rhizosphere and evaluated by their antagonistic activity against four fungal pathogens (Fusarium oxysporum f. sp. lycopersici, Alternaria alternata, Colletotrichum gloeosporoides and Rhizoctonia solani). The production of extracellular cell wall degrading enzymes of tested isolates was also measured. All the isolates significantly reduced the mycelial growth of tested pathogens but the amount of growth reduction varied significantly as well. There was a positive correlation between the antagonistic capacity of Trichoderma isolates towards fungal pathogens and their lytic enzyme production. The Trichoderma isolates were initially sorted according to morphology and based on the translation elongation factor 1-α gene sequence similarity, the isolates were designated as Trichoderma harzianum, T. koningii, T. asperellum, T. virens and T. viride. PCA analysis explained 31.53, 61.95, 62.22 and 60.25% genetic variation among Trichoderma isolates based on RAPD, REP-, ERIC- and BOX element analysis, respectively. ERG-1 gene, encoding a squalene epoxidase has been used for the first time for diversity analysis of antagonistic Trichoderma from tomato rhizosphere. Phylogenetic analysis of ERG-1 gene sequences revealed close relatedness of ERG-1sequences with earlier reported sequences of Hypocrea lixii, T. arundinaceum and T. reesei. However, ERG-1 gene also showed heterogeneity among some antagonistic isolates and indicated the possibility of occurrence of squalene epoxidase driven triterpene biosynthesis as an alternative biocontrol mechanism in Trichoderma species.
Collapse
Affiliation(s)
- Shalini Rai
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| | - Prem Lal Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Regional Station, Flowerdale, Shimla, 171002 India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana 132001 India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103 India
| | - Pramod W. Ramteke
- Sam Higginbottom Institute of Agriculture, Technology and Sciences (SHIATS), Allahabad, 211007 India
| |
Collapse
|
19
|
Malmierca MG, Izquierdo-Bueno I, McCormick SP, Cardoza RE, Alexander NJ, Barua J, Lindo L, Casquero PA, Collado IG, Monte E, Gutiérrez S. Trichothecenes and aspinolides produced by Trichoderma arundinaceum
regulate expression of Botrytis cinerea
genes involved in virulence and growth. Environ Microbiol 2016; 18:3991-4004. [DOI: 10.1111/1462-2920.13410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Mónica G. Malmierca
- Area of Microbiology; Universitary School of Agricultural Engineers. University of León; Ponferrada Spain
| | | | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA/ARS; National Center for Agricultural Utilization Research; Peoria IL USA
| | - Rosa E. Cardoza
- Area of Microbiology; Universitary School of Agricultural Engineers. University of León; Ponferrada Spain
| | - Nancy J. Alexander
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA/ARS; National Center for Agricultural Utilization Research; Peoria IL USA
| | - Javier Barua
- Department of Organic Chemistry Faculty of Sciences; University of Cádiz; Puerto Real Spain
| | - Laura Lindo
- Area of Microbiology; Universitary School of Agricultural Engineers. University of León; Ponferrada Spain
| | - Pedro A. Casquero
- Research Group of Engineering and Sustainable Agriculture; Natural Resources Institute, University of León; León 24071 Spain
| | - Isidro G. Collado
- Department of Organic Chemistry Faculty of Sciences; University of Cádiz; Puerto Real Spain
| | - Enrique Monte
- Spanish-Portuguese Centre of Agricultural Research (CIALE), Department of Microbiology and Genetics; University of Salamanca; Salamanca Spain
| | - Santiago Gutiérrez
- Area of Microbiology; Universitary School of Agricultural Engineers. University of León; Ponferrada Spain
| |
Collapse
|