1
|
Zhang P, Li J, Gou X, Zhu L, Yang Y, Li Y, Zhang Y, Ding L, Ansabayeva A, Meng Y, Shan W. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. MOLECULAR PLANT PATHOLOGY 2024; 25:e70021. [PMID: 39487604 PMCID: PMC11530570 DOI: 10.1111/mpp.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.
Collapse
Affiliation(s)
- Peiling Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Assiya Ansabayeva
- Department of AgronomyA. Baitursynov Kostanay Regional UniversityKostanayKazakhstan
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Shakhova ES, Karataeva TA, Markina NM, Mitiouchkina T, Palkina KA, Perfilov MM, Wood MG, Hoang TT, Hall MP, Fakhranurova LI, Alekberova AE, Malyshevskaia AK, Gorbachev DA, Bugaeva EN, Pletneva LK, Babenko VV, Boldyreva DI, Gorokhovatsky AY, Balakireva AV, Gao F, Choob VV, Encell LP, Wood KV, Yampolsky IV, Sarkisyan KS, Mishin AS. An improved pathway for autonomous bioluminescence imaging in eukaryotes. Nat Methods 2024; 21:406-410. [PMID: 38253843 PMCID: PMC10927554 DOI: 10.1038/s41592-023-02152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.
Collapse
Affiliation(s)
- Ekaterina S Shakhova
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Karataeva
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda M Markina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Mitiouchkina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kseniia A Palkina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim M Perfilov
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - Anna E Alekberova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena K Malyshevskaia
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Gorbachev
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Vladislav V Babenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria I Boldyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey Y Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia V Balakireva
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Feng Gao
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Vladimir V Choob
- Planta LLC, Moscow, Russia
- Botanical Garden of Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Ilia V Yampolsky
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Light Bio Inc, Ketchum, ID, USA
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Karen S Sarkisyan
- Planta LLC, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Light Bio Inc, Ketchum, ID, USA.
| | - Alexander S Mishin
- Planta LLC, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|