1
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Carleson NC, Press CM, Grünwald NJ. High-Quality, Phased Genomes of Phytophthora ramorum Clonal Lineages NA1 and EU1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:360-363. [PMID: 35285670 DOI: 10.1094/mpmi-11-21-0264-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Nicholas C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Caroline M Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
3
|
Mandal K, Dutta S, Upadhyay A, Panda A, Tripathy S. Comparative Genome Analysis Across 128 Phytophthora Isolates Reveal Species-Specific Microsatellite Distribution and Localized Evolution of Compartmentalized Genomes. Front Microbiol 2022; 13:806398. [PMID: 35369471 PMCID: PMC8967354 DOI: 10.3389/fmicb.2022.806398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Phytophthora sp. are invasive groups of pathogens belonging to class Oomycetes. In order to contain and control them, a deep knowledge of their biology and infection strategy is imperative. With the availability of large-scale sequencing data, it has been possible to look directly into their genetic material and understand the strategies adopted by them for becoming successful pathogens. Here, we have studied the genomes of 128 Phytophthora species available publicly with reasonable quality. Our analysis reveals that the simple sequence repeats (SSRs) of all Phytophthora sp. follow distinct isolate specific patterns. We further show that TG/CA dinucleotide repeats are far more abundant in Phytophthora sp. than other classes of repeats. In case of tri- and tetranucleotide SSRs also, TG/CA-containing motifs always dominate over others. The GC content of the SSRs are stable without much variation across the isolates of Phytophthora. Telomeric repeats of Phytophthora follow a pattern of (TTTAGGG)n or (TTAGGGT)n rather than the canonical (TTAGGG)n. RxLR (arginine-any amino acid-leucine-arginine) motifs containing effectors diverge rapidly in Phytophthora and do not show any core common group. The RxLR effectors of some Phytophthora isolates have a tendency to form clusters with RxLRs from other species than within the same species. An analysis of the flanking intergenic distance clearly indicates a two-speed genome organization for all the Phytophthora isolates. Apart from effectors and the transposons, a large number of other virulence genes such as carbohydrate-active enzymes (CAZymes), transcriptional regulators, signal transduction genes, ATP-binding cassette transporters (ABC), and ubiquitins are also present in the repeat-rich compartments. This indicates a rapid co-evolution of this powerful arsenal for successful pathogenicity. Whole genome duplication studies indicate that the pattern followed is more specific to a geographic location. To conclude, the large-scale genomic studies of Phytophthora have thrown light on their adaptive evolution, which is largely guided by the localized host-mediated selection pressure.
Collapse
Affiliation(s)
- Kajal Mandal
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subhajeet Dutta
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Upadhyay
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Panda
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN, United States
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models. Front Microbiol 2021; 12:748178. [PMID: 34707596 PMCID: PMC8543037 DOI: 10.3389/fmicb.2021.748178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolism is the set of biochemical reactions of an organism that enables it to assimilate nutrients from its environment and to generate building blocks for growth and proliferation. It forms a complex network that is intertwined with the many molecular and cellular processes that take place within cells. Systems biology aims to capture the complexity of cells, organisms, or communities by reconstructing models based on information gathered by high-throughput analyses (omics data) and prior knowledge. One type of model is a genome-scale metabolic model (GEM) that allows studying the distributions of metabolic fluxes, i.e., the "mass-flow" through the network of biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for various microbial pathogens, either in a free-living state or in interaction with their hosts, with the aim to gain insight into mechanisms of pathogenicity. In this review, we first introduce the principles of systems biology and GEMs. We then describe how metabolic modeling can contribute to unraveling microbial pathogenesis and host-pathogen interactions, with a specific focus on oomycete plant pathogens and in particular Phytophthora infestans. Subsequently, we review achievements obtained so far and identify and discuss potential pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality GEMs and elaborate on the resources needed to advance a system biology approach aimed at untangling the intimate interactions between plants and pathogens.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics group, Department of Biology, Utrecht University, Wageningen, Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
5
|
The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 2021; 31:1570-1577.e4. [PMID: 33592192 DOI: 10.1016/j.cub.2021.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina)1 are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants.2,3 AMS allows plants to efficiently acquire poorly soluble soil nutrients4 and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years5 and is thought to be one of the key innovations that allowed the colonization of lands by plants.6 Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS.7,8 However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.9Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state.10-12 Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.
Collapse
|
6
|
He K, Minias P, Dunn PO. Long-Read Genome Assemblies Reveal Extraordinary Variation in the Number and Structure of MHC Loci in Birds. Genome Biol Evol 2021; 13:evaa270. [PMID: 33367721 PMCID: PMC7875000 DOI: 10.1093/gbe/evaa270] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Our knowledge of the Major Histocompatibility Complex (MHC) in birds is limited because it often consists of numerous duplicated genes within individuals that are difficult to assemble with short read sequencing technology. Long-read sequencing provides an opportunity to overcome this limitation because it allows the assembly of long regions with repetitive elements. In this study, we used genomes based on long-read sequencing to predict the number and location of MHC loci in a broad range of bird taxa. From the long-read-based genomes of 34 species, we found that there was extremely large variation in the number of MHC loci between species. Overall, there were greater numbers of both class I and II loci in passerines than nonpasserines. The highest numbers of loci (up to 193 class II loci) were found in manakins (Pipridae), which had previously not been studied at the MHC. Our results provide the first direct evidence from passerine genomes of this high level of duplication. We also found different duplication patterns between species. In some species, both MHC class I and II genes were duplicated together, whereas in most species they were duplicated independently. Our study shows that the analysis of long-read-based genomes can dramatically improve our knowledge of MHC structure, although further improvements in chromosome level assembly are needed to understand the evolutionary mechanisms producing the extraordinary interspecific variation in the architecture of the MHC region.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Poland
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Poland
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, WI, USA
| |
Collapse
|
7
|
Lee Y, Cho KS, Seo JH, Sohn KH, Prokchorchik M. Improved Genome Sequence and Gene Annotation Resource for the Potato Late Blight Pathogen Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1025-1028. [PMID: 32310703 DOI: 10.1094/mpmi-02-20-0023-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans is a devastating pathogen causing potato late blight (Solanum tuberosum). Here we report the sequencing, assembly and genome annotation for two Phytophthora infestans isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of P. infestans genome assembly. Our resources would help researchers better understand the molecular mechanisms by which P. infestans causes late blight disease in the future.
Collapse
Affiliation(s)
- Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwang-Soo Cho
- Potato Research Team, Highland Agriculture Research Institute, Rural Development Administration, Gangwon 25342, Republic of Korea
| | - Jin-Hee Seo
- Potato Research Team, Highland Agriculture Research Institute, Rural Development Administration, Gangwon 25342, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen Phytophthora megakarya and Its Close Relative Phytophthora palmivora. G3-GENES GENOMES GENETICS 2020; 10:2241-2255. [PMID: 32354704 PMCID: PMC7341134 DOI: 10.1534/g3.120.401014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phytophthora megakarya and P. palmivora are oomycete pathogens that cause black pod rot of cacao (Theobroma cacao), the most economically important disease on cacao globally. While P. palmivora is a cosmopolitan pathogen, P. megakarya, which is more aggressive on cacao than P. palmivora, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The P. megakarya genome is exceptionally large (222 Mbp) and nearly twice the size of P. palmivora (135 Mbp) and most known Phytophthora species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in P. palmivora In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In P. megakarya we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of Phytophthora genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.
Collapse
|
9
|
Yuzon JD, Travadon R, Malar C M, Tripathy S, Rank N, Mehl HK, Rizzo DM, Cobb R, Small C, Tang T, McCown HE, Garbelotto M, Kasuga T. Asexual Evolution and Forest Conditions Drive Genetic Parallelism in Phytophthora ramorum. Microorganisms 2020; 8:E940. [PMID: 32580470 PMCID: PMC7357085 DOI: 10.3390/microorganisms8060940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many asexual organisms can generate genetic and phenotypic variation, providing an avenue for further evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs arise and their significance to the California NA1 population, we studied the evolutionary histories of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction suggests that SVs arose by somatic mutations among multiple independent lineages, rather than by recombination. We asked if this unusual phenomenon of parallel evolution between isolated populations is transmitted to extant lineages and found that SVs persist longer in a population if their genetic background had a lower mutation load. Genetic parallelism was also found in geographically distant demes where forest conditions such as host density, solar radiation, and temperature, were similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the potential to change the course of an epidemic. By combining genomics and environmental data, we identified an unexpected pattern of repeated evolution in an asexual population and identified environmental factors potentially driving this phenomenon.
Collapse
Affiliation(s)
- Jennifer David Yuzon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Mathu Malar C
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Sucheta Tripathy
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Heather K. Mehl
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Richard Cobb
- Department of Natural Resources and Environmental Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Corinn Small
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Tiffany Tang
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Haley E. McCown
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA;
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
10
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
11
|
Adams TM, Armitage AD, Sobczyk MK, Bates HJ, Tabima JF, Kronmiller BA, Tyler BM, Grünwald NJ, Dunwell JM, Nellist CF, Harrison RJ. Genomic Investigation of the Strawberry Pathogen Phytophthora fragariae Indicates Pathogenicity Is Associated With Transcriptional Variation in Three Key Races. Front Microbiol 2020; 11:490. [PMID: 32351458 PMCID: PMC7174552 DOI: 10.3389/fmicb.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
The oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, "red core". The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian, and United Kingdom isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), P. rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as United Kingdom races 1, 2, and 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points toward the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens.
Collapse
Affiliation(s)
- Thomas M. Adams
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Andrew D. Armitage
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Maria K. Sobczyk
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Helen J. Bates
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| | - Javier F. Tabima
- Department of Botany and Plant Pathology, Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Brent A. Kronmiller
- Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
- Center for Genome Biology and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Niklaus J. Grünwald
- Horticultural Crops Research Unit, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, United States
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Richard J. Harrison
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
- NIAB Cambridge Crop Research, NIAB, Cambridge, United Kingdom
| |
Collapse
|
12
|
Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, Kronmiller B, Tyler BM, Sanyal K, Dong S, Nowrousian M, Heitman J. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genet 2020; 16:e1008646. [PMID: 32150559 PMCID: PMC7082073 DOI: 10.1371/journal.pgen.1008646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly. Oomycetes are fungal-like microorganisms that belong to the stramenopiles within the Stramenopila-Alveolata-Rhizaria (SAR) supergroup. The Phytophthora oomycetes are infamous as plant killers, threatening crop production worldwide. Because of the highly repetitive nature of their genomes, assembly of oomycete genomes presents challenges that impede identification of centromeres, which are chromosomal sites mediating faithful chromosome segregation. We report long-read sequencing-based genome assembly of the Phytophthora sojae reference strain, which facilitated the discovery of centromeres. P. sojae harbors large regional centromeres fully embedded in heterochromatin, and enriched for a Copia-like transposon that is also found in discrete clusters in other oomycetes. This study provides insight into the oomycete genome organization, broadens our knowledge of centromere structure, function and evolution in eukaryotes, and may help elucidate the high frequency of aneuploidy during oomycete reproduction.
Collapse
Affiliation(s)
- Yufeng Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Haidong Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhagya C. Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Han Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ewa P. Malc
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Minou Nowrousian
- Lehrstuhl fuer Molekulare und Zellulaere Botanik, Ruhr-Universitaet Bochum, Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Cui C, Herlihy JH, Bombarely A, McDowell JM, Haak DC. Draft Assembly of Phytophthora capsici from Long-Read Sequencing Uncovers Complexity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1559-1563. [PMID: 31479390 DOI: 10.1094/mpmi-04-19-0103-ta] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Resolving complex plant pathogen genomes is important for identifying the genomic shifts associated with rapid adaptation to selective agents such as hosts and fungicides, yet assembling these genomes remains challenging and expensive. Phytophthora capsici is an important, globally distributed plant pathogen that exhibits widespread fungicide resistance and a broad host range. As with other pathogenic oomycetes, P. capsici has a complex life history and a complex genome. Here, we leverage Oxford Nanopore Technologies and existing short-read resources to rapidly generate a low-cost, improved assembly. We generated 10 Gbp from a single MinION flow cell resulting in >1.25 million reads with an N50 of 13 kb. The resulting assembly is 95.2 Mbp in 424 scaffolds with an N50 length of 313 kb. This assembly is approximately 30 Mbp bigger than the current reference genome of 64 Mbp. We confirmed this larger genome size using flow cytometry, with an estimated size of 110 Mbp. BUSCO analysis identified 97.4% complete orthologs (19.2% duplicated). Evolutionary analysis supports a recent whole-genome duplication in this group. Our work provides a blueprint for rapidly integrating benchtop long-read sequencing with existing short-read data, to dramatically improve assembly quality and integrity of complex genomes and offer novel insights into pathogen genome function and evolution.
Collapse
Affiliation(s)
- Chenming Cui
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Aureliano Bombarely
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| |
Collapse
|
14
|
Malar C M, Yuzon JD, Panda A, Kasuga T, Tripathy S. Updated Assembly of Phytophthora ramorum pr102 Isolate Incorporating Long Reads from PacBio Sequencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1472-1474. [PMID: 31306082 DOI: 10.1094/mpmi-05-19-0147-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The NA1 clonal lineage of Phytophthora ramorum is responsible for sudden oak death, an epidemic that has devastated California coastal forest ecosystems. An NA1 isolate, Pr102, derived from coast live oak in California, was previously sequenced and reported with a 65-Mb assembly containing 12 Mb of gaps in 2,576 scaffolds. Here, we report an improved 70-Mb genome in 1,512 scaffolds with 6,752 bp of gaps after incorporating PacBio P5-C3 long reads. This assembly contains 19,494 gene models (average gene length of 2,515 bp) compared with 16,134 genes (average gene length of 1,673 bp) in the previous version. We predicted 29 new RXLR genes and 76 new paralogs of a total 392 RXLR genes from this assembly. We predicted 35 CRN genes compared with 19 in an earlier version with six paralogs. Our long non-coding RNA prediction identified 255 candidates. This new resource will be invaluable for future evolution studies on the invasive plant pathogen.
Collapse
Affiliation(s)
- Mathu Malar C
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Jennifer David Yuzon
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
- USDA-ARS, Davis, CA, U.S.A
| | - Arijit Panda
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Takao Kasuga
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
- USDA-ARS, Davis, CA, U.S.A
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
15
|
Panda A, Chaudhari NM, Mukherjee M, Ghosh S, Sarangi AN, Mathu Malar C, Kant S, Sen D, Das A, Das S, Singh D, Prusty A, Tripathy S. Genome/transcriptome collection of plethora of economically important, previously unexplored organisms from India and abroad. Data Brief 2019; 25:104099. [PMID: 31294057 PMCID: PMC6595405 DOI: 10.1016/j.dib.2019.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022] Open
Abstract
Genome and transcriptome sequencing data are extremely useful resources for researchers in carrying out biological experiments that involves cloning and characterizing genes. We are presenting here genome sequence data from different clades of life including photosynthetic prokaryotes; oomycetes pathogens; probiotic bacteria; endophytic yeasts and filamentous fungus and pathogenic protozoa Leishmania donovani. In addition, we are also presenting paired control and treated stress response transcriptomes of Cyanobacteria growing in extreme conditions. The Cyanobacterial species that are included in this dataset were isolated from extreme conditions including desiccated monuments, hot springs and saline archipelagos. The probiotic Lactobacillus paracasei was isolated from Indian sub-continent. The Kala azar causing protozoan Leishmania donovani, whose early infectious stage is also included in this dataset. The endophyte Arthrinium malaysianum was isolated as a contaminant has significant bio-remediation property. Our collaborators have isolated endophyte Rhodotorula mucilaginosa JGTA1 from Jaduguda mines, West Bengal, India infested with Uranium. Our collaborators have isolated a heterozygous diploid oomycetes pathogen, Phytophthora ramorum causing sudden oak death in CA, USA coast is also part of the data. These dataset presents a unique heterogeneous collection from various sources that are analyzed using “Genome Annotator Light (GAL): A Docker-based package for genome analysis and visualization” (Panda et al., 2019) and are presented in a web site automatically created by GAL at http://www.eumicrobedb.org/cglab.
Collapse
Affiliation(s)
- Arijit Panda
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Narendrakumar M Chaudhari
- Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mayuri Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Samrat Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Aditya Narayan Sarangi
- Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - C Mathu Malar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shashi Kant
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Diya Sen
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhadeep Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Deeksha Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Asharani Prusty
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sucheta Tripathy
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.,Structural Biology and Bioinformatics Division Department, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|