1
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Araya S, Elia P, Quigley CV, Song Q. Genetic variation and genetic complexity of nodule occupancy in soybean inoculated with USDA110 and USDA123 rhizobium strains. BMC Genomics 2023; 24:520. [PMID: 37667205 PMCID: PMC10478483 DOI: 10.1186/s12864-023-09627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Symbiotic nitrogen fixation differs among Bradyrhizobium japonicum strains. Soybean inoculated with USDA123 has a lower yield than strains known to have high nitrogen fixation efficiency, such as USDA110. In the main soybean-producing area in the Midwest of the United States, USDA123 has a high nodule incidence in field-grown soybean and is competitive but inefficient in nitrogen fixation. In this study, a high-throughput system was developed to characterize nodule number among 1,321 Glycine max and 69 Glycine soja accessions single inoculated with USDA110 and USDA123. RESULTS Seventy-three G. max accessions with significantly different nodule number of USDA110 and USDA123 were identified. After double inoculating 35 of the 73 accessions, it was observed that PI189939, PI317335, PI324187B, PI548461, PI562373, and PI628961 were occupied by USDA110 and double-strain nodules but not by USDA123 nodules alone. PI567624 was only occupied by USDA110 nodules, and PI507429 restricted all strains. Analysis showed that 35 loci were associated with nodule number in G. max when inoculated with strain USDA110 and 35 loci with USDA123. Twenty-three loci were identified in G. soja when inoculated with strain USDA110 and 34 with USDA123. Only four loci were common across two treatments, and each locus could only explain 0.8 to 1.5% of phenotypic variation. CONCLUSIONS High-throughput phenotyping systems to characterize nodule number and occupancy were developed, and soybean germplasm restricting rhizobium strain USDA123 but preferring USDA110 was identified. The larger number of minor effects and a small few common loci controlling the nodule number indicated trait genetic complexity and strain-dependent nodulation restriction. The information from the present study will add to the development of cultivars that limit USDA123, thereby increasing nitrogen fixation efficiency and productivity.
Collapse
Affiliation(s)
- Susan Araya
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Patrick Elia
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Charles V Quigley
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Teulet A, Gully D, Rouy Z, Camuel A, Koebnik R, Giraud E, Lassalle F. Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium. Microb Genom 2020; 6:mgen000407. [PMID: 32783800 PMCID: PMC7643967 DOI: 10.1099/mgen.0.000407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
Bradyrhizobium are abundant soil bacteria and the major symbiont of legumes. The recent availability of Bradyrhizobium genome sequences provides a large source of information for analysis of symbiotic traits. In this study, we investigated the evolutionary dynamics of the nodulation genes (nod) and their relationship with the genes encoding type III secretion systems (T3SS) and their effectors among bradyrhizobia. Based on the comparative analysis of 146 Bradyrhizobium genome sequences, we identified six different types of T3SS gene clusters. The two predominant cluster types are designated RhcIa and RhcIb and both belong to the RhcI-T3SS family previously described in other rhizobia. They are found in 92/146 strains, most of them also containing nod genes. RhcIa and RhcIb gene clusters differ in the genes they carry: while the translocon-encoding gene nopX is systematically found in strains containing RhcIb, the nopE and nopH genes are specifically conserved in strains containing RhcIa, suggesting that these last two genes might functionally substitute nopX and play a role related to effector translocation. Phylogenetic analysis suggests that bradyrhizobia simultaneously gained nod and RhcI-T3SS gene clusters via horizontal transfer or subsequent vertical inheritance of a symbiotic island containing both. Sequence similarity searches for known Nop effector proteins in bradyrhizobial proteomes revealed the absence of a so-called core effectome, i.e. that no effector is conserved among all Bradyrhizobium strains. However, NopM and SUMO proteases were found to be the main effector families, being represented in the majority of the genus. This study indicates that bradyrhizobial T3SSs might play a more significant symbiotic role than previously thought and provides new candidates among T3SS structural proteins and effectors for future functional investigations.
Collapse
Affiliation(s)
- Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Zoe Rouy
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Alicia Camuel
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology. Imperial College London, St Mary’s Hospital Campus, Praed Street, London W2 1NY, UK
- Pathogen and Microbes Program, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Present address: Pathogen and Microbes Program, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
4
|
Rolim L, Santiago TR, dos Reis Junior FB, de Carvalho Mendes I, do Vale HMM, Hungria M, Silva LP. Identification of soybean Bradyrhizobium strains used in commercial inoculants in Brazil by MALDI-TOF mass spectrometry. Braz J Microbiol 2019; 50:905-914. [PMID: 31236871 PMCID: PMC6863279 DOI: 10.1007/s42770-019-00104-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/08/2019] [Indexed: 11/26/2022] Open
Abstract
Biological nitrogen fixation (BNF) with the soybean crop probably represents the major sustainable technology worldwide, saving billions of dollars in N fertilizers and decreasing water pollution and the emission of greenhouse gases. Accordingly, the identification of strains occupying nodules under field conditions represents a critical step in studies that are aimed at guaranteeing increased BNF contribution. Current methods of identification are mostly based on serology, or on DNA profiles. However, the production of antibodies is restricted to few laboratories, and to obtain DNA profiles of hundreds of isolates is costly and time-consuming. Conversely, the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS technique might represent a golden opportunity for replacing serological and DNA-based methods. However, MALDI-TOF databases of environmental microorganisms are still limited, and, most importantly, there are concerns about the discrimination of protein profiles at the strain level. In this study, we investigated four soybean rhizobial strains carried in commercial inoculants used in over 35 million hectares in Brazil and also in other countries of South America and Africa. A supplementary MALDI-TOF database with the protein profiles of these rhizobial strains was built and allowed the identification of unique profiles statistically supported by multivariate analysis and neural networks. To test this new database, the nodule occupancy by Bradyrhizobium strains in symbiosis with soybean was characterized in a field experiment and the results were compared with serotyping of bacteria by immuno-agglutination. The results obtained by both techniques were highly correlated and confirmed the viability of using the MALDI-TOF MS technique to effectively distinguish bacteria at the strain level.
Collapse
Affiliation(s)
- Lucas Rolim
- Universidade de Brasilia (UnB), Brasília, Distrito Federal 70910-900 Brazil
| | - Thaís Ribeiro Santiago
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, Brasília, Distrito Federal 70770-917 Brazil
| | | | | | | | | | - Luciano Paulino Silva
- Universidade de Brasilia (UnB), Brasília, Distrito Federal 70910-900 Brazil
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, Brasília, Distrito Federal 70770-917 Brazil
| |
Collapse
|
5
|
Elucidation of the Genome of Bradyrhizobium sp. Strain USDA 3456, a Historic Agricultural Diazotroph from Cowpea (Vigna unguiculata). Microbiol Resour Announc 2019; 8:8/33/e00812-19. [PMID: 31416877 PMCID: PMC6696652 DOI: 10.1128/mra.00812-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium sp. strain USDA 3456 is a historic strain from the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Rhizobium Germplasm Collection isolated from Vigna unguiculata (cowpea) in 1966. Strain USDA 3456 has been utilized in global agricultural applications, including improving soil nitrogen fertility. The draft genome sequence here provides a genetic reference of a novel diazotroph. Bradyrhizobium sp. strain USDA 3456 is a historic strain from the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) National Rhizobium Germplasm Collection isolated from Vigna unguiculata (cowpea) in 1966. Strain USDA 3456 has been utilized in global agricultural applications, including improving soil nitrogen fertility. The draft genome sequence here provides a genetic reference of a novel diazotroph.
Collapse
|
6
|
Garrido-Sanz D, Redondo-Nieto M, Mongiardini E, Blanco-Romero E, Durán D, Quelas JI, Martin M, Rivilla R, Lodeiro AR, Althabegoiti MJ. Phylogenomic Analyses of Bradyrhizobium Reveal Uneven Distribution of the Lateral and Subpolar Flagellar Systems, Which Extends to Rhizobiales. Microorganisms 2019; 7:microorganisms7020050. [PMID: 30781830 PMCID: PMC6406911 DOI: 10.3390/microorganisms7020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes revealed an uneven distribution of these flagellar systems. While genomes within and close to the Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more early-diverging families, where certain genera also present both flagella.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Elías Mongiardini
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Juan I Quelas
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - M Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| |
Collapse
|
7
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Mowery J, Bauchan GR, Elia P. A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:334-343. [PMID: 29117782 DOI: 10.1094/mpmi-10-17-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rhizobia colonize legumes and reduce N2 to NH3 in root nodules. The current model is that symbiotic rhizobia bacteroids avoid assimilating this NH3. Instead, host legume cells form glutamine from NH3, and the nitrogen is returned to the bacteroid as dicarboxylates, peptides, and amino acids. In soybean cells surrounding bacteroids, glutamine also is converted to ureides. One problem for soybean cultivation is inefficiency in symbiotic N2 fixation, the biochemical basis of which is unknown. Here, the proteomes of bacteroids of Bradyrhizobium elkanii USDA76 isolated from N2 fixation-efficient Peking and -inefficient Williams 82 soybean nodules were analyzed by mass spectrometry. Nearly half of the encoded bacterial proteins were quantified. Efficient bacteroids produced greater amounts of enzymes to form Nod factors and had increased amounts of signaling proteins, transporters, and enzymes needed to generate ATP to power nitrogenase and to acquire resources. Parallel investigation of nodule proteins revealed that Peking had no significantly greater accumulation of enzymes needed to assimilate NH3 than Williams 82. Instead, efficient bacteroids had increased amounts of enzymes to produce amino acids, including glutamine, and to form ureide precursors. These results support a model for efficient symbiotic N2 fixation in soybean where the bacteroid assimilates NH3 for itself.
Collapse
Affiliation(s)
- Bret Cooper
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Kimberly B Campbell
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Hunter S Beard
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | | | - Joseph Mowery
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Gary R Bauchan
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| | - Patrick Elia
- 1 Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A.; and
| |
Collapse
|
8
|
de Matos GF, Zilli JE, de Araújo JLS, Parma MM, Melo IS, Radl V, Baldani JI, Rouws LFM. Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Arch Microbiol 2017; 199:1251-1258. [PMID: 28601967 DOI: 10.1007/s00203-017-1398-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/07/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280T), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303T. Average nucleotide identity (ANI) analyses confirmed that BR 10280T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303T, but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.
Collapse
Affiliation(s)
- Gustavo Feitosa de Matos
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, Rio De Janeiro, 23890-000, Brazil
- Universidade Federal Rural do Rio de Janeiro, Curso de Pós-graduação em Fitotecnia, Rodovia BR 465 km 07, Seropédica, Rio De Janeiro, 23890-000, Brazil
| | - Jerri Edson Zilli
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, Rio De Janeiro, 23890-000, Brazil
| | | | - Marcia Maria Parma
- Embrapa Meio Ambiente, C.P. 69, Jaguariúna, São Paulo, 13820-000, Brazil
| | - Itamar Soares Melo
- Embrapa Meio Ambiente, C.P. 69, Jaguariúna, São Paulo, 13820-000, Brazil
| | - Viviane Radl
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landtraße 1, 85764, Oberschleißheim, Germany
| | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, Rio De Janeiro, 23890-000, Brazil
| | | |
Collapse
|
9
|
Puozaa DK, Jaiswal SK, Dakora FD. African origin of Bradyrhizobium populations nodulating Bambara groundnut (Vigna subterranea L. Verdc) in Ghanaian and South African soils. PLoS One 2017; 12:e0184943. [PMID: 28945783 PMCID: PMC5612659 DOI: 10.1371/journal.pone.0184943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/02/2017] [Indexed: 11/18/2022] Open
Abstract
Flavonoids secreted by legumes play a major role as signal molecules for attracting compatible rhizobia. The aim of this study was to assess and understand the diversity of microsymbionts nodulating Bambara groundnut (Vigna subterranea L. Verdc.) landraces of different seedcoat colours using restriction fragment length polymorphism and phylogenetic analysis. Seedcoat pigmentation of landraces had effect on the diversity of microsymbionts of Bambara groundnut. Even when planted together in one hole, nodulating bradyrhizobia clustered differently. For example, 16S rDNA-RFLP typing of rhizobial samples TUTVSBLM.I, TUTVSCRM.I and TUTVSRDM.I originating respectively from Black, Cream and Red landraces that were co-planted in the same hole at Manga in the Sudano-sahelian savanna, as well as TUTVSCRK.I and TUTVSRDK.I respectively from Cream and Red landraces co-planted at Kpalisogu in the Guinea savanna, revealed different 16S rDNA- RFLP types. Phylogenetic analysis of 16S rDNA, glnII, recA and atpD sequences showed that Vigna subterranea was nodulated specifically by a diverse group of Bradyrhizobium species (e.g. Bradyrhizobium vignae, and a novel group of Bradyrhizobium spp.) in soils from Ghana and South Africa. The recA gene phylogeny showed incongruency with the other housekeeping genes, indicating the possibility of lateral gene transfer and/or recombination events. The grouping of isolates according to symbiotic gene (nifH and nodD) phylogenies revealed inter- and intra-specific symbiotic plasmid transfer and different evolutionary history. The results also showed that a cropping history and physico-chemical environment of soils increased bradyrhizobial diversity in Ghana and South Africa.
Collapse
Affiliation(s)
- Doris K. Puozaa
- Department of Crop Sciences, Tshwane, University of Technology, Pretoria, South Africa
| | - Sanjay K. Jaiswal
- Department of Chemistry, Tshwane, University of Technology, Arcadia Campus, Pretoria, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane, University of Technology, Arcadia Campus, Pretoria, South Africa
| |
Collapse
|
10
|
Regus JU, Quides KW, O'Neill MR, Suzuki R, Savory EA, Chang JH, Sachs JL. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. AMERICAN JOURNAL OF BOTANY 2017; 104:1299-1312. [PMID: 29885243 DOI: 10.3732/ajb.1700165] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Affiliation(s)
- John U. Regus
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Kenjiro W. Quides
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Matthew R. O'Neill
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Rina Suzuki
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
| | - Elizabeth A. Savory
- Department of Botany and Plant Pathology, Cordley Hall, 2701 SW Campus Way, Oregon State University, Corvallis, Oregon 97331 USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Cordley Hall, 2701 SW Campus Way, Oregon State University, Corvallis, Oregon 97331 USA
| | - Joel L. Sachs
- Department of Evolution, Ecology, and Organismal Biology, 2710 Life Sciences Building, University of California, Riverside, California 92521 USA
- Department of Botany and Plant Sciences, 2142 Batchelor Hall, University of California, Riverside, California 92521 USA
- Institute for Integrative Genome Biology, 5406 Boyce Hall, University of California, Riverside, California 92521 USA
| |
Collapse
|
11
|
Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206-218. [DOI: 10.1016/j.ympev.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
|
12
|
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci Rep 2016; 6:23841. [PMID: 27053439 PMCID: PMC4823718 DOI: 10.1038/srep23841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.
Collapse
|
13
|
MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: application to the identification of Lupinus nodulating strains. Syst Appl Microbiol 2013; 36:565-71. [PMID: 24168963 DOI: 10.1016/j.syapm.2013.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 11/22/2022]
Abstract
Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.
Collapse
|
14
|
Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2013; 16:38-53. [PMID: 23357583 DOI: 10.1016/j.meegid.2013.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data, analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect to whole genome sequence typing approaches that are moving into the research arena at an ever-increasing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to include enough references in a variety of key areas to introduce the reader to the broad applications and complications of MLST data.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | | | | | | |
Collapse
|
15
|
Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943-61. [PMID: 23301163 PMCID: PMC3538991 DOI: 10.1002/ece3.404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Microevolution and origins of Bradyrhizobium populations associated with soybeans at two field sites (A and B, 280 km apart in Canada) with contrasting histories of inoculation was investigated using probabilistic analyses of six core (housekeeping) gene sequences. These analyses supported division of 220 isolates in five lineages corresponding either to B. japonicum groups 1 and 1a or to one of three novel lineages within the genus Bradyrhizobium. None of the isolates from site A and about 20% from site B (the only site with a recent inoculation history) were attributed to inoculation sources. The data suggest that most isolates were of indigenous origin based on sequence analysis of 148 isolates of soybean-nodulating bacteria from native legumes (Amphicarpaea bracteata and Desmodium canadense). Isolates from D. canadense clustered with B. japonicum group 1, whereas those from A. bracteata were placed in two novel lineages encountered at soybean field sites. One of these novel lineages predominated at soybean sites and exhibited a significant clonal expansion likely reflecting selection by the plant host. Homologous recombination events detected in the 35 sequence types from soybean sites had an effect on genetic diversification that was approximately equal to mutation. Interlineage transfer of core genes was infrequent and mostly attributable to gyrB that had a history of frequent recombination. Symbiotic gene sequences (nodC and nifH) of isolates from soybean sites and native legumes clustered in two lineages corresponding to B. japonicum and B. elkani with the inheritance of these genes appearing predominantly by vertical transmission. The data suggest that soybean-nodulating bacteria associated with native legumes represent a novel source of ecologically adapted bacteria for soybean inoculation.
Collapse
Affiliation(s)
- Jie Tang
- Agriculture and Agri-Food Canada 960 Carling Ave, Ottawa, Ontario, Canada, K1A 0C6
| | | | | | | | | |
Collapse
|