1
|
Qian F, Zuo D, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Identification, Evolutionary Dynamics, and Gene Expression Patterns of the ACP Gene Family in Responding to Salt Stress in Brassica Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:950. [PMID: 38611479 PMCID: PMC11013218 DOI: 10.3390/plants13070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.
Collapse
Affiliation(s)
- Fang Qian
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
3
|
GmWRI1c Increases Palmitic Acid Content to Regulate Seed Oil Content and Nodulation in Soybean ( Glycine max). Int J Mol Sci 2022; 23:ijms232213793. [PMID: 36430287 PMCID: PMC9694093 DOI: 10.3390/ijms232213793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Soybean (Glycine max) is an important oil crop, but the regulatory mechanisms underlying seed oil accumulation remain unclear. We identified a member of the GmWRI1s transcription factor family, GmWRI1c, that is involved in regulating soybean oil content and nodulation. Overexpression of GmWRI1c in soybean hairy roots increased the expression of genes involved in glycolysis and de novo lipogenesis, the proportion of palmitic acid (16:0), and the number of root nodules. The effect of GmWRI1c in increasing the number of root nodules via regulating the proportion of palmitic acid was confirmed in a recombinant inbred line (RIL) population. GmWRI1c shows abundant sequence diversity and has likely undergone artificial selection during domestication. An association analysis revealed a correlation between seed oil content and five linked natural variations (Hap1/Hap2) in the GmWRI1c promoter region. Natural variations in the GmWRI1c promoter were strongly associated with the GmWRI1c transcript level, with higher GmWRI1c transcript levels in lines carrying GmWRI1cHap1 than in those carrying GmWRI1cHap2. The effects of GmWRI1c alleles on seed oil content were confirmed in natural and RIL populations. We identified a favourable GmWRI1c allele that can be used to breed new varieties with increased seed oil content and nodulation.
Collapse
|
4
|
Ge H, Xu J, Hua M, An W, Wu J, Wang B, Li P, Fang H. Genome-wide identification and analysis of ACP gene family in Sorghum bicolor (L.) Moench. BMC Genomics 2022; 23:538. [PMID: 35879672 PMCID: PMC9310384 DOI: 10.1186/s12864-022-08776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acyl carrier proteins (ACP) constitute a very conserved carrier protein family. Previous studies have found that ACP not only takes part in the fatty acid synthesis process of almost all organisms, but also participates in the regulation of plant growth, development, and metabolism, and makes plants adaptable to stresses. However, this gene family has not been systematically studied in sorghum. RESULTS Nine ACP family members were identified in the sorghum genome, which were located on chromosomes 1, 2, 5, 7, 8 and 9, respectively. Evolutionary analysis among different species divided the ACP family into four subfamilies, showing that the SbACPs were more closely related to maize. The prediction results of subcellular localization showed that SbACPs were mainly distributed in chloroplasts and mitochondria, while fluorescence localization showed that SbACPs were mainly localized in chloroplasts in tobacco leaf. The analysis of gene structure revealed a relatively simple genetic structure, that there were 1-3 introns in the sorghum ACP family, and the gene structure within the same subfamily had high similarity. The amplification method of SbACPs was mainly large fragment replication, and SbACPs were more closely related to ACPs in maize and rice. In addition, three-dimensional structure analysis showed that all ACP genes in sorghum contained four α helices, and the second helix structure was more conserved, implying a key role in function. Cis-acting element analysis indicated that the SbACPs might be involved in light response, plant growth and development regulation, biotic and abiotic stress response, plant hormone regulation, and other physiological processes. What's more, qRT-PCR analysis uncovered that some of SbACPs might be involved in the adaptive regulation of drought and salt stresses, indicating the close relationship between fatty acids and the resistance to abiotic stresses in sorghum. CONCLUSIONS In summary, these results showed a comprehensive overview of the SbACPs and provided a theoretical basis for further studies on the biological functions of SbACPs in sorghum growth, development and abiotic stress responses.
Collapse
Affiliation(s)
- Hanqiu Ge
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Mingzhu Hua
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Wenwen An
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, 226368, Jiangsu, People's Republic of China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis. Genomics 2020; 113:1155-1165. [PMID: 33221517 DOI: 10.1016/j.ygeno.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Acyl carrier proteins (ACPs) play a central role in both plastidial and mitochondrial Type II fatty acid synthesis in plant cells. However, a large proportion of plant ACPs remain functionally uncharacterized, and their evolutionary history remains elusive. In present study, 97 putative ACPs were identified from ten angiosperm species examined. Based on phylogenetic analysis, ACP genes were grouped into plastidial (cpACP: ACP1/2/3/4/5) and mitochondrial (mtACP: mtACP1/mtACP2/mtACP3) ACPs. Protein sequence (motifs and length), tertiary structure, and gene structure (exon number, average intron length, and intron phase) were highly conserved in different ACP subclades. The differentiation of ACPs into distinct types occurred 85-98 and 45-57 million years ago. A limited proportion of ACP genes experience tandem or segmental duplication, corresponding to two rounds of whole genome duplication. Ka/Ks ratios revealed that duplicated ACP genes underwent a purifying selection. Regarding expression patterns, most ACPs were expressed constitutively and tissue-specifically. Notably, the average expression levels of ACP1, mtACP3, and mtACP1 were positively correlated with those of ACP3, ACP4, and mtACP2, respectively. Analysis of cis-elements showed that seven motifs (CACTFTPPCA1, DOFCOREZM, GT1CONSENSUS, CAATBOX1, ARR1AT, POLLEN1LELAT52, and GATABOX) related to tissue-specific, ABA, and light-mediated gene regulation were ubiquitous in all ACPs investigated, which shed new light on the regulation patterns of these central enzymatic partners of the FAS system. This study presents a thorough overview of angiosperm ACP gene families and provides informative clues for the functional characterization of plant ACPs in the future.
Collapse
|
6
|
Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1351-1371. [PMID: 32412123 DOI: 10.1111/tpj.14805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 05/11/2023]
Abstract
Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Z Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
7
|
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, Wang X, Zhao J. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:155-171. [PMID: 31161718 PMCID: PMC6920143 DOI: 10.1111/pbi.13183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.
Collapse
Affiliation(s)
- Beibei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Xuemin Wang
- Department of BiologyUniversity of MissouriSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
8
|
Sulieman S, Kusano M, Ha CV, Watanabe Y, Abdalla MA, Abdelrahman M, Kobayashi M, Saito K, Mühling KH, Tran LSP. Divergent metabolic adjustments in nodules are indispensable for efficient N 2 fixation of soybean under phosphate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110249. [PMID: 31623782 DOI: 10.1016/j.plantsci.2019.110249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.
Collapse
Affiliation(s)
- Saad Sulieman
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
9
|
Huang J, Xue C, Wang H, Wang L, Schmidt W, Shen R, Lan P. Genes of ACYL CARRIER PROTEIN Family Show Different Expression Profiles and Overexpression of ACYL CARRIER PROTEIN 5 Modulates Fatty Acid Composition and Enhances Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:987. [PMID: 28642782 PMCID: PMC5463277 DOI: 10.3389/fpls.2017.00987] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 05/21/2023]
Abstract
Acyl carrier proteins (ACPs) are a group of small acidic proteins functioning as important cofactors in the de novo synthesis of fatty acids. In Arabidopsis, ACPs are encoded by a small gene family comprising five plastid members, AtACP1 to AtACP5, and three mitochondrial members. The biological functions and the transcriptional responses to abiotic stresses of most AtACPs have yet to be elucidated. The present study extends previous findings and provides new knowledge on the function of ACPs by examining the responses of AtACP-encoding genes to several abiotic stresses and, in particular, the role of AtACP5 in the adaptation to salt stress. Phylogenetic analysis showed that AtACP1, AtACP2, AtACP3, and AtACP5 can be classified into one group and separated from a group comprising AtACP4 and ACP homologs from related species. Quantitative RT-PCR analysis revealed that the expression of AtACP1, AtACP2, and AtACP3 was induced by drought. Both iron deficiency and nitrogen starvation resulted in down-regulation of AtACP4. The most pronounced response was observed for AtACP5, the expression of which was dramatically decreased by salt stress. Knock-out of AtACP5 showed increased sensitivity to NaCl stress, whereas transgenic lines overexpressing AtACP5 displayed increased salt tolerance relative to the wild-type. Overexpression of AtACP5 further led to an altered composition of fatty acids, mainly a decrease of oleic acid (C18:1) and an increase of palmitic acid (C16:0), and to a lower Na+/K+ ratio when compared to the salt stressed wild-type. The comprehensive transcriptional information on the small plastid AtACP gene family in response to various abiotic stresses and the further investigation of the AtACP5 indicate that AtACP5 might be critical for salt tolerance through alterations of the composition of fatty acids and, subsequently, the Na+/K+ ratio.
Collapse
Affiliation(s)
- Jiexue Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Han Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Lisai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ping Lan,
| |
Collapse
|
10
|
Krishnan HB, Alaswad AA, Oehrle NW, Gillman JD. Deletion of the SACPD-C Locus Alters the Symbiotic Relationship Between Bradyrhizobium japonicum USDA110 and Soybean, Resulting in Elicitation of Plant Defense Response and Nodulation Defects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:862-877. [PMID: 27749147 DOI: 10.1094/mpmi-08-16-0173-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Legumes form symbiotic associations with soil-dwelling bacteria collectively called rhizobia. This association results in the formation of nodules, unique plant-derived organs, within which the rhizobia are housed. Rhizobia-encoded nitrogenase facilitates the conversion of atmospheric nitrogen into ammonia, which is utilized by the plants for its growth and development. Fatty acids have been shown to play an important role in root nodule symbiosis. In this study, we have investigated the role of stearoyl-acyl carrier protein desaturase isoform C (SACPD-C), a soybean enzyme that catalyzes the conversion of stearic acid into oleic acid, which is expressed in developing seeds and in nitrogen-fixing nodules. In-depth cytological investigation of nodule development in sacpd-c mutant lines M25 and MM106 revealed gross anatomical alteration in the sacpd-c mutants. Transmission electron microscopy observations revealed ultrastructural alterations in the sacpd-c mutants that are typically associated with plant defense response to pathogens. In nodules of two sacpd-c mutants, the combined jasmonic acid (JA) species (JA and the isoleucine conjugate of JA) were found to be reduced and 12-oxophytodienoic acid (OPDA) levels were significantly higher relative to wild-type lines. Salicylic acid levels were not significantly different between genotypes, which is divergent from previous studies of sacpd mutant studies on vegetative tissues. Soybean nodule phytohormone profiles were very divergent from those of roots, and root profiles were found to be almost identical between mutant and wild-type genotypes. The activities of antioxidant enzymes, ascorbate peroxidase, and superoxide dismutase were also found to be higher in nodules of sacpd-c mutants. PR-1 gene expression was extremely elevated in M25 and MM106, while the expression of nitrogenase was significantly reduced in these sacpd-c mutants, compared with the parent 'Bay'. Two-dimensional gel electrophoresis and matrix-assisted laser desorption-ionization time of flight mass spectrometry analyses confirmed sacpd-c mutants also accumulated higher amounts of pathogenesis-related proteins in the nodules. Our study establishes a major role for SACPD-C activity as essential for proper maintenance of soybean nodule morphology and physiology and indicates that OPDA signaling is likely to be involved in attenuation of nodule biotic defense responses.
Collapse
Affiliation(s)
- Hari B Krishnan
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
| | - Alaa A Alaswad
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
- 3 King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nathan W Oehrle
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
| | - Jason D Gillman
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
| |
Collapse
|
11
|
Cao J. Analysis of the Prefoldin Gene Family in 14 Plant Species. FRONTIERS IN PLANT SCIENCE 2016; 7:317. [PMID: 27014333 PMCID: PMC4792155 DOI: 10.3389/fpls.2016.00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/29/2016] [Indexed: 05/03/2023]
Abstract
Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies.
Collapse
|
12
|
Gillman JD, Stacey MG, Cui Y, Berg HR, Stacey G. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC PLANT BIOLOGY 2014; 14:143. [PMID: 24886084 PMCID: PMC4058718 DOI: 10.1186/1471-2229-14-143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). RESULTS We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. CONCLUSIONS Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Jason D Gillman
- USDA-ARS, University of Missouri-Columbia, 205 Curtis Hall, Columbia MO 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| | - Yaya Cui
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| | - Howard R Berg
- Donald Danforth Plant Science Center, St. Louis MO, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, Columbia MO 65211, USA
| |
Collapse
|