1
|
Garrett NR, Pink RC, Lawson C. Contribution of Extracellular Particles Isolated from Morus sp. (Mulberry) Fruit to Their Reported Protective Health Benefits: An In Vitro Study. Int J Mol Sci 2024; 25:6177. [PMID: 38892365 PMCID: PMC11173249 DOI: 10.3390/ijms25116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Morus sp. (mulberry) has a long tradition of use as a medicinal treatment, including for cardiovascular disease and type 2 diabetes, being shown to have antioxidant properties and to promote wound healing. Extracellular vesicles (EVs) are sub-micron, membrane-enclosed particles that were first identified in mammalian bodily fluids. EV-like particles have been described in plants (PDVs) and shown to have similar characteristics to mammalian EVs. We hypothesised that some of the health benefits previously attributed to the fruit of Morus sp. could be due to the release of PDVs. We isolated PDVs from Morus nigra and Morus alba via ultracentrifugation and incubated THP-1 monocytes, differentiated THP-1 macrophages, or HMEC-1 endothelial cells with pro-oxidant compounds DMNQ (THP-1) and glucose oxidase (HMEC-1) or lipopolysaccharide (LPS) in the presence of different fractions of mulberry EVs. Mulberry EVs augmented ROS production with DMNQ in THP-1 and caused the downregulation of ROS in HMEC-1. Mulberry EVs increased LPS-induced IL-1β secretion but reduced CCL2 and TGF-β secretion in THP-1 macrophages. In scratch wound assays, mulberry EVs inhibited HMEC-1 migration but increased proliferation in both low and high serum conditions, suggesting that they have opposing effects in these two important aspects of wound healing. One of the limitations of plant-derived therapeutics has been overcoming the low bioavailability of isolated compounds. We propose that PDVs could provide the link between physiological dose and therapeutic benefit by protecting plant active compounds in the GIT as well as potentially delivering genetic material or proteins that contribute to previously observed health benefits.
Collapse
Affiliation(s)
- Neve R. Garrett
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Ryan C. Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
2
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
3
|
Ledford WC, Silvestri A, Fiorilli V, Roth R, Rubio-Somoza I, Lanfranco L. A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:1534-1544. [PMID: 37985403 DOI: 10.1111/nph.19394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Collapse
Affiliation(s)
- William Conrad Ledford
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Alessandro Silvestri
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08001, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| |
Collapse
|
4
|
Zhang J, Pan L, Xu W, Yang H, He F, Ma J, Bai L, Zhang Q, Zhou Q, Gao H. Extracellular vesicles in plant-microbe interactions: Recent advances and future directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111999. [PMID: 38307350 DOI: 10.1016/j.plantsci.2024.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that have a crucial role in mediating intercellular communication in mammals by facilitating the transport of proteins and small RNAs. However, the study of plant EVs has been limited for a long time due to insufficient isolation and detection methods. Recent research has shown that both plants and plant pathogens can release EVs, which contain various bioactive molecules like proteins, metabolites, lipids, and small RNAs. These EVs play essential roles in plant-microbe interactions by transferring these bioactive molecules across different kingdoms. Additionally, it has been discovered that EVs may contribute to symbiotic communication between plants and pathogens. This review provides a comprehensive summary of the pivotal roles played by EVs in mediating interactions between plants and microbes, including pathogenic fungi, bacteria, viruses, and symbiotic pathogens. We highlight the potential of EVs in transferring immune signals between plant cells and facilitating the exchange of active substances between different species.
Collapse
Affiliation(s)
- Junsong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Hongchao Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Jianfeng Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Linlin Bai
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingchen Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
5
|
Giovannetti M, Binci F, Navazio L, Genre A. Nonbinary fungal signals and calcium-mediated transduction in plant immunity and symbiosis. THE NEW PHYTOLOGIST 2024; 241:1393-1400. [PMID: 38013492 DOI: 10.1111/nph.19433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Chitin oligomers (COs) are among the most common and active fungal elicitors of plant responses. Short-chain COs from symbiotic arbuscular mycorrhizal fungi activate accommodation responses in the host root, while long-chain COs from pathogenic fungi are acknowledged to trigger defence responses. The modulation of intracellular calcium concentration - a common second messenger in a wide variety of plant signal transduction processes - plays a central role in both signalling pathways with distinct signature features. Nevertheless, mounting evidence suggests that plant immunity and symbiosis signalling partially overlap at multiple levels. Here, we elaborate on recent findings on this topic, highlighting the nonbinary nature of chitin-based fungal signals, their perception and their interpretation through Ca2+ -mediated intracellular signals. Based on this, we propose that plant perception of symbiotic and pathogenic fungi is less clear-cut than previously described and involves a more complex scenario in which partially overlapping and blurred signalling mechanisms act upstream of the unambiguous regulation of gene expression driving accommodation or defence responses.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Filippo Binci
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| |
Collapse
|
6
|
Yugay Y, Tsydeneshieva Z, Rusapetova T, Grischenko O, Mironova A, Bulgakov D, Silant’ev V, Tchernoded G, Bulgakov V, Shkryl Y. Isolation and Characterization of Extracellular Vesicles from Arabidopsis thaliana Cell Culture and Investigation of the Specificities of Their Biogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3604. [PMID: 37896067 PMCID: PMC10609744 DOI: 10.3390/plants12203604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Over recent years, extracellular vesicles (EVs), commonly termed exosomes, have gained prominence for their potential as natural nanocarriers. It has now been recognized that plants also secrete EVs. Despite this discovery, knowledge about EV biogenesis in plant cell cultures remains limited. In our study, we have isolated and meticulously characterized EVs from the callus culture of the model plant, Arabidopsis thaliana. Our findings indicate that the abundance of EVs in calli was less than that in the plant's apoplastic fluid. This difference was associated with the transcriptional downregulation of the endosomal sorting complex required for transport (ESCRT) genes in the calli cells. While salicylic acid increased the expression of ESCRT components, it did not enhance EV production. Notably, EVs from calli contained proteins essential for cell wall biogenesis and defense mechanisms, as well as microRNAs consistent with those found in intact plants. This suggests that plant cell cultures could serve as a feasible source of EVs that reflect the characteristics of the parent plant species. However, further research is essential to determine the optimal conditions for efficient EV production in these cultured cells.
Collapse
Affiliation(s)
- Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Zhargalma Tsydeneshieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Olga Grischenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Anastasia Mironova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Dmitry Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Vladimir Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Galina Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| | - Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (G.T.); (V.B.)
| |
Collapse
|
7
|
Qiao SA, Gao Z, Roth R. A perspective on cross-kingdom RNA interference in mutualistic symbioses. THE NEW PHYTOLOGIST 2023; 240:68-79. [PMID: 37452489 PMCID: PMC10952549 DOI: 10.1111/nph.19122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023]
Abstract
RNA interference (RNAi) is arguably one of the more versatile mechanisms in cell biology, facilitating the fine regulation of gene expression and protection against mobile genomic elements, whilst also constituting a key aspect of induced plant immunity. More recently, the use of this mechanism to regulate gene expression in heterospecific partners - cross-kingdom RNAi (ckRNAi) - has been shown to form a critical part of bidirectional interactions between hosts and endosymbionts, regulating the interplay between microbial infection mechanisms and host immunity. Here, we review the current understanding of ckRNAi as it relates to interactions between plants and their pathogenic and mutualistic endosymbionts, with particular emphasis on evidence in support of ckRNAi in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Serena A Qiao
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Zongyu Gao
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
8
|
Parra-Aguilar TJ, Sarmiento-López LG, Santana O, Olivares JE, Pascual-Morales E, Jiménez-Jiménez S, Quero-Hostos A, Palacios-Martínez J, Chávez-Martínez AI, Cárdenas L. TETRASPANIN 8-1 from Phaseolus vulgaris plays a key role during mutualistic interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1152493. [PMID: 37465390 PMCID: PMC10352089 DOI: 10.3389/fpls.2023.1152493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobia form two of the most important plant-microbe associations for the assimilation of phosphorus (P) and nitrogen (N). Symbiont-derived signals are able to coordinate the infection process by triggering multiple responses in the plant root, such as calcium influxes and oscillations, increased reactive oxygen species (ROS), cytoskeletal rearrangements and altered gene expression. An examination was made of the role of tetraspanins, which are transmembrane proteins that self-organize into tetraspanin web regions, where they recruit specific proteins into platforms required for signal transduction, membrane fusion, cell trafficking, and ROS generation. In plant cells, tetraspanins are scaffolding proteins associated with root radial patterning, biotic and abiotic stress responses, cell fate determination, plasmodesmata and hormonal regulation. Some plant tetraspanins, such as Arabidopsis thaliana TETRASPANIN 8 and TETRASPANIN 9 (AtTET8 and AtTET9) are associated with exosomes during inter-kingdom communication. In this study, a homolog of AtTET8, PvTET8-1, in common bean (Phaseolus vulgaris L. var. Negro Jamapa) was examined in roots during interactions with Rhizobium tropici and Rhizophagus irregularis. The promoter of PvTET8-1 contained several cis-acting regulatory DNA elements potentially related to mutualistic interactions, and PvTET8-1 was transcriptionally activated during AM fungal and rhizobial associations. Silencing it decreased the size and number of nodules, nitrogen fixation, and mycorrhizal arbuscule formation, whereas overexpressing it increased the size and number of nodules, and mycorrhizal arbuscule formation but decreased nitrogen fixation. PvTET8-1 appears to be an important element in both of these mutualistic interactions, perhaps through its interaction with NADPH oxidase and the generation of ROS during the infection processes.
Collapse
Affiliation(s)
- Thelma J. Parra-Aguilar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Juan Elías Olivares
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Pascual-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Saul Jiménez-Jiménez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Andrea Quero-Hostos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ana I. Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|