1
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
2
|
Ouyang H, Sun G, Li K, Wang R, Lv X, Zhang Z, Zhao R, Wang Y, Shu H, Jiang H, Zhang S, Wu J, Zhang Q, Chen X, Liu T, Ye W, Wang Y, Wang Y. Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39225562 DOI: 10.1111/jipb.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.
Collapse
Affiliation(s)
- Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Lv
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Sivaramakrishnan M, Veeraganti Naveen Prakash C, Chandrasekar B. Multifaceted roles of plant glycosyl hydrolases during pathogen infections: more to discover. PLANTA 2024; 259:113. [PMID: 38581452 DOI: 10.1007/s00425-024-04391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
MAIN CONCLUSION Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.
Collapse
Affiliation(s)
| | | | - Balakumaran Chandrasekar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, 333031, India.
| |
Collapse
|
5
|
Chicowski AS, Bredow M, Utiyama AS, Marcelino-Guimarães FC, Whitham SA. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:296-315. [PMID: 37883664 PMCID: PMC10826999 DOI: 10.1111/pbi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.
Collapse
Affiliation(s)
- Aline Sartor Chicowski
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Alice Satiko Utiyama
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Londrina, Paraná, Brazil
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Liu X, Ma Z, Tran TM, Rautengarten C, Cheng Y, Yang L, Ebert B, Persson S, Miao Y. Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity. PLANT PHYSIOLOGY 2023; 194:137-152. [PMID: 37647538 PMCID: PMC10756761 DOI: 10.1093/plphys/kiad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Carsten Rautengarten
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Staffan Persson
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
7
|
Li H, Liu J, Yuan X, Chen X, Cui X. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front Microbiol 2023; 14:1241076. [PMID: 38033585 PMCID: PMC10687721 DOI: 10.3389/fmicb.2023.1241076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
As a high-value oilseed crop, soybean [Glycine max (L.) Merr.] is limited by various biotic stresses during its growth and development. Soybean mosaic virus (SMV) is a devastating viral infection of soybean that primarily affects young leaves and causes significant production and economic losses; however, the synergistic molecular mechanisms underlying the soybean response to SMV are largely unknown. Therefore, we performed RNA sequencing on SMV-infected resistant and susceptible soybean lines to determine the molecular mechanism of resistance to SMV. When the clean reads were aligned to the G. max reference genome, a total of 36,260 genes were identified as expressed genes and used for further research. Most of the differentially expressed genes (DEGs) associated with resistance were found to be enriched in plant hormone signal transduction and circadian rhythm according to Kyoto Encyclopedia of Genes and Genomes analysis. In addition to salicylic acid and jasmonic acid, which are well known in plant disease resistance, abscisic acid, indole-3-acetic acid, and cytokinin are also involved in the immune response to SMV in soybean. Most of the Ca2+ signaling related DEGs enriched in plant-pathogen interaction negatively influence SMV resistance. Furthermore, the MAPK cascade was involved in either resistant or susceptible responses to SMV, depending on different downstream proteins. The phytochrome interacting factor-cryptochrome-R protein module and the MEKK3/MKK9/MPK7-WRKY33-CML/CDPK module were found to play essential roles in soybean response to SMV based on protein-protein interaction prediction. Our findings provide general insights into the molecular regulatory networks associated with soybean response to SMV and have the potential to improve legume resistance to viral infection.
Collapse
Affiliation(s)
- Han Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Yu M, Fan Y, Li X, Chen X, Yu S, Wei S, Li S, Chang W, Qu C, Li J, Lu K. LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic acid-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5620-5634. [PMID: 37480841 DOI: 10.1093/jxb/erad295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Rapeseed (Brassica napus) is a major edible oilseed crop consumed worldwide. However, its yield is seriously affected by infection from the broad-spectrum non-obligate pathogen Sclerotinia sclerotiorum due to a lack of highly resistant germplasm. Here, we identified a Sclerotinia-resistant and light-dependent lesion mimic mutant from an ethyl methanesulfonate-mutagenized population of the rapeseed inbred Zhongshuang 11 (ZS11) named lesion mimic mutant 1 (lmm1). The phenotype of lmm1 is controlled by a single recessive gene, named LESION MIMIC MUTANT 1 (LMM1), which mapped onto chromosome C04 by bulked segregant analysis within a 2.71-Mb interval. Histochemical analysis indicated that H2O2 strongly accumulated and cell death occurred around the lesion mimic spots. Among 877 differentially expressed genes (DEGs) between ZS11 and lmm1 leaves, 188 DEGs were enriched in the defense response, including 95 DEGs involved in systemic acquired resistance, which is consistent with the higher salicylic acid levels in lmm1. Combining bulked segregant analysis and transcriptome analysis, we identified a significantly up-regulated gene, BnaC4.PR2, which encodes β-1,3-glucanase, as the candidate gene for LMM1. Overexpression of BnaC4.PR2 may induce a reactive oxygen species burst to trigger partial cell death and systemic acquired resistance. Our study provides a new genetic resource for S. sclerotiorum resistance as well as new insights into disease resistance breeding in B. napus.
Collapse
Affiliation(s)
- Mengna Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xingyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shijie Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Siyu Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shengting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
9
|
Li Z, Wang J, Wang J. Identification of a Comprehensive Gene Co-Expression Network Associated with Autotetraploid Potato ( Solanum tuberosum L.) Development Using WGCNA Analysis. Genes (Basel) 2023; 14:1162. [PMID: 37372342 DOI: 10.3390/genes14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The formation and development of potato tissues and organs is a complex process regulated by a variety of genes and environmental factors. The regulatory mechanisms underlying the growth and development are still unclear. In this work, we aimed to explore the changes in gene expression patterns and genetic characteristics of potato tissues throughout different developmental stages. To achieve this, we used autotetraploid potato JC14 as an experimental subject to analyze the transcriptome of the root, stem, and leaf at the seedling, tuber formation, and tuber expansion stages. The results revealed thousands of differentially expressed genes, predominantly involved in defense response and carbohydrate metabolism according to KEGG pathway enrichment analysis. Weighted gene co-expression network analysis (WGCNA) revealed a total of 12 co-expressed gene modules, with 4 modules showing the highest correlation with potato stem development. By calculating the connectivity of genes within the module, hub genes were identified, and functional annotations were subsequently performed. A total of 40 hub genes from the four modules were identified, and their functions were found to be related to carbohydrate metabolism, defense response, and transcription factors. These findings provide important insights for further understanding of the molecular regulation and genetic mechanisms involved in potato tissue development.
Collapse
Affiliation(s)
- Zhimin Li
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juan Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayin Wang
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Decsi K, Kutasy B, Hegedűs G, Alföldi ZP, Kálmán N, Nagy Á, Virág E. Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon 2023; 9:e12907. [PMID: 36691550 PMCID: PMC9860300 DOI: 10.1016/j.heliyon.2023.e12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by in silico mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.
Collapse
Affiliation(s)
- Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Géza Hegedűs
- EduCoMat Ltd., Keszthely, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter Alföldi
- Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
| | - Eszter Virág
- EduCoMat Ltd., Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|