1
|
Nasrollahi V, Allam G, Kohalmi SE, Hannoufa A. MsSPL9 Modulates Nodulation under Nitrate Sufficiency Condition in Medicago sativa. Int J Mol Sci 2023; 24:ijms24119615. [PMID: 37298564 DOI: 10.3390/ijms24119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nodulation in Leguminous spp. is induced by common environmental cues, such as low nitrogen availability conditions, in the presence of the specific Rhizobium spp. in the rhizosphere. Medicago sativa (alfalfa) is an important nitrogen-fixing forage crop that is widely cultivated around the world and relied upon as a staple source of forage in livestock feed. Although alfalfa's relationship with these bacteria is one of the most efficient between rhizobia and legume plants, breeding for nitrogen-related traits in this crop has received little attention. In this report, we investigate the role of Squamosa-Promoter Binding Protein-Like 9 (SPL9), a target of miR156, in nodulation in alfalfa. Transgenic alfalfa plants with SPL9-silenced (SPL9-RNAi) and overexpressed (35S::SPL9) were compared to wild-type (WT) alfalfa for phenotypic changes in nodulation in the presence and absence of nitrogen. Phenotypic analyses showed that silencing of MsSPL9 in alfalfa caused an increase in the number of nodules. Moreover, the characterization of phenotypic and molecular parameters revealed that MsSPL9 regulates nodulation under a high concentration of nitrate (10 mM KNO3) by regulating the transcription levels of the nitrate-responsive genes Nitrate Reductase1 (NR1), NR2, Nitrate transporter 2.5 (NRT2.5), and a shoot-controlled autoregulation of nodulation (AON) gene, Super numeric nodules (SUNN). While MsSPL9-overexpressing transgenic plants have dramatically increased transcript levels of SUNN, NR1, NR2, and NRT2.5, reducing MsSPL9 caused downregulation of these genes and displayed a nitrogen-starved phenotype, as downregulation of the MsSPL9 transcript levels caused a nitrate-tolerant nodulation phenotype. Taken together, our results suggest that MsSPL9 regulates nodulation in alfalfa in response to nitrate.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Dávila-Delgado R, Flores-Canúl K, Juárez-Verdayes MA, Sánchez-López R. Rhizobia induce SYMRK endocytosis in Phaseolus vulgaris root hair cells. PLANTA 2023; 257:83. [PMID: 36928335 PMCID: PMC10020325 DOI: 10.1007/s00425-023-04116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis, which rely on the phosphorylation status of T589, the endocytic YXXØ motif and the kinase activity of the receptor. Legume-rhizobia nodulation is a complex developmental process. It initiates when the rhizobia-produced Nod factors are perceived by specific LysM receptors present in the root hair apical membrane. Consequently, SYMRK (Symbiosis Receptor-like Kinase) becomes active in the root hair and triggers an extensive signaling network essential for the infection process and nodule organogenesis. Despite its relevant functions, the underlying cellular mechanisms involved in SYMRK signaling activity remain poorly characterized. In this study, we demonstrated that PvSYMRK-EGFP undergoes constitutive and rhizobia-induced endocytosis. We found that in uninoculated roots, PvSYMRK-EGFP is mainly associated with the plasma membrane, although intracellular puncta labelled with PvSymRK-EGFP were also observed in root hair and nonhair-epidermal cells. Inoculation with Rhizobium etli producing Nod factors induces in the root hair a redistribution of PvSYMRK-EGFP from the plasma membrane to intracellular puncta. In accordance, deletion of the endocytic motif YXXØ (YKTL) and treatment with the endocytosis inhibitors ikarugamycin (IKA) and tyrphostin A23 (TyrA23), as well as brefeldin A (BFA), drastically reduced the density of intracellular PvSYMRK-EGFP puncta. A similar effect was observed in the phosphorylation-deficient (T589A) and kinase-dead (K618E) mutants of PvSYMRK-EGFP, implying these structural features are positive regulators of PvSYMRK-EGFP endocytosis. Our findings lead us to postulate that rhizobia-induced endocytosis of SYMRK modulates the duration and amplitude of the SYMRK-dependent signaling pathway.
Collapse
Affiliation(s)
- Raúl Dávila-Delgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Karen Flores-Canúl
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Marco Adán Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
3
|
Nasrollahi V, Yuan ZC, Lu QSM, McDowell T, Kohalmi SE, Hannoufa A. Deciphering the role of SPL12 and AGL6 from a genetic module that functions in nodulation and root regeneration in Medicago sativa. PLANT MOLECULAR BIOLOGY 2022; 110:511-529. [PMID: 35976552 PMCID: PMC9684250 DOI: 10.1007/s11103-022-01303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Our results show that SPL12 plays a crucial role in regulating nodule development in Medicago sativa L. (alfalfa), and that AGL6 is targeted and downregulated by SPL12. Root architecture in plants is critical because of its role in controlling nutrient cycling, water use efficiency and response to biotic and abiotic stress factors. The small RNA, microRNA156 (miR156), is highly conserved in plants, where it functions by silencing a group of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing miR156 display increased nodulation, improved nitrogen fixation and enhanced root regenerative capacity during vegetative propagation. In alfalfa, transcripts of eleven SPLs, including SPL12, are targeted for cleavage by miR156. In this study, we characterized the role of SPL12 in root architecture and nodulation by investigating the transcriptomic and phenotypic changes associated with altered transcript levels of SPL12, and by determining SPL12 regulatory targets using SPL12-silencing and -overexpressing alfalfa plants. Phenotypic analyses showed that silencing of SPL12 in alfalfa caused an increase in root regeneration, nodulation, and nitrogen fixation. In addition, AGL6 which encodes AGAMOUS-like MADS box transcription factor, was identified as being directly targeted for silencing by SPL12, based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays. Taken together, our results suggest that SPL12 and AGL6 form a genetic module that regulates root development and nodulation in alfalfa.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Qing Shi Mimmie Lu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
| |
Collapse
|
4
|
Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. TREE PHYSIOLOGY 2019; 39:1533-1550. [PMID: 31274160 DOI: 10.1093/treephys/tpz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/26/2018] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Zhang S, Kondorosi É, Kereszt A. An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. JOURNAL OF PLANT RESEARCH 2019; 132:695-703. [PMID: 31325057 PMCID: PMC6713694 DOI: 10.1007/s10265-019-01126-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
The development and functioning of the nitrogen fixing symbiosis between legume plants and soil bacteria collectively called rhizobia requires continuous chemical dialogue between the partners using different molecules such as flavonoids, lipo-chitooligosaccharides, polysaccharides and peptides. Agrobacterium rhizogenes mediated hairy root transformation of legumes is widely used to study the function of plant genes involved in the process. The identification of transgenic plant tissues is based on antibiotics/herbicide selection and/or the detection of different reporter genes that usually require special equipment such as fluorescent microscopes or destructive techniques and chemicals to visualize enzymatic activity. Here, we developed and efficiently used in hairy root experiments binary vectors containing the MtLAP1 gene driven by constitutive and tissue-specific promoters that facilitate the production of purple colored anthocyanins in transgenic tissues and thus allowing the identification of transformed roots by naked eye. Anthocyanin producing roots were able to establish effective symbiosis with rhizobia. Moreover, it was shown that species-specific allelic variations and a mutation preventing posttranslational acetyl modification of an essential nodule-specific cysteine-rich peptide, NCR169, do not affect the symbiotic interaction of Medicago truncatula cv. Jemalong with Sinorhizobium medicae strain WSM419. Based on the experiments, it could be concluded that it is preferable to use the vectors with tissue-specific promoters that restrict anthocyanin production to the root vasculature for studying biotic interactions of the roots such as symbiotic nitrogen fixation or mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Senlei Zhang
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary.
| |
Collapse
|
6
|
Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Pingault L, Sen S, Joshi T, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O. Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes (Basel) 2018; 9:E498. [PMID: 30326664 PMCID: PMC6210973 DOI: 10.3390/genes9100498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023] Open
Abstract
Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Coyoacan 04510, Ciudad de Mexico, Mexico.
| | - María Del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Maria Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Lise Pingault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| | - Lourdes Girard
- Departamento de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| |
Collapse
|
7
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
8
|
Riely BK, Larrainzar E, Haney CH, Mun JH, Gil-Quintana E, González EM, Yu HJ, Tricoli D, Ehrhardt DW, Long SR, Cook DR. Development of tools for the biochemical characterization of the symbiotic receptor-like kinase DMI2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:216-26. [PMID: 23013436 DOI: 10.1094/mpmi-10-11-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Medicago truncatula DMI2 gene encodes a leucine-rich repeat receptor-like kinase that is essential for symbiosis with nitrogen-fixing rhizobia. While phenotypic analyses have provided a description for the host's responses mediated by DMI2, a lack of tools for in vivo biochemical analysis has hampered efforts to elucidate the mechanisms by which DMI2 mediates symbiotic signal transduction. Here, we report stably transformed M. truncatula lines that express a genomic DMI2 construct that is fused to a dual-affinity tag containing three copies of the hemagglutinin epitope and a single StrepII tag (gDMI2:HAST). gDMI2: HAST complements the dmi2-1 mutation, and transgenic plants expressing this construct behave similarly to wild-type plants. We show that the expression patterns of gDMI2:HAST recapitulate those of endogenous DMI2 and that we can detect and purify DMI2:HAST from microsomal root and nodule extracts. Using this line, we show that DMI2 resides in a high-molecular weight complex, which is consistent with our observation that DMI2:GFP localizes to plasma membrane-associated puncta and cytoplasmic vesicles. We further demonstrate that Nod factor (NF) perception increases the abundance of DMI2 vesicles. These tools should be a valuable resource for the Medicago community to dissect the biochemical function of DMI2.
Collapse
Affiliation(s)
- Brendan K Riely
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Martins TV, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ. Buffering capacity explains signal variation in symbiotic calcium oscillations. PLANT PHYSIOLOGY 2012; 160:2300-10. [PMID: 23027664 PMCID: PMC3510149 DOI: 10.1104/pp.112.205682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.
Collapse
|
10
|
Rival P, de Billy F, Bono JJ, Gough C, Rosenberg C, Bensmihen S. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 2012; 139:3383-91. [PMID: 22874912 DOI: 10.1242/dev.081620] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legumes have evolved the capacity to form a root nodule symbiosis with soil bacteria called rhizobia. The establishment of this symbiosis involves specific developmental events occurring both in the root epidermis (notably bacterial entry) and at a distance in the underlying root cortical cells (notably cell divisions leading to nodule organogenesis). The processes of bacterial entry and nodule organogenesis are tightly linked and both depend on rhizobial production of lipo-chitooligosaccharide molecules called Nod factors. However, how these events are coordinated remains poorly understood. Here, we have addressed the roles of two key symbiotic genes of Medicago truncatula, the lysin motif (LysM) domain-receptor like kinase gene NFP and the calcium- and calmodulin-dependent protein kinase gene DMI3, in the control of both nodule organogenesis and bacterial entry. By complementing mutant plants with corresponding genes expressed either in the epidermis or in the cortex, we have shown that epidermal DMI3, but not NFP, is sufficient for infection thread formation in root hairs. Epidermal NFP is sufficient to induce cortical cell divisions leading to nodule primordia formation, whereas DMI3 is required in both cell layers for these processes. Our results therefore suggest that a signal, produced in the epidermis under the control of NFP and DMI3, is responsible for activating DMI3 in the cortex to trigger nodule organogenesis. We integrate these data to propose a new model for epidermal/cortical crosstalk during early steps of nodulation.
Collapse
Affiliation(s)
- Pauline Rival
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
11
|
Sanchez-Lopez R, Jáuregui D, Quinto C. SymRK and the nodule vascular system: an underground connection. PLANT SIGNALING & BEHAVIOR 2012; 7:691-3. [PMID: 22580688 PMCID: PMC3442870 DOI: 10.4161/psb.20181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic legume-rhizobia relationship leads to the formation of nitrogen-fixing nodules. Successful nodulation depends on the expression and cross-talk of a batttery of genes, among them SymRK (symbiosis receptor-like kinase), a leucine-rich repeat receptor-like kinase. SymRK is required for the rhizobia invasion of root hairs, as well as for the infection thread and symbiosome formation. Using immunolocalization and downregulation strategies we have recently provided evidence of a new function of PvSymRK in nodulation. We have found that a tight regulation of PvSymRK expression is required for the accurate development of the vascular bundle system in Phaseolus vulgaris nodules.
Collapse
|
12
|
Functional domain analysis of the Remorin protein LjSYMREM1 in Lotus japonicus. PLoS One 2012; 7:e30817. [PMID: 22292047 PMCID: PMC3264624 DOI: 10.1371/journal.pone.0030817] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/21/2011] [Indexed: 01/08/2023] Open
Abstract
In legumes rhizobial infection during root nodule symbiosis (RNS) is controlled by a conserved set of receptor proteins and downstream components. MtSYMREM1, a protein of the Remorin family in Medicago truncatula, was shown to interact with at least three receptor-like kinases (RLKs) that are essential for RNS. Remorins are comprised of a conserved C-terminal domain and a variable N-terminal region that defines the six different Remorin groups. While both N- and C-terminal regions of Remorins belonging to the same phylogenetic group are similar to each other throughout the plant kingdom, the N-terminal domains of legume-specific group 2 Remorins show exceptional high degrees of sequence divergence suggesting evolutionary specialization of this protein within this clade. We therefore identified and characterized the MtSYMREM1 ortholog from Lotus japonicus (LjSYMREM1), a model legume that forms determinate root nodules. Here, we resolved its spatio-temporal regulation and showed that over-expression of LjSYMREM1 increases nodulation on transgenic roots. Using a structure-function approach we show that protein interactions including Remorin oligomerization are mainly mediated and stabilized by the Remorin C-terminal region with its coiled-coil domain while the RLK kinase domains transiently interact in vivo and phosphorylate a residue in the N-terminal region of the LjSYMREM1 protein in vitro. These data provide novel insights into the mechanism of this putative molecular scaffold protein and underline its importance during rhizobial infection.
Collapse
|
13
|
Sánchez-López R, Jáuregui D, Nava N, Alvarado-Affantranger X, Montiel J, Santana O, Sanchez F, Quinto C. Down-regulation of SymRK correlates with a deficiency in vascular bundle development in Phaseolus vulgaris nodules. PLANT, CELL & ENVIRONMENT 2011; 34:2109-21. [PMID: 21848862 DOI: 10.1111/j.1365-3040.2011.02408.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The symbiotic interaction of legumes and rhizobia results in the formation of nitrogen-fixing nodules. Nodulation depends on the finely coordinated expression of a battery of genes involved in the infection and the organogenesis processes. After Nod factor perception, symbiosis receptor kinase (SymRK) receptor triggers a signal transduction cascade essential for nodulation leading to cortical cell divisions, infection thread (IT) formation and final release of rhizobia to the intracellular space, forming the symbiosome. Herein, the participation of SymRK receptor during the nodule organogenesis in Phaseolus vulgaris is addressed. Our findings indicate that besides its expression in the nodule epidermis, in IT, and in uninfected cells of the infection zone, PvSymRK immunolocalizes in the root and nodule vascular system. On the other hand, knockdown expression of PvSymRK led to the formation of scarce and defective nodules, which presented alterations in both IT/symbiosome formation and vascular system.
Collapse
Affiliation(s)
- Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|
15
|
Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, den Camp RO, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1333-44. [PMID: 21787150 DOI: 10.1094/mpmi-01-11-0013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.
Collapse
Affiliation(s)
- Evgenia Ovchinnikova
- Department of Molecular Biology, Wageningen University, Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gough C, Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:867-78. [PMID: 21469937 DOI: 10.1094/mpmi-01-11-0019] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.
Collapse
Affiliation(s)
- Clare Gough
- Laboratory of Plant-Microbe Interactions, UMR CNRS-INRA 2594-441, Castanet-Tolosan Cedex, France.
| | | |
Collapse
|
17
|
Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Hervé C, Cullimore J, Lefebvre B. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. THE PLANT CELL 2010; 22:3474-88. [PMID: 20971894 PMCID: PMC2990133 DOI: 10.1105/tpc.110.075861] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/24/2010] [Accepted: 10/04/2010] [Indexed: 05/18/2023]
Abstract
LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogen-fixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. truncatula Plant U-box protein 1 (PUB1) as an interactor of the kinase domain. In planta, both proteins are localized and interact in the plasma membrane. In M. truncatula, PUB1 is expressed specifically in symbiotic conditions, is induced by Nod factors, and shows an overlapping expression pattern with LYK3 during nodulation. Biochemical studies show that PUB1 has a U-box-dependent E3 ubiquitin ligase activity and is phosphorylated by the LYK3 kinase domain. Overexpression and RNA interference studies in M. truncatula show that PUB1 is a negative regulator of the LYK3 signaling pathway leading to infection and nodulation and is important for the discrimination of rhizobia strains producing variant Nod factors. The potential role of PUB E3 ubiquitin ligases in controlling plant-microbe interactions and development through interacting with receptor-like kinases is discussed.
Collapse
|
18
|
Hayashi T, Banba M, Shimoda Y, Kouchi H, Hayashi M, Imaizumi-Anraku H. A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:141-54. [PMID: 20409002 PMCID: PMC2916219 DOI: 10.1111/j.1365-313x.2010.04228.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 05/17/2023]
Abstract
In legumes, Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is a component of the common symbiosis genes that are required for both root nodule (RN) and arbuscular mycorrhiza (AM) symbioses and is thought to be a decoder of Ca(2+) spiking, one of the earliest cellular responses to microbial signals. A gain-of-function mutation of CCaMK has been shown to induce spontaneous nodulation without rhizobia, but the significance of CCaMK activation in bacterial and/or fungal infection processes is not fully understood. Here we show that a gain-of-function CCaMK(T265D) suppresses loss-of-function mutations of common symbiosis genes required for the generation of Ca(2+) spiking, not only for nodule organogenesis but also for successful infection of rhizobia and AM fungi, demonstrating that the common symbiosis genes upstream of Ca(2+) spiking are required solely to activate CCaMK. In RN symbiosis, however, CCaMK(T265D) induced nodule organogenesis, but not rhizobial infection, on Nod factor receptor (NFRs) mutants. We propose a model of symbiotic signaling in host legume plants, in which CCaMK plays a key role in the coordinated induction of infection thread formation and nodule organogenesis.
Collapse
Affiliation(s)
| | | | - Yoshikazu Shimoda
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | - Makoto Hayashi
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | | |
Collapse
|
19
|
Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen CDT, Men A, Carroll BJ, Gresshoff PM. Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). PLANT & CELL PHYSIOLOGY 2010; 51:201-14. [PMID: 20007291 DOI: 10.1093/pcp/pcp178] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Chemically induced non-nodulating nod139 and nn5 mutants of soybean (Glycine max) show no visible symptoms in response to rhizobial inoculation. Both exhibit recessive Mendelian inheritance suggesting loss of function. By allele determination and genetic complementation in nod139 and nn5, two highly related lipo-oligochitin LysM-type receptor kinase genes in Glycine max were cloned; they are presumed to be the critical nodulation-inducing (Nod) factor receptor similar to those of Lotus japonicus, pea and Medicago truncatula. These duplicated receptor genes were called GmNFR5alpha and GmNFR5beta. Nonsense mutations in GmNFR5alpha and GmNFR5beta were genetically complemented by both wild-type GmNFR5alpha and GmNFR5beta in transgenic roots, indicating that both genes are functional. Both genes lack introns. In cultivar Williams82 GmNFR5alpha is located in chromosome 11 and in tandem with GmLYK7 (a related LysM receptor kinase gene), while GmNFR5beta is in tandem with GmLYK4 in homologous chromosome 1, suggesting ancient synteny and regional segmental duplication. Both genes are wild type in G. soja CPI100070 and Harosoy63; however, a non-functional NFR5beta allele (NFR5beta*) was discovered in parental lines Bragg and Williams, which harbored an identical 1,407 bp retroelement-type insertion. This retroelement (GmRE-1) and related sequences are located in several soybean genome positions. Paradoxically, putatively unrelated soybean cultivars shared the same insertion, suggesting a smaller than anticipated genetic base in this crop. GmNFR5alpha but not GmNFR5beta* was expressed in inoculated and uninoculated tap and lateral root portions at about 10-25% of GmATS1 (ATP synthase subunit 1), but not in trifoliate leaves and shoot tips.
Collapse
Affiliation(s)
- Arief Indrasumunar
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Capoen W, Den Herder J, Sun J, Verplancke C, De Keyser A, De Rycke R, Goormachtig S, Oldroyd G, Holsters M. Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. THE PLANT CELL 2009; 21:1526-40. [PMID: 19470588 PMCID: PMC2700542 DOI: 10.1105/tpc.109.066233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nodulation factor (NF) signal transduction in the legume-rhizobium symbiosis involves calcium oscillations that are instrumental in eliciting nodulation. To date, Ca2+ spiking has been studied exclusively in the intracellular bacterial invasion of growing root hairs in zone I. This mechanism is not the only one by which rhizobia gain entry into their hosts; the tropical legume Sesbania rostrata can be invaded intercellularly by rhizobia at cracks caused by lateral root emergence, and this process is associated with cell death for formation of infection pockets. We show that epidermal cells at lateral root bases respond to NFs with Ca2+ oscillations that are faster and more symmetrical than those observed during root hair invasion. Enhanced jasmonic acid or reduced ethylene levels slowed down the Ca2+ spiking frequency and stimulated intracellular root hair invasion by rhizobia, but prevented nodule formation. Hence, intracellular invasion in root hairs is linked with a very specific Ca2+ signature. In parallel experiments, we found that knockdown of the calcium/calmodulin-dependent protein kinase gene of S. rostrata abolished nodule development but not the formation of infection pockets by intercellular invasion at lateral root bases, suggesting that the colonization of the outer cortex is independent of Ca2+ spiking decoding.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A 2008; 105:9817-22. [PMID: 18621693 DOI: 10.1073/pnas.0710273105] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.
Collapse
|
23
|
Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci U S A 2008; 105:4928-32. [PMID: 18316735 PMCID: PMC2290763 DOI: 10.1073/pnas.0710618105] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Indexed: 11/18/2022] Open
Abstract
Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.
Collapse
Affiliation(s)
- Hassen Gherbi
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Katharina Markmann
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Sergio Svistoonoff
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Joan Estevan
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Daphné Autran
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Gabor Giczey
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Florence Auguy
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Benjamin Péret
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Laurent Laplaze
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Claudine Franche
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| | - Martin Parniske
- Department of Biology, Genetics, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, 80638 Munich, Germany
| | - Didier Bogusz
- *Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France; and
| |
Collapse
|
24
|
Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:912-21. [PMID: 17722695 DOI: 10.1094/mpmi-20-8-0912] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many higher plants establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi that improve their ability to acquire nutrients from the soil. In addition to establishing AM symbiosis, legumes also enter into a nitrogen-fixing symbiosis with bacteria known as rhizobia that results in the formation of root nodules. Several genes involved in the perception and transduction of bacterial symbiotic signals named "Nod factors" have been cloned recently in model legumes through forward genetic approaches. Among them, DMI3 (Doesn't Make Infections 3) is a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis. We have identified, by a yeast two-hybrid system, a novel protein interacting with DMI3 named IPD3 (Interacting Protein of DMI3). IPD3 is predicted to interact with DMI3 through a C-terminal coiled-coil domain. Chimeric IPD3::GFP is localized to the nucleus of transformed Medicago truncatula root cells, in which split yellow fluorescent protein assays suggest that IPD3 and DMI3 physically interact in Nicotiana benthamiana. Like DMI3, IPD3 is extremely well conserved among the angiosperms and is absent from Arabidopsis. Despite this high level of conservation, none of the homologous proteins have a demonstrated biological or biochemical function. This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3.
Collapse
Affiliation(s)
- Elsa Messinese
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pislariu CI, Dickstein R. The AGC Kinase MtIRE: A Link to Phospholipid Signaling During Nodulation? PLANT SIGNALING & BEHAVIOR 2007; 2:314-316. [PMID: 19704633 PMCID: PMC2634162 DOI: 10.4161/psb.2.4.4115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 05/28/2023]
Abstract
The development of nitrogen fixing root nodules is complex and involves an interplay of signaling processes. During maturation of plant host cells and their endocytosed rhizobia in symbiosomes, host cells and symbiosomes expand. This expansion is accompanied by a large quantity of membrane biogenesis. We recently characterized an AGC kinase gene, MtIRE, that could play a role in this expansion. MtIRE's expression coincides with host cell and symbiosome expansion in the proximal side of the invasion zone in developing Medicago truncatula nodules. MtIRE's closest homolog is the Arabidopsis AGC kinase family IRE gene, which regulates root hair elongation. AGC kinases are regulated by phospholipid signaling in animals and fungi as well as in the several instances where they have been studied in plants. Here we suggest that a phospholipid signaling pathway may also activate MtIRE activity and propose possible upstream activators of MtIRE protein's presumed AGC kinase activity.
Collapse
Affiliation(s)
- Catalina I Pislariu
- Department of Biological Sciences; University of North Texas; Denton, Texas USA
| | | |
Collapse
|
26
|
Werner D. Molecular Biology and Ecology of the Rhizobia–Legume Symbiosis. THE RHIZOSPHERE 2007. [DOI: 10.1201/9781420005585.ch9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
27
|
Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. PLANT PHYSIOLOGY 2006; 142:265-79. [PMID: 16844829 PMCID: PMC1557615 DOI: 10.1104/pp.106.084657] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 07/08/2006] [Indexed: 05/10/2023]
Abstract
Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.
Collapse
Affiliation(s)
- Jean-François Arrighi
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 441/2594, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kinkema M, Scott PT, Gresshoff PM. Legume nodulation: successful symbiosis through short- and long-distance signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:707-721. [PMID: 32689281 DOI: 10.1071/fp06056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/22/2006] [Indexed: 05/07/2023]
Abstract
Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.
Collapse
Affiliation(s)
- Mark Kinkema
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Paul T Scott
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Peter M Gresshoff
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| |
Collapse
|
29
|
Crane C, Wright E, Dixon RA, Wang ZY. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots. PLANTA 2006; 223:1344-54. [PMID: 16575594 DOI: 10.1007/s00425-006-0268-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/11/2006] [Indexed: 05/04/2023]
Abstract
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.
Collapse
Affiliation(s)
- Cynthia Crane
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | |
Collapse
|
30
|
Riely BK, Mun JH, Ané JM. Unravelling the molecular basis for symbiotic signal transduction in legumes. MOLECULAR PLANT PATHOLOGY 2006; 7:197-207. [PMID: 20507440 DOI: 10.1111/j.1364-3703.2006.00328.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Brendan K Riely
- Department of Plant Pathology, University of California, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
31
|
Hogg BV, Cullimore JV, Ranjeva R, Bono JJ. The DMI1 and DMI2 early symbiotic genes of medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots. PLANT PHYSIOLOGY 2006; 140:365-73. [PMID: 16377749 PMCID: PMC1326057 DOI: 10.1104/pp.105.068981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
The establishment of the legume-rhizobia symbiosis between Medicago spp. and Sinorhizobium meliloti is dependent on the production of sulfated lipo-chitooligosaccharidic nodulation (Nod) factors by the bacterial partner. In this article, using a biochemical approach to characterize putative Nod factor receptors in the plant host, we describe a high-affinity binding site (Kd = 0.45 nm) for the major Nod factor produced by S. meliloti. This site is termed Nod factor-binding site 3 (NFBS3). NFBS3 is associated to a high-density fraction prepared from roots of Medicago truncatula and shows binding specificity for lipo-chitooligosaccharidic structures. As for the previously characterized binding sites (NFBS1 and NFBS2), NFBS3 does not recognize the sulfate group on the S. meliloti Nod factor. Studies of Nod factor binding in root extracts of early symbiotic mutants of M. truncatula reveals that the new site is present in Nod factor perception and does not make infections 3 (dmi3) mutants but is absent in dmi1 and dmi2 mutants. Roots and cell cultures of all these mutants still contain sites similar to NFBS1 and NFBS2, respectively. These results suggest that NFBS3 is different from NFBS2 and NFBS1 and is dependent on the common symbiotic genes DMI1 and DMI2 required for establishment of symbioses with both rhizobia and arbuscular mycorrhizal fungi. The potential role of this site in the establishment of root endosymbioses is discussed.
Collapse
Affiliation(s)
- Bridget V Hogg
- Surfaces Cellulaires et Signalisation chez les Végétaux, Unité Mixte de Recherche 5546 Centre National de la Recherche Scientifique-Université Paul Sabatier, Toulouse III, Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|