1
|
Kim B, Kim I, Yu W, Li M, Kim H, Ahn YJ, Sohn KH, Macho AP, Segonzac C. The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1. MOLECULAR PLANT PATHOLOGY 2023; 24:1312-1318. [PMID: 37310613 PMCID: PMC10502825 DOI: 10.1111/mpp.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Injae Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Ye Jin Ahn
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cécile Segonzac
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Ahn YJ, Kim H, Choi S, Mazo-Molina C, Prokchorchik M, Zhang N, Kim B, Mang H, Koehler N, Kim J, Lee S, Yoon H, Choi D, Kim MS, Segonzac C, Martin GB, Schultink A, Sohn KH. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. THE NEW PHYTOLOGIST 2023; 239:1935-1953. [PMID: 37334551 DOI: 10.1111/nph.19073] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Some nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified. To identify N. benthamiana NLRs (NbNLRs) that recognize Arabidopsis RIN4-targeting effectors, we conducted a rapid reverse genetic screen using an NbNLR VIGS library. We identified that the N. benthamiana homolog of Ptr1 (Pseudomonas tomato race 1) recognizes the Pseudomonas effectors AvrRpt2, AvrRpm1, and AvrB. We demonstrated that recognition of the Xanthomonas effector AvrBsT and the Pseudomonas effector HopZ5 is conferred independently by the N. benthamiana homolog of Ptr1 and ZAR1. Interestingly, the recognition of HopZ5 and AvrBsT is contributed unequally by Ptr1 and ZAR1 in N. benthamiana and Capsicum annuum. In addition, we showed that the RLCK XII family protein JIM2 is required for the NbZAR1-dependent recognition of AvrBsT and HopZ5. The recognition of sequence-unrelated effectors by NbPtr1 and NbZAR1 provides an additional example of convergently evolved effector recognition. Identification of key components involved in Ptr1 and ZAR1-mediated immunity could reveal unique mechanisms of expanded effector recognition.
Collapse
Affiliation(s)
- Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Haseong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Carolina Mazo-Molina
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Boyoung Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hyunggon Mang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Naio Koehler
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Jieun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hayeon Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Cécile Segonzac
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alex Schultink
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
3
|
Kim H, Ahn YJ, Lee H, Chung EH, Segonzac C, Sohn KH. Diversified host target families mediate convergently evolved effector recognition across plant species. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102398. [PMID: 37295296 DOI: 10.1016/j.pbi.2023.102398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Recognition of pathogen effectors is a crucial step for triggering plant immunity. Resistance (R) genes often encode for nucleotide-binding leucine-rich repeat receptors (NLRs), and NLRs detect effectors from pathogens to trigger effector-triggered immunity (ETI). NLR recognition of effectors is observed in diverse forms where NLRs directly interact with effectors or indirectly detect effectors by monitoring host guardees/decoys (HGDs). HGDs undergo different biochemical modifications by diverse effectors and expand the effector recognition spectrum of NLRs, contributing robustness to plant immunity. Interestingly, in many cases of the indirect recognition of effectors, HGD families targeted by effectors are conserved across the plant species while NLRs are not. Notably, a family of diversified HGDs can activate multiple non-orthologous NLRs across plant species. Further investigation on HGDs would reveal the mechanistic basis of how the diversification of HGDs confers novel effector recognition by NLRs.
Collapse
Affiliation(s)
- Haseong Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyeonjung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cécile Segonzac
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea; Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Son S, Park SR. Plant translational reprogramming for stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1151587. [PMID: 36909402 PMCID: PMC9998923 DOI: 10.3389/fpls.2023.1151587] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene's transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Collapse
|
5
|
Zhao Z, Fan J, Yang P, Wang Z, Opiyo SO, Mackey D, Xia Y. Involvement of Arabidopsis Acyl Carrier Protein 1 in PAMP-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:681-693. [PMID: 35343247 DOI: 10.1094/mpmi-02-22-0049-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl carrier proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pv. tomato. Mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate a higher level of SA and display corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against P. syringae pv. tomato in acp1 mutants than that in WT plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Jiangbo Fan
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Piao Yang
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Stephen Obol Opiyo
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| |
Collapse
|
6
|
Indirect recognition of pathogen effectors by NLRs. Essays Biochem 2022; 66:485-500. [PMID: 35535995 DOI: 10.1042/ebc20210097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.
Collapse
|
7
|
Kim H, Prokchorchik M, Sohn KH. Investigation of natural RIN4 variants reveals a motif crucial for function and provides an opportunity to broaden NLR regulation specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:58-70. [PMID: 34978118 DOI: 10.1111/tpj.15653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
Multiple bacterial effectors target RPM1-INTERACTING PROTEIN4 (RIN4), the biochemical modifications of which are recognized by several plant nucleotide-binding and leucine-rich repeat immune receptor (NLR) proteins. Recently, a comparative study of Arabidopsis and apple (Malus domestica) RIN4s revealed that the RIN4 specificity motif (RSM) is critical for NLR regulation. Here, we investigated the extent to which the RSM contributes to the functions of natural RIN4 variants. Functional analysis of 33 natural RIN4 variants from 28 plant species showed that the RSM is generally required yet sometimes dispensable for the RIN4-mediated suppression of NLR auto-activity or effector-triggered NLR activation. Association analysis of the sequences and fire blight resistance gene originating from Malus × robusta 5 (FB_MR5) activation functions of the natural RIN4 variants revealed H167 to be an indispensable residue for RIN4 function in the regulation of NLRs. None of the tested natural RIN4 variants could suppress RESISTANCE TO PSEUDOMONAS SYRINGAE PV. MACULICOLA1 (RPM1) auto-activity and activate FB_MR5. To engineer RIN4 to carry broader NLR compatibility, we generated chimeric RIN4 proteins, several of which could regulate RPM1, RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2), and FB_MR5. We propose that the intrinsically disordered nature of RIN4 provides a flexible platform to broaden pathogen recognition specificity by establishing compatibility with otherwise incompatible NLRs.
Collapse
Affiliation(s)
- Haseong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
8
|
Alam M, Tahir J, Siddiqui A, Magzoub M, Shahzad-Ul-Hussan S, Mackey D, Afzal AJ. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. PLANT CELL REPORTS 2021; 40:2341-2356. [PMID: 34486076 DOI: 10.1007/s00299-021-02771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.
Collapse
Affiliation(s)
- Maheen Alam
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland, 1025, New Zealand
| | - Anam Siddiqui
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - A J Afzal
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
9
|
Liu X, Li M, Li Y, Chen Z, Zhuge C, Ouyang Y, Zhao Y, Lin Y, Xie Q, Yang C, Lai J. An ABHD17-like hydrolase screening system to identify de-S-acylation enzymes of protein substrates in plant cells. THE PLANT CELL 2021; 33:3235-3249. [PMID: 34338800 PMCID: PMC8505870 DOI: 10.1093/plcell/koab199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chun Zhuge
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
10
|
B�rger M. Cutting out the fat: A new screen for de-S-acylases in plants. THE PLANT CELL 2021; 33:3177-3178. [PMID: 35233597 PMCID: PMC8505874 DOI: 10.1093/plcell/koab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 05/11/2023]
Affiliation(s)
- Marco B�rger
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
11
|
Winter N, Novatchkova M, Bachmair A. Cellular Control of Protein Turnover via the Modification of the Amino Terminus. Int J Mol Sci 2021; 22:ijms22073545. [PMID: 33805528 PMCID: PMC8037982 DOI: 10.3390/ijms22073545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The first amino acid of a protein has an important influence on its metabolic stability. A number of ubiquitin ligases contain binding domains for different amino-terminal residues of their substrates, also known as N-degrons, thereby mediating turnover. This review summarizes, in an exemplary way, both older and more recent findings that unveil how destabilizing amino termini are generated. In most cases, a step of proteolytic cleavage is involved. Among the over 500 proteases encoded in the genome of higher eukaryotes, only a few are known to contribute to the generation of N-degrons. It can, therefore, be expected that many processing paths remain to be discovered.
Collapse
Affiliation(s)
- Nikola Winter
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, A-1030 Vienna, Austria;
| | - Maria Novatchkova
- Vienna BioCenter, Research Institute of Molecular Pathology, A-1030 Vienna, Austria;
- Vienna BioCenter, Institute of Molecular Biotechnology, A-1030 Vienna, Austria
| | - Andreas Bachmair
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, A-1030 Vienna, Austria;
- Correspondence:
| |
Collapse
|
12
|
Zhao G, Guo D, Wang L, Li H, Wang C, Guo X. Functions of RPM1-interacting protein 4 in plant immunity. PLANTA 2021; 253:11. [PMID: 33389186 DOI: 10.1007/s00425-020-03527-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/02/2020] [Indexed: 05/20/2023]
Abstract
We reviewed recent advances related to RIN4, including its involvement in the immune process through posttranslational modifications, PM H+-ATPase activity regulation, interaction with EXO70 and identification of RIN4-associated NLR proteins. RPM1-interacting protein 4 (RIN4) is a conserved plant immunity regulator that has been extensively studied and can be modified by pathogenic effector proteins. RIN4 plays an important role in both PTI and ETI. In this article, we review the functions of the two conserved NOI domains of RIN4, the C-terminal cysteine residues required for membrane localization and the sites targeted and modified by effector proteins during plant immunity. In addition, we discuss the effect of RIN4 on the stomatal virulence of pathogens via the regulation of PM H+-ATPase activity, which is involved in the immune process through interactions with the exocyst subunit EXO70, and progress in the identification of RIN4-related R proteins in multiple species. This review provides new insights enhancing the current understanding of the immune function of RIN4.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. THE NEW PHYTOLOGIST 2020; 225:1327-1342. [PMID: 31550400 DOI: 10.1111/nph.16218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. RIN4 is 'guarded' by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.
Collapse
Affiliation(s)
- Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kyungho Won
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Naju, 54875, Korea
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
14
|
Park JS, Lee JY, Nguyen YTK, Kang NW, Oh EK, Jang DM, Kim HJ, Kim DD, Han BW. Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway. Biomolecules 2020; 10:biom10010163. [PMID: 31968674 PMCID: PMC7022378 DOI: 10.3390/biom10010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-β-β sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway.
Collapse
Affiliation(s)
- Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Yen Thi Kim Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Nae-Won Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Dae-Duk Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
- Correspondence: ; Tel.: +82-2-880-7899
| |
Collapse
|
15
|
Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:70-89. [PMID: 31638740 DOI: 10.1111/jipb.12882] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 05/29/2023]
Abstract
The amino-terminal residue of a protein (or amino-terminus of a peptide following protease cleavage) can be an important determinant of its stability, through the Ubiquitin Proteasome System associated N-degron pathways. Plants contain a unique combination of N-degron pathways (previously called the N-end rule pathways) E3 ligases, PROTEOLYSIS (PRT)6 and PRT1, recognizing non-overlapping sets of amino-terminal residues, and others remain to be identified. Although only very few substrates of PRT1 or PRT6 have been identified, substrates of the oxygen and nitric oxide sensing branch of the PRT6 N-degron pathway include key nuclear-located transcription factors (ETHYLENE RESPONSE FACTOR VIIs and LITTLE ZIPPER 2) and the histone-modifying Polycomb Repressive Complex 2 component VERNALIZATION 2. In response to reduced oxygen or nitric oxide levels (and other mechanisms that reduce pathway activity) these stabilized substrates regulate diverse aspects of growth and development, including response to flooding, salinity, vernalization (cold-induced flowering) and shoot apical meristem function. The N-degron pathways show great promise for use in the improvement of crop performance and for biotechnological applications. Upstream proteases, components of the different pathways and associated substrates still remain to be identified and characterized to fully appreciate how regulation of protein stability through the amino-terminal residue impacts plant biology.
Collapse
Affiliation(s)
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mohamad Abbas
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Agata Zubrycka
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
16
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
17
|
Toruño TY, Shen M, Coaker G, Mackey D. Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:56-64. [PMID: 30418084 PMCID: PMC6501815 DOI: 10.1094/mpmi-07-18-0212-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RIN4 is an intensively studied immune regulator in Arabidopsis and is involved in perception of microbial features outside and bacterial effectors inside plant cells. Furthermore, RIN4 is conserved in land plants and is targeted for posttranslational modifications by several virulence proteins from the bacterial pathogen Pseudomonas syringae. Despite the important roles of RIN4 in plant immune responses, its molecular function is not known. RIN4 is an intrinsically disordered protein (IDP), except at regions where pathogen-induced posttranslational modifications take place. IDP act as hubs for protein complex formation due to their ability to bind to multiple client proteins and, thus, are important players in signal transduction pathways. RIN4 is known to associate with multiple proteins involved in immunity, likely acting as an immune-signaling hub for the formation of distinct protein complexes. Genetically, RIN4 is a negative regulator of immunity, but diverse posttranslational modifications can either enhance its negative regulatory function or, on the contrary, render it a potent immune activator. In this review, we describe the structural domains of RIN4 proteins, their intrinsically disordered regions, posttranslational modifications, and highlight the implications that these features have on RIN4 function. In addition, we will discuss the potential role of plasma membrane subdomains in mediating RIN4 protein complex formations.
Collapse
Affiliation(s)
- Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Mingzhe Shen
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, U.S.A
- Corresponding author: D. Mackey;
| |
Collapse
|
18
|
Chakraborty J, Ghosh P, Das S. Autoimmunity in plants. PLANTA 2018; 248:751-767. [PMID: 30046903 DOI: 10.1007/s00425-018-2956-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/15/2018] [Indexed: 05/22/2023]
Abstract
Attenuation in the activity of the negative regulators or the hyperactivity of plant innate immune receptors often causes ectopic defense activation manifested in severe growth retardation and spontaneous lesion formations, referred to as autoimmunity. In this review, we have described the cellular and molecular basis of the development of autoimmune responses for their useful applications in plant defense. Plants are exposed to diverse disease-causing pathogens, which bring infections by taking over the control on host immune machineries. To counter the challenges of evolving pathogenic races, plants recruit specific types of intracellular immune receptors that mostly belong to the family of polymorphic nucleotide-binding oligomerization domain-containing leucine-rich repeat (NLR) proteins. Upon recognition of effector molecules, NLR triggers hyperimmune signaling, which culminates in the form of a typical programmed cell death, designated hypersensitive response. Besides, few plant NLRs also guard certain host proteins known as 'guardee' that are modified by effector proteins. However, this fine-tuned innate immune system can be lopsided upon knock-out of the alleles that correspond to the host guardees, which mimick the presence of pathogen. The absence of pathogens causes inappropriate activation of the respective NLRs and results in the constitutive activation of plant defense and exhibiting autoimmunity. In plants, autoimmune mutants are readily scorable due to their dwarf phenotype and development of characteristic macroscopic disease lesions. Here, we summarize recent reports on autoimmune response in plants, how it is triggered, and phenotypic consequences associated with this phenomenon.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
19
|
Dissmeyer N, Rivas S, Graciet E. Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:929-935. [PMID: 28581033 DOI: 10.1111/nph.14619] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Contents Summary 929 I. INTRODUCTION conservation and diversity of N-end rule pathways 929 II. Defensive functions of the N-end rule pathway in plants 930 III. Proteases and degradation by the N-end rule pathway 930 IV. New proteomics approaches for the identification of N-end rule substrates 932 V. Concluding remarks 932 Acknowledgements 934 References 934 SUMMARY: The N-end rule relates the stability of a protein to the identity of its N-terminal residue and some of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation signals has expanded, leading to a diversity of N-end rule pathways. Although some of these newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries have highlighted roles of N-end rule-mediated protein degradation in plant defense against pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck remains the proteome-wide identification of N-end rule substrates due to the prerequisite for endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for substrate identification. We review these methods, their limitations and future developments.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), D-06120, Germany
- ScienceCampus Halle - Plant-based Bioeconomy, Betty-Heimann-Strasse 3, Halle (Saale), D-06120, Germany
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31 326, France
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Sabol P, Kulich I, Žárský V. RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3253-3265. [PMID: 28338727 PMCID: PMC5853926 DOI: 10.1093/jxb/erx007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/09/2017] [Indexed: 05/22/2023]
Abstract
The exocyst is a conserved vesicle-tethering complex with principal roles in cell polarity and morphogenesis. Several studies point to its involvement in polarized secretion during microbial pathogen defense. In this context, we have found an interaction between the Arabidopsis EXO70B1 exocyst subunit, a protein which was previously associated with both the defense response and autophagy, and RPM1 INTERACTING PROTEIN 4 (RIN4), the best studied member of the NOI protein family and a known regulator of plant defense pathways. Interestingly, fragments of RIN4 mimicking the cleavage caused by the Pseudomonas syringae effector protease, AvrRpt2, fail to interact strongly with EXO70B1. We observed that transiently expressed RIN4, but not the plasma membrane (PM) protein aquaporin PIP2, recruits EXO70B1 to the PM. Unlike EXO70B1, RIN4 does not recruit the core exocyst subunit SEC6 to the PM under these conditions. Furthermore, the AvrRpt2 effector protease delivered by P. syringae is able to release both RIN4 and EXO70B1 to the cytoplasm. We present a model for how RIN4 might regulate the localization and putative function of EXO70B1 and speculate on the role the AvrRpt2 protease might have in the regulation of this defense response.
Collapse
Affiliation(s)
- Peter Sabol
- Charles University in Prague, Viničná, Prague, Czech Republic
| | - Ivan Kulich
- Charles University in Prague, Viničná, Prague, Czech Republic
- Correspondence:
| | - Viktor Žárský
- Charles University in Prague, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, Rozvojová, Prague, Czech Republic
| |
Collapse
|
21
|
Abstract
Determination of the general capacity of proteolytic activity of a certain cell or tissue type can be crucial for an assessment of various features of an organism's growth and development and also for the optimization of biotechnological applications. Here, we describe the use of chimeric protein stability reporters that can be detected by standard laboratory techniques such as histological staining, selection using selective media or fluorescence microscopy. Dependent on the expression of the reporters due to the promoters applied, cell- and tissue-specific questions can be addressed. Here, we concentrate on methods which can be used for large-scale screening for protein stability changes rather than for detailed protein stability studies.
Collapse
Affiliation(s)
- Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.
| |
Collapse
|
22
|
Gibbs DJ, Bailey M, Tedds HM, Holdsworth MJ. From start to finish: amino-terminal protein modifications as degradation signals in plants. THE NEW PHYTOLOGIST 2016; 211:1188-94. [PMID: 27439310 DOI: 10.1111/nph.14105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/07/2016] [Indexed: 05/23/2023]
Abstract
Contents 1188 I. 1188 II. 1189 III. 1190 IV. 1191 V. 1192 1192 References 1192 SUMMARY: The amino- (N-) terminus (Nt) of a protein can undergo a diverse array of co- and posttranslational modifications. Many of these create degradation signals (N-degrons) that mediate protein destruction via the N-end rule pathway of ubiquitin-mediated proteolysis. In plants, the N-end rule pathway has emerged as a major system for regulated control of protein stability. Nt-arginylation-dependent degradation regulates multiple growth, development and stress responses, and recently identified functions of Nt-acetylation can also be linked to effects on the in vivo half-lives of Nt-acetylated proteins. There is also increasing evidence that N-termini could act as important protein stability determinants in plastids. Here we review recent advances in our understanding of the relationship between the nature of protein N-termini, Nt-processing events and proteolysis in plants.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah M Tedds
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
23
|
Jin L, Ham JH, Hage R, Zhao W, Soto-Hernández J, Lee SY, Paek SM, Kim MG, Boone C, Coplin DL, Mackey D. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathog 2016; 12:e1005609. [PMID: 27191168 PMCID: PMC4871590 DOI: 10.1371/journal.ppat.1005609] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.
Collapse
Affiliation(s)
- Lin Jin
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jong Hyun Ham
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Rosemary Hage
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Wanying Zhao
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jaricelis Soto-Hernández
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David L. Coplin
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
24
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
25
|
Boyle PC, Schwizer S, Hind SR, Kraus CM, De la Torre Diaz S, He B, Martin GB. Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. PLANT METHODS 2016; 12:38. [PMID: 27493678 PMCID: PMC4972946 DOI: 10.1186/s13007-016-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant plasma membrane is a key battleground in the war between plants and their pathogens. Plants detect the presence of pathogens at the plasma membrane using sensor proteins, many of which are targeted to this lipophilic locale by way of fatty acid modifications. Pathogens secrete effector proteins into the plant cell to suppress the plant's defense mechanisms. These effectors are able to access and interfere with the surveillance machinery at the plant plasma membrane by hijacking the host's fatty acylation apparatus. Despite the important involvement of protein fatty acylation in both plant immunity and pathogen virulence mechanisms, relatively little is known about the role of this modification during plant-pathogen interactions. This dearth in our understanding is due largely to the lack of methods to monitor protein fatty acid modifications in the plant cell. RESULTS We describe a rapid method to detect two major forms of fatty acylation, N-myristoylation and S-acylation, of candidate proteins using alkyne fatty acid analogs coupled with click chemistry. We applied our approach to confirm and decisively demonstrate that the archetypal pattern recognition receptor FLS2, the well-characterized pathogen effector AvrPto, and one of the best-studied intracellular resistance proteins, Pto, all undergo plant-mediated fatty acylation. In addition to providing a means to readily determine fatty acylation, particularly myristoylation, of candidate proteins, this method is amenable to a variety of expression systems. We demonstrate this using both Arabidopsis protoplasts and stable transgenic Arabidopsis plants and we leverage Agrobacterium-mediated transient expression in Nicotiana benthamiana leaves as a means for high-throughput evaluation of candidate proteins. CONCLUSIONS Protein fatty acylation is a targeting tactic employed by both plants and their pathogens. The metabolic labeling approach leveraging alkyne fatty acid analogs and click chemistry described here has the potential to provide mechanistic details of the molecular tactics used at the host plasma membrane in the battle between plants and pathogens.
Collapse
Affiliation(s)
- Patrick C. Boyle
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Monsanto Company, St. Louis, MO 63141 USA
| | - Simon Schwizer
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Sarah R. Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
| | - Christine M. Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | | | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- College of Pharmacy, Guiyang Medical University, Guiyang, 550004 Guizhou China
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
26
|
Takemoto D, Jones DA. Particle bombardment-mediated transient expression to identify localization signals in plant disease resistance proteins and target sites for the proteolytic activity of pathogen effectors. Methods Mol Biol 2014; 1127:91-101. [PMID: 24643554 DOI: 10.1007/978-1-62703-986-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plant pathogens, including fungi, oomycetes, bacteria, aphids, and nematodes, produce a variety of effector proteins to counter plant disease resistance mechanisms. After delivery into the cytosol of the plant cell, effectors may target proteins localized to different compartments within the plant cell. Plants, in turn, have evolved disease resistance (R) proteins to recognize the action of effectors. Elucidation of the subcellular localization of pathogen effectors, the plant proteins they target, and plant disease resistance proteins is essential to fully understand their interactions during pathogen challenge. In recent years, expression of fluorescent protein fusions has been widely used to determine the subcellular localization of plant proteins and pathogen effectors. Use of fluorescent proteins enables researchers to monitor the dynamic behavior of proteins in living cells. Among various methods available for the introduction of genes into plant cells, particle bombardment-mediated transient expression is the most rapid method suitable for both the identification of localization signals in proteins of interest and their dissection via amino acid substitutions generated using site-directed mutagenesis. This chapter describes a rapid procedure for particle bombardment-mediated transient expression in leaf epidermal cells. This method is also applicable to detection of pathogen effector protease activities directed against target proteins in the plant cell and analysis of protease recognition sites within these target proteins.
Collapse
Affiliation(s)
- Daigo Takemoto
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | |
Collapse
|
27
|
Armijo G, Salinas P, Monteoliva MI, Seguel A, García C, Villarroel-Candia E, Song W, van der Krol AR, Álvarez ME, Holuigue L. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1395-406. [PMID: 24006883 DOI: 10.1094/mpmi-02-13-0044-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA) is one of the key hormones that orchestrate the pathogen-induced immune response in plants. This response is often characterized by the activation of a local hypersensitive reaction involving programmed cell death, which constrains proliferation of biotrophic pathogens. Here, we report the identification and functional characterization of an SA-induced legume lectin-like protein 1 (SAI-LLP1), which is coded by a gene that belongs to the group of early SA-activated Arabidopsis genes. SAI-LLP1 expression is induced upon inoculation with avirulent strains of Pseudomonas syringae pv. tomato via an SA-dependent mechanism. Constitutive expression of SAI-LLP1 restrains proliferation of P. syringae pv. tomato Avr-Rpm1 and triggers more cell death in inoculated leaves. Cellular and biochemical evidence indicates that SAI-LLP1 is a glycoprotein located primarily at the apoplastic side of the plasma membrane. This work indicates that SAI-LLP1 is involved in resistance to P. syringae pv. tomato Avr-Rpm1 in Arabidopsis, as a component of the SA-mediated defense processes associated with the effector-triggered immunity response.
Collapse
|
28
|
Afzal AJ, Kim JH, Mackey D. The role of NOI-domain containing proteins in plant immune signaling. BMC Genomics 2013; 14:327. [PMID: 23672422 PMCID: PMC3661340 DOI: 10.1186/1471-2164-14-327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/26/2013] [Indexed: 02/04/2023] Open
Abstract
Here we present an overview of our existing knowledge on the function of RIN4 as a regulator of plant defense and as a guardee of multiple plant R-proteins. Domain analysis of RIN4 reveals two NOI domains. The NOI domain was originally identified in a screen for nitrate induced genes. The domain is comprised of approximately 30 amino acids and contains 2 conserved motifs (PXFGXW and Y/FTXXF). The NOI gene family contains members exclusively from the plant lineage as far back as moss. In addition to the conserved NOI domain, members within the family also contain conserved C-terminal cysteine residue(s) which are sites for acylation and membrane tethering. Other than these two characteristic features, the sequence of the family of NOI-containing proteins is diverse and, with the exception of RIN4, their functions are not known. Recently published interactome data showing interactions between RIN4 and components of the exocyst complex prompt us to raise the hypothesis that RIN4 might be involved in defense associated vesicle trafficking.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
29
|
Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19. [PMID: 23541478 DOI: 10.1016/j.resmic.2013.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell.
Collapse
|
30
|
Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. THE NEW PHYTOLOGIST 2012; 194:181-191. [PMID: 22236066 DOI: 10.1111/j.1469-8137.2011.04017.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Long-chain bases (LCBs) are pleiotropic sphingolipidic signals in eukaryotes. We investigated the source and function of phytosphingosine-1-phosphate (PHS-P), a phospho-LCB rapidly and transiently formed in Arabidopsis thaliana on chilling. • PHS-P was analysed by thin-layer chromatography following in vivo metabolic radiolabelling. Pharmacological and genetic approaches were used to identify the sphingosine kinase isoforms involved in cold-responsive PHS-P synthesis. Gene expression, mitogen-activated protein kinase activation and growth phenotypes of three LCB kinase mutants (lcbk1, sphk1 and lcbk2) were studied following cold exposure. • Chilling provoked the rapid and transient formation of PHS-P in Arabidopsis cultured cells and plantlets. Cold-evoked PHS-P synthesis was reduced by LCB kinase inhibitors and abolished in the LCB kinase lcbk2 mutant, but not in lcbk1 and sphk1 mutants. lcbk2 presented a constitutive AtMPK6 activation at 22°C. AtMPK6 activation was also triggered by PHS-P treatment independently of PHS/PHS-P balance. lcbk2 mutants grew comparably with wild-type plants at 22 and 4°C, but exhibited a higher root growth at 12°C, correlated with an altered expression of the cold-responsive DELLA gene RGL3. • Together, our data indicate a function for LCBK2 in planta. Furthermore, they connect PHS-P formation with plant response to cold, expanding the field of LCB signalling in plants.
Collapse
Affiliation(s)
- Christelle Dutilleul
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Ghouziel Benhassaine-Kesri
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Chantal Demandre
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Nathalie Rézé
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Alban Launay
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Sandra Pelletier
- UMR INRA 1165-CNRS 8114-UEVE, Unité de Recherche en Génomique Végétale (URGV), 2, rue Gaston Crémieux, CP5708, F-91057 Evry Cedex, France
| | - Jean-Pierre Renou
- UMR INRA 1165-CNRS 8114-UEVE, Unité de Recherche en Génomique Végétale (URGV), 2, rue Gaston Crémieux, CP5708, F-91057 Evry Cedex, France
| | - Alain Zachowski
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Emmanuel Baudouin
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Isabelle Guillas
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| |
Collapse
|
31
|
Takemoto D, Rafiqi M, Hurley U, Lawrence GJ, Bernoux M, Hardham AR, Ellis JG, Dodds PN, Jones DA. N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:379-92. [PMID: 22046960 DOI: 10.1094/mpmi-11-10-0272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To investigate the role of N-terminal domains of plant disease resistance proteins in membrane targeting, the N termini of a number of Arabidopsis and flax disease resistance proteins were fused to green fluorescent protein (GFP) and the fusion proteins localized in planta using confocal microscopy. The N termini of the Arabidopsis RPP1-WsB and RPS5 resistance proteins and the PBS1 protein, which is required for RPS5 resistance, targeted GFP to the plasma membrane, and mutation of predicted myristoylation and potential palmitoylation sites resulted in a shift to nucleocytosolic localization. The N-terminal domain of the membrane-attached Arabidopsis RPS2 resistance protein was targeted incompletely to the plasma membrane. In contrast, the N-terminal domains of the Arabidopsis RPP1-WsA and flax L6 and M resistance proteins, which carry predicted signal anchors, were targeted to the endomembrane system, RPP1-WsA to the endoplasmic reticulum and the Golgi apparatus, L6 to the Golgi apparatus, and M to the tonoplast. Full-length L6 was also targeted to the Golgi apparatus. Site-directed mutagenesis of six nonconserved amino acid residues in the signal anchor domains of L6 and M was used to change the localization of the L6 N-terminal fusion protein to that of M and vice versa, showing that these residues control the targeting specificity of the signal anchor. Replacement of the signal anchor domain of L6 by that of M did not affect L6 protein accumulation or resistance against flax rust expressing AvrL567 but removal of the signal anchor domain reduced L6 protein accumulation and L6 resistance, suggesting that membrane attachment is required to stabilize the L6 protein.
Collapse
Affiliation(s)
- Daigo Takemoto
- Plant Science Division, Reearch School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cacas JL, Petitot AS, Bernier L, Estevan J, Conejero G, Mongrand S, Fernandez D. Identification and characterization of the Non-race specific Disease Resistance 1 (NDR1) orthologous protein in coffee. BMC PLANT BIOLOGY 2011; 11:144. [PMID: 22023696 PMCID: PMC3212813 DOI: 10.1186/1471-2229-11-144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/24/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Leaf rust, which is caused by the fungus Hemileia vastatrix (Pucciniales), is a devastating disease that affects coffee plants (Coffea arabica L.). Disadvantages that are associated with currently developed phytoprotection approaches have recently led to the search for alternative strategies. These include genetic manipulations that constitutively activate disease resistance signaling pathways. However, molecular actors of such pathways still remain unknown in C. arabica. In this study, we have isolated and characterized the coffee NDR1 gene, whose Arabidopsis ortholog is a well-known master regulator of the hypersensitive response that is dependent on coiled-coil type R-proteins. RESULTS Two highly homologous cDNAs coding for putative NDR1 proteins were identified and cloned from leaves of coffee plants. One of the candidate coding sequences was then expressed in the Arabidopsis knock-out null mutant ndr1-1. Upon a challenge with a specific strain of the bacterium Pseudomonas syringae (DC3000::AvrRpt2), analysis of both macroscopic symptoms and in planta microbial growth showed that the coffee cDNA was able to restore the resistance phenotype in the mutant genetic background. Thus, the cDNA was dubbed CaNDR1a (standing for Coffea arabica Non-race specific Disease Resistance 1a). Finally, biochemical and microscopy data were obtained that strongly suggest the mechanistic conservation of the NDR1-driven function within coffee and Arabidopsis plants. Using a transient expression system, it was indeed shown that the CaNDR1a protein, like its Arabidopsis counterpart, is localized to the plasma membrane, where it is possibly tethered by means of a GPI anchor. CONCLUSIONS Our data provide molecular and genetic evidence for the identification of a novel functional NDR1 homolog in plants. As a key regulator initiating hypersensitive signalling pathways, CaNDR1 gene(s) might be target(s) of choice for manipulating the coffee innate immune system and achieving broad spectrum resistance to pathogens. Given the potential conservation of NDR1-dependent defense mechanisms between Arabidopsis and coffee plants, our work also suggests new ways to isolate the as-yet-unidentified R-gene(s) responsible for resistance to H. vastatrix.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- UMR 186 - IRD/CIRAD/UM2 Résistance des Plantes aux Bio-agresseurs, Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier Cedex 5, France
- Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, CNRS-Université Victor Ségalen, Bordeaux 2, Case 92, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Anne-Sophie Petitot
- UMR 186 - IRD/CIRAD/UM2 Résistance des Plantes aux Bio-agresseurs, Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier Cedex 5, France
| | - Louis Bernier
- Centre d'Étude de la Forêt, Université Laval, Québec (QC), G1V 0A6, Canada
| | - Joan Estevan
- UMR 186 - IRD/CIRAD/UM2 Résistance des Plantes aux Bio-agresseurs, Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier Cedex 5, France
| | - Geneviève Conejero
- Plate-forme d'Histocytologie et d'Imagerie Cellulaire Végétale, Biochimie et Physiologie Moléculaire des Plantes-Développement et Amélioration des Plantes, INRA-CNRS-CIRAD, TA96/02 Avenue Agropolis, 34398 Montpellier, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, CNRS-Université Victor Ségalen, Bordeaux 2, Case 92, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Diana Fernandez
- UMR 186 - IRD/CIRAD/UM2 Résistance des Plantes aux Bio-agresseurs, Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
33
|
Afzal AJ, da Cunha L, Mackey D. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. THE PLANT CELL 2011; 23:3798-811. [PMID: 21984695 PMCID: PMC3229150 DOI: 10.1105/tpc.111.088708] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.
Collapse
Affiliation(s)
- Ahmed J. Afzal
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - Luis da Cunha
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
34
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
35
|
Graciet E, Wellmer F. The plant N-end rule pathway: structure and functions. TRENDS IN PLANT SCIENCE 2010; 15:447-453. [PMID: 20627801 DOI: 10.1016/j.tplants.2010.04.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/25/2010] [Accepted: 04/29/2010] [Indexed: 05/29/2023]
Abstract
The N-end rule pathway is a protein degradation pathway that relates the stability of a protein to the nature of its N-terminal amino acid residue. This pathway is part of the ubiquitin-proteasome system in eukaryotes and has been shown to be involved in a multitude of cellular and developmental processes in animals and fungi. However, in plants, its structure and functions have long been enigmatic. In this review, we discuss recent advances in the identification of the enzymatic components that mediate protein degradation through the N-end rule pathway in plants. We further describe the known functions of this pathway in the control of plant growth and development and outline open questions that will likely be the focus of future research.
Collapse
Affiliation(s)
- Emmanuelle Graciet
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
36
|
Selote D, Kachroo A. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. PLANT PHYSIOLOGY 2010; 153:1199-211. [PMID: 20484023 PMCID: PMC2899914 DOI: 10.1104/pp.110.158147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/17/2010] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) RPG1-B (for resistance to Pseudomonas syringae pv glycinea) mediates species-specific resistance to P. syringae expressing the avirulence protein AvrB, similar to the nonorthologous RPM1 in Arabidopsis (Arabidopsis thaliana). RPM1-derived signaling is presumably induced upon AvrB-derived modification of the RPM1-interacting protein, RIN4 (for RPM1-interacting 4). We show that, similar to RPM1, RPG1-B does not directly interact with AvrB but associates with RIN4-like proteins from soybean. Unlike Arabidopsis, soybean contains at least four RIN4-like proteins (GmRIN4a to GmRIN4d). GmRIN4b, but not GmRIN4a, complements the Arabidopsis rin4 mutation. Both GmRIN4a and GmRIN4b bind AvrB, but only GmRIN4b binds RPG1-B. Silencing either GmRIN4a or GmRIN4b abrogates RPG1-B-derived resistance to P. syringae expressing AvrB. Binding studies show that GmRIN4b interacts with GmRIN4a as well as with two other AvrB/RPG1-B-interacting isoforms, GmRIN4c and GmRIN4d. The lack of functional redundancy among GmRIN4a and GmRIN4b and their abilities to interact with each other suggest that the two proteins might function as a heteromeric complex in mediating RPG1-B-derived resistance. Silencing GmRIN4a or GmRIN4b in rpg1-b plants enhances basal resistance to virulent strains of P. syringae and the oomycete Phytophthora sojae. Interestingly, GmRIN4a- or GmRIN4b-silenced rpg1-b plants respond differently to AvrB-expressing bacteria. Although both GmRIN4a and GmRIN4b function to monitor AvrB in the presence of RPG1-B, GmRIN4a, but not GmRIN4b, negatively regulates AvrB virulence activity in the absence of RPG1-B.
Collapse
Affiliation(s)
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
37
|
Quirino BF, Candido ES, Campos PF, Franco OL, Krüger RH. Proteomic approaches to study plant-pathogen interactions. PHYTOCHEMISTRY 2010; 71:351-62. [PMID: 20005547 DOI: 10.1016/j.phytochem.2009.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 06/23/2009] [Accepted: 11/10/2009] [Indexed: 05/23/2023]
Abstract
The analysis of plant proteomes has drastically expanded in the last few years. Mass spectrometry technology, stains, software and progress in bioinformatics have made identification of proteins relatively easy. The assignment of proteins to particular organelles and the development of better algorithms to predict sub-cellular localization are examples of how proteomic studies are contributing to plant biology. Protein phosphorylation and degradation are also known to occur during plant defense signaling cascades. Despite the great potential to give contributions to the study of plant-pathogen interactions, only recently has the proteomic approach begun to be applied to this field. Biological variation and complexity in a situation involving two organisms in intimate contact are intrinsic challenges in this area, however, for proteomics studies yet, there is no substitute for in planta studies with pathogens, and ways to address these problems are discussed. Protein identification depends not only on mass spectrometry, but also on the existence of complete genome sequence databases for comparison. Although the number of completely sequenced genomes is constantly growing, only four plants have their genomes completely sequenced. Additionally, there are already a number of pathosystems where both partners in the interaction have genomes fully sequenced and where functional genomics tools are available. It is thus to be expected that great progress in understanding the biology of these pathosystems will be made over the next few years. Cheaper sequencing technologies should make protein identification in non-model species easier and the bottleneck in proteomic research should shift from unambiguous protein identification to determination of protein function.
Collapse
Affiliation(s)
- B F Quirino
- Universidade Católica de Brasília, Genomic Sciences and Biotechnology Program, Brasília, DF, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Luo Y, Caldwell KS, Wroblewski T, Wright ME, Michelmore RW. Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. THE PLANT CELL 2009; 21:2458-72. [PMID: 19671880 PMCID: PMC2751963 DOI: 10.1105/tpc.107.056044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 06/17/2009] [Accepted: 07/16/2009] [Indexed: 05/19/2023]
Abstract
RPM1-interacting protein 4 (RIN4), a negative regulator of the basal defense response in plants, is targeted by multiple bacterial virulence effectors. We show that RIN4 degradation is induced by the effector AvrPto from Pseudomonas syringae and that this degradation in Solanaceous plants is dependent on the resistance protein, Pto, a protein kinase, and Prf, a nucleotide binding site-leucine-rich repeat protein. Our data demonstrate overlap between two of the best-characterized pathways for recognition of pathogen virulence effectors in plants. RIN4 interacts with multiple plant signaling components and bacterial effectors in yeast and in planta. AvrPto induces an endogenous proteolytic activity in both tomato (Solanum lycopersicum) and Nicotiana benthamiana that degrades RIN4 and requires the consensus site cleaved by the protease effector AvrRpt2. The interaction between AvrPto and Pto, but not the kinase activity of Pto, is required for proteolysis of RIN4. Analysis of many of the effectors comprising the secretome of P. syringae pv tomato DC3000 led to the identification of two additional sequence-unrelated effectors that can also induce degradation of RIN4. Therefore, multiple bacterial effectors besides AvrRpt2 elicit proteolysis of RIN4 in planta.
Collapse
Affiliation(s)
- Yao Luo
- The Genome Center, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
39
|
The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:4549-54. [PMID: 19255443 DOI: 10.1073/pnas.0810280106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The N-end rule pathway targets protein degradation through the identity of the amino-terminal residue of specific protein substrates. Two components of this pathway in Arabidopsis thaliana, PROTEOLYSIS6 (PRT6) and arginyl-tRNA:protein arginyltransferase (ATE), were shown to regulate seed after-ripening, seedling sugar sensitivity, seedling lipid breakdown, and abscisic acid (ABA) sensitivity of germination. Sensitivity of prt6 mutant seeds to ABA inhibition of endosperm rupture reduced with after-ripening time, suggesting that seeds display a previously undescribed window of sensitivity to ABA. Reduced root growth of prt6 alleles and the ate1 ate2 double mutant was rescued by exogenous sucrose, and the breakdown of lipid bodies and seed-derived triacylglycerol was impaired in mutant seedlings, implicating the N-end rule pathway in control of seed oil mobilization. Epistasis analysis indicated that PRT6 control of germination and establishment, as exemplified by ABA and sugar sensitivity, as well as storage oil mobilization, occurs at least in part via transcription factors ABI3 and ABI5. The N-end rule pathway of protein turnover is therefore postulated to inactivate as-yet unidentified key component(s) of ABA signaling to influence the seed-to-seedling transition.
Collapse
|
40
|
Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S. Emerging concepts in effector biology of plant-associated organisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:115-22. [PMID: 19132864 DOI: 10.1094/mpmi-22-2-0115] [Citation(s) in RCA: 443] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-associated organisms secrete proteins and other molecules to modulate plant defense circuitry and enable colonization of plant tissue. Understanding the molecular function of these secreted molecules, collectively known as effectors, became widely accepted as essential for a mechanistic understanding of the processes underlying plant colonization. This review summarizes recent findings in the field of effector biology and highlights the common concepts that have emerged from the study of cellular plant pathogen effectors.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|
41
|
Stulemeijer IJE, Joosten MHAJ. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2008; 9:545-60. [PMID: 18705867 PMCID: PMC6640405 DOI: 10.1111/j.1364-3703.2008.00468.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
42
|
Caplan J, Padmanabhan M, Dinesh-Kumar SP. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 2008; 3:126-35. [PMID: 18329612 DOI: 10.1016/j.chom.2008.02.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both plants and animals contain nucleotide-binding domain and leucine-rich repeat (NB-LRR)-type immune receptors that function during defense against pathogens. Unlike animal NB-LRRs that recognize general pathogen or microbe-associated molecular patterns (PAMPs or MAMPs), plant NB-LRR immune receptors have evolved the ability to specifically recognize a wide range of effector proteins from different pathogens. Recent research has revealed that plant NB-LRRs are incredibly adaptive in their ways of pathogen recognition and defense initiation. This review focuses on the remarkable variety of functions, recognition mechanisms, subcellular localizations, and host factors associated with plant NB-LRR immune receptors.
Collapse
Affiliation(s)
- Jeffrey Caplan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
43
|
Shindo T, Van der Hoorn RAL. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. MOLECULAR PLANT PATHOLOGY 2008; 9:119-25. [PMID: 18705889 PMCID: PMC6640327 DOI: 10.1111/j.1364-3703.2007.00439.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Papain-like cysteine proteases (PLCPs) play crucial roles in plant-pathogen/pest interactions. During these parasitic interactions, PLCPs act on non-self substrates, provoking the selection of counteracting inhibitors and other means to evade proteolysis. We review examples of PLCPs acting on molecular battlefields in the extracellular space, plant cytoplasm and herbivore gut. Examples are maize Mir1 (Maize inbred resistance 1), tomato Rcr3 (Required for Cladosporium resistance-3), Pseudomonas AvrRpt2 and AurPphB, insect DvCAL1 (Diabrotica virgifera cathepsin L-like protease-1) and nematode MiCpl1 (Meloidogyne incognita cathepsin L-like protease 1). The data suggest that PLCPs cleave specific proteins and that their translocation, activation and inhibition of PLCPs are tightly regulated.
Collapse
Affiliation(s)
- Takayuki Shindo
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
44
|
Garzón M, Eifler K, Faust A, Scheel H, Hofmann K, Koncz C, Yephremov A, Bachmair A. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett 2007; 581:3189-96. [PMID: 17572409 DOI: 10.1016/j.febslet.2007.06.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
Abstract
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function.
Collapse
Affiliation(s)
- Marcus Garzón
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|