1
|
Wuryandari Y, Suryaminarsih P, Rahmadhini N, Lestari SR. Profiling of secondary metabolites produced by Pseudomonas sp. isolate PY-122 and PY-142 as biocontrol agent againts fusarium wilt disease on chili. BRAZ J BIOL 2024; 84:e278739. [PMID: 39417435 DOI: 10.1590/1519-6984.278739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Fusarium wilt is an important disease on chili plants caused by the fungus Fusarium oxysporum. This study aims to determine the effectiveness of secondary metabolites from 2 Pseudomonad isolates in controlling Fusarium wilt in chili plants and their effect on chili plant growth. This research was conducted in two stages, namely in vitro, which was carried out in the plant health laboratory and greenhouse, Faculty of Agriculture, Universitas Pembangunan Nasional Veteran Jawa Timur, and in vivo which was carried out in chili plantations known to be endemic to Fusarium wilt in Menganti, Gresik. The research design used in this study was Completely Randomized Design for in vitro testing and Randomized Group Design for in vivo testing by testing 9 treatments repeated 3 times. The treatment tested was control, secondary metabolite application of Pseudomonas isolates PY-122 and PY-142 with concentrations of 20% 30%, 40% and 50%. The variables observed were inhibition of secondary metabolites on the growth of Fusarium fungus, disease incubation period, disease severity index, and plant growth. Sequencing results with 16rRNA gene markers for both Pseudomonas isolates showed similarities to Pseudomonas sp. The results showed that the treatment of secondary metabolite PY-142 with a concentration of 50% showed the highest consistent inhibition. In the greenhouse and field tests, the two isolates slowed down the disease incubation period and development compared to controls. In agronomical observations, the average plant height, number of leaves, root length, and appearance of the first flower on the treated plants were higher and more numerous than the control plants.
Collapse
Affiliation(s)
- Y Wuryandari
- Universitas Pembangunan Nasional Veteran Jawa Timur, Faculty of Agriculture, Agrotechnology Study Program, Surabaya, Indonesia
| | - P Suryaminarsih
- Universitas Pembangunan Nasional Veteran Jawa Timur, Faculty of Agriculture, Agrotechnology Study Program, Surabaya, Indonesia
| | - N Rahmadhini
- Universitas Pembangunan Nasional Veteran Jawa Timur, Faculty of Agriculture, Agrotechnology Study Program, Surabaya, Indonesia
| | - S R Lestari
- Universitas Pembangunan Nasional Veteran Jawa Timur, Faculty of Agriculture, Agrotechnology Study Program, Surabaya, Indonesia
| |
Collapse
|
2
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
3
|
Wiesmann CL, Zhang Y, Alford M, Hamilton CD, Dosanjh M, Thoms D, Dostert M, Wilson A, Pletzer D, Hancock REW, Haney CH. The ColR/S two-component system is a conserved determinant of host association across Pseudomonas species. THE ISME JOURNAL 2023; 17:286-296. [PMID: 36424517 PMCID: PMC9859794 DOI: 10.1038/s41396-022-01343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Morgan Alford
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corri D Hamilton
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Melanie Dostert
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Pletzer
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Robert E W Hancock
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Song S, Liu Y, Wang NR, Haney CH. Mechanisms in plant-microbiome interactions: lessons from model systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102003. [PMID: 33545444 DOI: 10.1016/j.pbi.2021.102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
The use of genetically tractable plant-microbe pairs has driven research in plant immunity and mutualistic symbiosis. Clear functional readouts for the outcomes of symbiosis or immunity have facilitated forward genetic screening and identification of signals, molecules and mechanisms that determine the outcome of these interactions. Plants also associate with beneficial microbial communities that form the microbiome. However, the complexity of the microbiome, combined with relatively subtle effects on plant growth and immunity, has impeded forward genetic screening to identify plant and bacterial genes that shape the microbiome. As a result, microbiome research has relied largely on reverse genetics approaches, based on what is known about plant nutrient uptake and immunity, to identify mechanisms in plant-microbiome research. Here we revisit the features of reductionist model systems that have made them so powerful for studying plant-microbe interactions, and how modeling microbiome research after these systems can propel discovery of novel mechanisms.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
5
|
The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms 2021; 9:microorganisms9071458. [PMID: 34361895 PMCID: PMC8306577 DOI: 10.3390/microorganisms9071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.
Collapse
|
6
|
Wang NR, Wiesmann CL, Melnyk RA, Hossain SS, Chi MH, Martens K, Craven K, Haney CH. Commensal Pseudomonas fluorescens Strains Protect Arabidopsis from Closely Related Pseudomonas Pathogens in a Colonization-Dependent Manner. mBio 2021; 13:e0289221. [PMID: 35100865 PMCID: PMC8805031 DOI: 10.1128/mbio.02892-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Plants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits, including protection against pathogens. While bacteria can inhibit pathogens through the production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model consisting of Arabidopsis thaliana and the opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3, including Pseudomonas sp. WCS365, were more likely to protect against pathogenesis. We used comparative genomics to identify genes unique to the protective strains and found no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection, so we tested deletions in genes required for Arabidopsis rhizosphere colonization. We identified a response regulator colR, and two ColR-dependent genes with predicted roles in membrane modifications (warB and pap2_2), that are required for Pseudomonas-mediated protection from N2C3. We found that WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice, in a ColR-dependent manner. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems. IMPORTANCE Microbiota can protect diverse hosts from pathogens, and microbiome dysbiosis can result in increased vulnerability to opportunistic pathogens. Here, we developed a rhizosphere commensal-pathogen model to identify bacterial strains and mechanisms that can protect plants from an opportunistic Pseudomonas pathogen. Our finding that protective strains are closely related to the pathogen suggests that the presence of specific microbial taxa may help protect plants from disease. We found that commensal colonization level was highly correlated with protection, suggesting that competition with pathogens may play a role in protection. As we found that commensal Pseudomonas were also able to protect against an agricultural pathogen, this system may be broadly relevant for identifying strains and mechanisms to control agriculturally important pathogens. This work also suggests that beneficial plant-associated microbes may be useful for engineering soils where microbial complexity is low, such as hydroponic, or disturbed agricultural soils.
Collapse
Affiliation(s)
- Nicole R. Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina L. Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan A. Melnyk
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarzana S. Hossain
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kitoosepe Martens
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly Craven
- Noble Research Institute, Ardmore, Oklahoma, USA
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Influence of Bacterial Competitors on Salmonella enterica and Enterohemorrhagic Escherichia coli Growth in Microbiological Media and Attachment to Vegetable Seeds. Foods 2021; 10:foods10020285. [PMID: 33572548 PMCID: PMC7912496 DOI: 10.3390/foods10020285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Interests in using biological agents for control of human pathogens on vegetable seeds are rising. This study evaluated whether probiotic bacterium Lactobacillus rhamnosus GG, bacterial strains previously used as biocontrol agents in plant science, as well as a selected plant pathogen could compete with foodborne human pathogens, such as Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC), for growth in microbiological media and attachment to vegetable seeds; and to determine whether the metabolites in cell-free supernatants of competitive bacterial spent cultures could inhibit the growth of the two pathogens. The results suggest that the co-presence of competitive bacteria, especially L. rhamnosus GG, significantly (p < 0.05) inhibited the growth of Salmonella and EHEC. Cell-free supernatants of L. rhamnosus GG cultures significantly reduced the pathogen populations in microbiological media. Although not as effective as L. rhamnosus GG in inhibiting the growth of Salmonella and EHEC, the biocontrol agents were more effective in competing for attachment to vegetable seeds. The study observed the inhibition of human bacterial pathogens by competitive bacteria or their metabolites and the competitive attachment to sprout seeds among all bacteria involved. The results will help strategize interventions to produce vegetable seeds and seed sprouts free of foodborne pathogens.
Collapse
|
8
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
9
|
Hu Y, Xie G, Jiang X, Shao K, Tang X, Gao G. The Relationships Between the Free-Living and Particle-Attached Bacterial Communities in Response to Elevated Eutrophication. Front Microbiol 2020; 11:423. [PMID: 32269552 PMCID: PMC7109266 DOI: 10.3389/fmicb.2020.00423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Exploring the relationships between free-living (FL) and particle-attached (PA) bacterial communities can provide insight into their connectivity and the partitioning of biogeochemical processes, which is crucial to understanding the elemental cycles and metabolic pathways in aquatic ecosystems. However, there is still intense debate about that whether FL and PA fractions have the same assemblage. To address this issue, we investigated the extent of similarity between FL and PA bacterial communities along the environmental gradients in Lake Wuli, China. Our results revealed that the west Lake Wuli was slightly eutrophic and the east lake was moderately and highly eutrophic. The alpha-diversity of the FL bacterial communities was significantly lower than that of the PA fraction in the west lake, whereas the alpha-diversity of the two fractions was comparable in the east lake. The beta-diversity of both communities significantly differed in the west lake, whereas it resembled that in the east lake. Moreover, functional prediction analysis highlighted the significantly larger differences of metabolic functions between the FL and PA fractions in the west lake than in the east lake. Suspended particles and carbon resource promote the similarity between the FL and PA fractions. Collectively, our result reveals a convergent succession of aquatic communities along the eutrophic gradient, highlighting that the connectivity between FL and PA bacterial communities is nutrient related.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guijuan Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
10
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
11
|
Li T, Zhang J, Shen C, Li H, Qiu L. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium Pseudomonas putida UW4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:750-759. [PMID: 30640574 DOI: 10.1094/mpmi-11-18-0317-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) and fungi-bacterial biofilms are both important biofertilizer inoculants for sustainable agriculture. However, the strongest chemoattractant for bacteria to colonize the rhizosphere and mycelia is not clear. Coincidentally, almost all the PGPRs possess 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AcdS) and can utilize ACC as the sole nitrogen source. Here, we found that ACC was a novel, metabolic dependent and methyl-accepting chemoreceptor-involved chemoattractant for Pseudomonas putida UW4. The chemotactic response of UW4 to ACC is significantly greater than that to the amino acids and organic acids identified in the plant root and fungal hyphal exudates. The colonization counts of the UW4 acdS or cheR deletion mutants in the wheat rhizosphere and on Agaricus bisporus mycelia were reduced one magnitude compared with those of UW4. The colonization counts of UW4 on A. bisporus antisense ACC oxidase mycelia with a high ACC production significantly increased compared with A. bisporus, followed by the UW4 cheR complementary strain and the ethylene chemoreceptor gene-deletion mutant. The colonization counts of the UW4 strains on A. bisporus acdS+ mycelia with a low ACC production decreased significantly compared with A. bisporus wild type. These results suggested that ACC and not ethylene should be the strongest chemoattractant for the PGPR that contain AcdS.
Collapse
Affiliation(s)
- Tao Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Jun Zhang
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Chaohui Shen
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Huiru Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Liyou Qiu
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| |
Collapse
|
12
|
Calderón CE, Tienda S, Heredia-Ponce Z, Arrebola E, Cárcamo-Oyarce G, Eberl L, Cazorla FM. The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 2019; 10:396. [PMID: 30873149 PMCID: PMC6403133 DOI: 10.3389/fmicb.2019.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
The production of the compound 2-hexyl-5-propyl resorcinol (HPR) by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 (PcPCL1606) is crucial for fungal antagonism and biocontrol activity that protects plants against the phytopathogenic fungus Rosellinia necatrix. The production of HPR is also involved in avocado root colonization during the biocontrol process. This pleiotrophic response prompted us to study the potential role of HPR production in biofilm formation. The swimming motility of PcPLL1606 is enhanced by the disruption of HPR production. Mutants impaired in HPR production, revealed that adhesion, colony morphology, and typical air–liquid interphase pellicles were all dependent on HPR production. The role of HPR production in biofilm architecture was also analyzed in flow chamber experiments. These experiments revealed that the HPR mutant cells had less tight unions than those producing HPR, suggesting an involvement of HPR in the production of the biofilm matrix.
Collapse
Affiliation(s)
- Claudia E Calderón
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Zaira Heredia-Ponce
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
13
|
Tovi N, Frenk S, Hadar Y, Minz D. Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates. Front Microbiol 2019; 9:3263. [PMID: 30687261 PMCID: PMC6335278 DOI: 10.3389/fmicb.2018.03263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Plant hosts recruit and maintain a distinct root-associated microbiota based on host and bacterium traits. However, past studies disregarded microbial strain-host specificity and spatial micro-heterogeneity of the root compartment. Using genetic manipulation, confocal laser scanning microscopy, real-time quantitative PCR, and genome sequencing we characterized the colonization patterns of three Pseudomonas spp. isolates native to wheat roots, on the micro-scale. Namely, isolates P. fluorescens NT0133, P. stutzeri NT124, and P. stutzeri NT128. All three isolates preferentially colonized wheat over cucumber roots that served as control for host specificity. Furthermore, not only had the isolates strong host specificity but each isolate had a distinct spatial distribution on the root, all within a few millimeters. Isolate P. stutzeri-NT0124 preferentially colonized root tips, whereas P. fluorescens-NT0133 showed a preference for zones distant from the tip. In contrast, isolate P. stutzeri-NT0128 had no preference for a specific niche on the root. While all isolates maintained genetic potential for motility and biofilm formation their phenotype varied significantly and corresponded to their niche preference. These results demonstrate the importance of spatial colonization patterns, governed by both niche and bacterial characteristics which will have great importance in future attempts to manipulate the plant microbiome by constructing synthetic microbial consortia.
Collapse
Affiliation(s)
- Nesli Tovi
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization–Volcani Center, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sammy Frenk
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization–Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
14
|
Liu W, Sun Y, Shen R, Dang X, Liu X, Sui F, Li Y, Zhang Z, Alexandre G, Elmerich C, Xie Z. A Chemotaxis-Like Pathway of Azorhizobium caulinodans Controls Flagella-Driven Motility, Which Regulates Biofilm Formation, Exopolysaccharide Biosynthesis, and Competitive Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:737-749. [PMID: 29424664 DOI: 10.1094/mpmi-12-17-0290-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The genome of the Azorhizobium caulinodans ORS571 contains a unique chemotaxis gene cluster (che) including five chemotaxis genes: cheA, cheW, cheY1, cheB, and cheR. Analysis of the role of the chemotaxis cluster of A. caulinodans using deletion mutant strains revealed that CheA or the Che signaling pathway controls chemotaxis behavior and flagella-driven motility and plays important roles in formation of biofilms and production of extracellular polysaccharides (EPS). Furthermore, the deletion mutants (ΔcheA and ΔcheA-R) were defective in competitive adsorption and colonization on the root surface of host plants. In addition, a functional CheA or Che pathway promoted competitive nodulation on roots and stems. Interestingly, a nonflagellated mutant, ΔfliM, displayed a phenotype highly similar to that of the ΔcheA or ΔcheA-R mutant strains. These findings suggest that through controlling flagella-driven motility behavior, the chemotaxis signaling pathway in A. caulinodans coordinates biofilm formation, EPS, and competitive colonization and nodulation.
Collapse
Affiliation(s)
- Wei Liu
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yu Sun
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Rimin Shen
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- 2 Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoxiao Dang
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaolin Liu
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Fu Sui
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yan Li
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhenpeng Zhang
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Gladys Alexandre
- 3 Biochemistry, Cellular and Molecular Biology Department, University of Tennessee, Knoxville, U.S.A.; and
| | | | - Zhihong Xie
- 1 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
15
|
Fan X, Guo J, Zhou Y, Zhuo T, Hu X, Zou H. The ColRS-Regulated Membrane Protein Gene XAC1347 Is Involved in Copper Homeostasis and hrp Gene Expression in Xanthomonas citri subsp. citri. Front Microbiol 2018; 9:1171. [PMID: 29942288 PMCID: PMC6004745 DOI: 10.3389/fmicb.2018.01171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is the major causal agent of citrus canker disease. The XAC1347 gene, which encodes a conserved membrane protein in Xcc, is required for virulence during infection. However, the molecular events mediated by XAC1347 remain unclear. In this study, we reported that XAC1347 gene is positively regulated by two component regulatory system ColRS and required for type III secretion system function. A non-polar deletion mutant of the XAC1347 gene resulted in a Hrp minus phenotype in plants and reduced copper homeostasis. Real-time PCR experiments indicated that XAC1347 gene is induced by copper ions. The expression levels of representative genes from four hrp operons, including hrpB1, hrcV, hrpF, and hrpD6, were reduced in XAC1347 mutant, indicating that XAC1347 is involved hrp gene expression.
Collapse
Affiliation(s)
- Xiaojing Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinghui Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huasong Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
17
|
Cheng X, Etalo DW, van de Mortel JE, Dekkers E, Nguyen L, Medema MH, Raaijmakers JM. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ Microbiol 2017; 19:4638-4656. [PMID: 28892231 DOI: 10.1111/1462-2920.13927] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands
| | - Judith E van de Mortel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,HAS University of Applied Sciences, Spoorstraat 61, Venlo 5911 KJ, The Netherlands
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Linh Nguyen
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands.,Institute of Biology (IBL) Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| |
Collapse
|
18
|
Lucas JA, Garcia-Villaraco Velasco A, Ramos B, Gutierrez-Mañero FJ. Changes of enzyme activities related to oxidative stress in rice plants inoculated with random mutants of a Pseudomonas fluorescens strain able to improve plant fitness upon biotic and abiotic conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1063-1074. [PMID: 32480633 DOI: 10.1071/fp17022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/30/2017] [Indexed: 06/11/2023]
Abstract
The Pseudomonas fluorescens strain used in this work (Aur 6) has demonstrated its ability to improve fitness of different plant species upon biotic and abiotic stress conditions. Random mutants of this strain were constructed with the Tn5 transposon technology, and biological tests to evaluate loss of salt protection were conducted with all the mutants (104 mutants) on rice seedlings. Mutant 33 showed an evident reduction in its ability to protect plants upon salt stress challenge, whereas mutant 19 was more effective than the wild type. Enzymes related with oxidative stress were studied in both mutants and wild type. Enzyme activities were decreased with mutant 33 with regard to wild type, whereas mutant 19 did not produce important changes suggesting involvement of redox balance associated to the observed modifications in these antioxidant enzymes as one of the probable mechanisms used by these strains. Data of malondialdehyde (MDA) were consistent with this fact. Mutants also affected accumulation of proline, the most common osmolyte in plants. A second experiment to evaluate the ability of both mutants and wild type to stimulate growth on tomato plants was conducted, as this feature was previously demonstrated by wild type. Similar results were obtained in growth of both species, suggesting that mutations of both mutants are related with the capacities of the wild type to stimulate growth. To reveal mutated genes, both mutants were mapped. Three mutated genes were found in mutant 33. A gene related with a general secretion pathway protein D, a gene related with a putative two-component system sensor kinase (ColS), and a gene related with flagellar motor switch protein (FliG). In mutant 19, two mutated genes were found. One gene related with heavy metal efflux pump Czca family, and other gene of 16s rRNA.
Collapse
Affiliation(s)
- Jose A Lucas
- Universidad San Pablo CEU, Dept. Pharmaceutical Science and Health, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Ana Garcia-Villaraco Velasco
- Universidad San Pablo CEU, Dept. Pharmaceutical Science and Health, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Beatriz Ramos
- Universidad San Pablo CEU, Dept. Pharmaceutical Science and Health, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Francisco J Gutierrez-Mañero
- Universidad San Pablo CEU, Dept. Pharmaceutical Science and Health, Facultad Farmacia, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
19
|
Zúñiga A, Donoso RA, Ruiz D, Ruz GA, González B. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:557-565. [PMID: 28548604 DOI: 10.1094/mpmi-01-17-0008-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Raúl A Donoso
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
20
|
A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 2017; 409:2327-2339. [DOI: 10.1007/s00216-016-0175-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
|
21
|
Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F. Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Sci Rep 2016; 6:32467. [PMID: 27572178 PMCID: PMC5004162 DOI: 10.1038/srep32467] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. This work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.
Collapse
Affiliation(s)
- Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, P. R. China
| | - Irina S. Druzhinina
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, USA
| | | | - Yuan Qin
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, P. R. China
| | - Russell Rodriguez
- Adaptive Symbiotic Technologies, Seattle, USA
- Depart of Biology, University of Washington, Seattle, USA
| | - Chulong Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, P. R. China
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, P. R. China
| |
Collapse
|
22
|
Noh YH, Kim SY, Han JW, Seo YS, Cha JS. Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859. THE PLANT PATHOLOGY JOURNAL 2014; 30:304-309. [PMID: 25289017 PMCID: PMC4181107 DOI: 10.5423/ppj.nt.12.2013.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/25/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
The rpf genes and colS XOO1207/colR XOO1208 were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, colS XOO3534 (raxH)/colR XOO3535 (raxR) and colS XOO3762/colR XOO3763 were annotated. The colS XOO3534/colR XOO3535 were known to control AvrXa21 activity and functions of colS XOO3762/colR XOO3763 were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of colS XOO1207/colR XOO1208, colS XOO3534/colR XOO3535 and colS XOO3762/colR XOO3763 increased 2, 2-7, 3-13 folds respectively. Expression of colS XOO3534 and colS XOO3762 also increased 2-4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.
Collapse
Affiliation(s)
- Young-Hee Noh
- Department of Plant Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | - Sun-Young Kim
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Jong-Woo Han
- Watermelon Research Institute, Chungbuk ARES, Cheongwon, Chungbuk 363-883, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Jae-Soon Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| |
Collapse
|
23
|
Ainsaar K, Mumm K, Ilves H, Hõrak R. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiol 2014; 14:162. [PMID: 24946800 PMCID: PMC4074579 DOI: 10.1186/1471-2180-14-162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background The ColRS two-component system has been shown to contribute to the membrane functionality and stress tolerance of Pseudomonas putida as well as to the virulence of Pseudomonas aeruginosa and plant pathogenic Xanthomonas species. However, the conditions activating the ColRS pathway and the signal(s) sensed by ColS have remained unknown. Here we aimed to analyze the role of the ColRS system in metal tolerance of P. putida and to test whether ColS can respond to metal excess. Results We show that the ColRS system is necessary for P. putida to tolerate the excess of iron and zinc, and that it also contributes to manganese and cadmium tolerance. Excess of iron, zinc, manganese or cadmium activates ColRS signaling and as a result modifies the expression of ColR-regulated genes. Our data suggest that the genes in the ColR regulon are functionally redundant, as several loci have to be deleted to observe a significant decrease in metal tolerance. Site-directed mutagenesis of ColS revealed that excess of iron and, surprisingly, also zinc are sensed by a conserved ExxE motif in ColS’s periplasmic domain. While ColS is able to sense different metals, it still discriminates between the two oxidation states of iron, specifically responding to ferric and not ferrous iron. We propose a signal perception model involving a dimeric ColS, where each monomer donates one ExxE motif for metal binding. Conclusions Several transition metals are essential for living organisms in certain amounts, but toxic in excess. We show that ColRS is a sensor system which detects and responds to the excess of physiologically important metals such as zinc, iron and manganese. Thus, the ColRS system is an important factor for metal homeostasis and tolerance in P. putida.
Collapse
Affiliation(s)
| | | | | | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
24
|
El-Kirat-Chatel S, Beaussart A, Boyd CD, O’Toole GA, Dufrêne YF. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem Biol 2014; 9:485-94. [PMID: 24556201 DOI: 10.1021/cb400794e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large adhesin protein LapA mediates adhesion and biofilm formation by Pseudomonas fluorescens. Although adhesion is thought to involve the long multiple repeats of LapA, very little is known about the molecular mechanism by which this protein mediates attachment. Here we use atomic force microscopy to unravel the biophysical properties driving LapA-mediated adhesion. Single-cell force spectroscopy shows that expression of LapA on the cell surface via biofilm-inducing conditions (i.e., phosphate-rich medium) or deletion of the gene encoding the LapG protease (LapA+ mutant) increases the adhesion strength of P. fluorescens toward hydrophobic and hydrophilic substrates, consistent with the adherent phenotypes observed in these conditions. Substrate chemistry plays an unexpected role in modulating the mechanical response of LapA, with sequential unfolding of the multiple repeats occurring only on hydrophilic substrates. Biofilm induction also leads to shortening of the protein extensions, reflecting stiffening of their conformational properties. Using single-molecule force spectroscopy, we next demonstrate that the adhesin is randomly distributed on the surface of wild-type cells and can be released into the solution. For LapA+ mutant cells, we found that the adhesin massively accumulates on the cell surface without being released and that individual LapA repeats unfold when subjected to force. The remarkable adhesive and mechanical properties of LapA provide a molecular basis for the "multi-purpose" adhesion function of LapA, thereby making P. fluorescens capable of colonizing diverse environments.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| | - Chelsea D. Boyd
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - George A. O’Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Yves F. Dufrêne
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
A moderate toxin, GraT, modulates growth rate and stress tolerance of Pseudomonas putida. J Bacteriol 2013; 196:157-69. [PMID: 24163334 DOI: 10.1128/jb.00851-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomal toxin-antitoxin (TA) systems are widespread among free-living bacteria and are supposedly involved in stress tolerance. Here, we report the first TA system identified in the soil bacterium Pseudomonas putida. The system, encoded by the loci PP1586-PP1585, is conserved in pseudomonads and belongs to the HigBA family. The new TA pair was named GraTA for the growth rate-affecting ability of GraT and the antidote activity of GraA. The GraTA system shares many features common to previously described type II TA systems. The overexpression of GraT is toxic to the antitoxin deletion mutants, since the toxin's neutralization is achieved by binding of the antitoxin. Also, the graTA operon structure and autoregulation by antitoxin resemble those of other TA loci. However, we were able to delete the antitoxin gene from the chromosome, which shows the unusually mild toxicity of innate GraT compared to previously described toxins. Furthermore, GraT is a temperature-dependent toxin, as its growth-regulating effect becomes more evident at lower temperatures. Besides affecting the growth rate, GraT also increases membrane permeability, resulting in higher sensitivity to some chemicals, e.g., NaCl and paraquat. Nevertheless, the active toxin helps the bacteria survive under different stressful conditions and increases their tolerance to several antibiotics, including streptomycin, kanamycin, and ciprofloxacin. Therefore, our data suggest that GraT may represent a new class of mild chromosomal regulatory toxins that have evolved to be less harmful to their host bacterium. Their moderate toxicity might allow finer growth and metabolism regulation than is possible with strong growth-arresting or bactericidal toxins.
Collapse
|
26
|
Lin W, Wu L, Lin S, Zhang A, Zhou M, Lin R, Wang H, Chen J, Zhang Z, Lin R. Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol 2013; 13:135. [PMID: 23773576 PMCID: PMC3687580 DOI: 10.1186/1471-2180-13-135] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Background The current study was undertaken to elucidate the mechanism of yield decline in ratoon sugarcane using soil metaproteomics combined with community level physiological profiles (CLPP) analysis. Results The available stalk number, stalk diameter, single stalk weight and theoretical yield of ratoon cane (RS) were found to be significantly lower than those of plant cane (NS). The activities of several carbon, nitrogen and phosphorus processing enzymes, including invertase, peroxidase, urease and phosphomonoesterase were found to be significantly lower in RS soil than in NS soil. BIOLOG analysis indicated a significant decline in average well-color development (AWCD), Shannon’s diversity and evenness indices in RS soil as compared to NS soil. To profile the rhizospheric metaproteome, 109 soil protein spots with high resolution and repeatability were successfully identified. These proteins were found to be involved in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metabolisms, membrane transport, signal transduction and resistance, etc. Comparative metaproteomics analysis revealed that 38 proteins were differentially expressed in the RS soil as compared to the control soil or NS soil. Among these, most of the plant proteins related to carbohydrate and amino acid metabolism and stress response were up-regulated in RS soil. Furthermore, several microbial proteins related to membrane transport and signal transduction were up-regulated in RS soil. These proteins were speculated to function in root colonization by microbes. Conclusions Our experiments revealed that sugarcane ratooning practice induced significant changes in the soil enzyme activities, the catabolic diversity of microbial community, and the expression level of soil proteins. They influenced the biochemical processes in the rhizosphere ecosystem and mediated the interactions between plants and soil microbes.
Collapse
Affiliation(s)
- Wenxiong Lin
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 2013; 57:2204-15. [PMID: 23459479 DOI: 10.1128/aac.02353-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa can develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistant phoQ mutant defined 41 novel loci required for resistance, including two regulatory systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-L-arabinose addition to lipid A, consistent with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for PhoPQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa isolated from polymyxin-treated cystic fibrosis patients harbored mutant alleles of colRS and cprS; when expressed in a ΔphoQ background, these mutant alleles enhanced polymyxin resistance. These results define ColRS and CprRS as two-component systems regulating polymyxin resistance in P. aeruginosa, indicate that addition of 4-amino-L-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate that colRS and cprS mutations can contribute to high-level clinical resistance.
Collapse
|
28
|
Subramoni S, Pandey A, Vishnu Priya MR, Patel HK, Sonti RV. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions. MOLECULAR PLANT PATHOLOGY 2012; 13:690-703. [PMID: 22257308 PMCID: PMC6638901 DOI: 10.1111/j.1364-3703.2011.00777.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad-500 007, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
29
|
Putrinš M, Ainelo A, Ilves H, Hõrak R. The ColRS system is essential for the hunger response of glucose-growing Pseudomonas putida. BMC Microbiol 2011; 11:170. [PMID: 21791104 PMCID: PMC3166926 DOI: 10.1186/1471-2180-11-170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/26/2011] [Indexed: 01/31/2023] Open
Abstract
Background The survival of bacteria largely depends on signaling systems that coordinate cell responses to environmental cues. Previous studies on the two-component ColRS signal system in Pseudomonas putida revealed a peculiar subpopulation lysis phenotype of colR mutant that grows on solid glucose medium. Here, we aimed to clarify the reasons for the lysis of bacteria. Results We present evidence that the lysis defect of P. putida colR mutant is linked to hunger response. A subpopulation prone to lysis was located in the periphery of bacterial cultures growing on solid medium. Cell lysis was observed in glucose-limiting, but not in glucose-rich conditions. Furthermore, lysis was also alleviated by exhaustion of glucose from the medium which was evidenced by a lower lysis of central cells compared to peripheral ones. Thus, lysis takes place at a certain glucose concentration range that most probably provides bacteria a hunger signal. An analysis of membrane protein pattern revealed several hunger-induced changes in the bacterial outer membrane: at glucose limitation the amount of OprB1 channel protein was significantly increased whereas that of OprE was decreased. Hunger-induced up-regulation of OprB1 correlated in space and time with the lysis of the colR mutant, indicating that hunger response is detrimental to the colR-deficient bacteria. The amount of OprB1 is controlled post-transcriptionally and derepression of OprB1 in glucose-limiting medium depends at least partly on the carbon catabolite regulator protein Crc. The essentiality of ColR in hunger response can be bypassed by reducing the amount of certain outer membrane proteins. In addition to depletion of OprB1, the lysis defect of colR mutant can be suppressed by the down-regulation of OprF levels and the hindering of SecB-dependent protein secretion. Conclusions We show that Pseudomonas putida growing on solid glucose medium adapts to glucose limitation through up-regulation of the sugar channel protein OprB1 that probably allows enhanced acquisition of a limiting nutrient. However, to survive such hunger response bacteria need signalling by the ColRS system. Hence, the ColRS system should be considered a safety factor in hunger response that ensures the welfare of the cell membrane during the increased expression of certain membrane proteins.
Collapse
Affiliation(s)
- Marta Putrinš
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, Estonia
| | | | | | | |
Collapse
|
30
|
Yan Q, Wang N. The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol 2011; 193:1590-9. [PMID: 21257774 PMCID: PMC3067642 DOI: 10.1128/jb.01415-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/10/2011] [Indexed: 01/09/2023] Open
Abstract
Bacterial citrus canker disease, which is caused by Xanthomonas citri subsp. citri, is one of the most devastating diseases of citrus plants. In this study, we characterized the role of the two-component regulatory system ColR/ColS in the pathogenicity of X. citri subsp. citri. colS mutants (256A10 and 421E7), colR mutants (386C6 and 417E10), and a colR colS double mutant (306DSR) all lost pathogenicity and produced no symptoms on grapefruit leaves inoculated by either pressure infiltration or the spray method. The pathogenicity defect of the colS, colR, and colR colS mutants could be complemented using the wild-type colS, colR, and colR colS genes, respectively. Mutation of colS or colR significantly reduced X. citri subsp. citri growth in planta. The ColR/ColS system also played important roles in bacterial biofilm formation in glass tubes and on leaf surfaces, lipopolysaccharide (LPS) production, catalase activity, and tolerance of environmental stress, including phenol, copper, and hydrogen peroxide. Furthermore, quantitative reverse transcription-PCR assays demonstrated that the ColR/ColS system positively regulated the expression of important virulence genes, including hrpD6, hpaF, the O-antigen LPS synthesis gene rfbC, and the catalase gene katE. Overall, our data indicate that the two-component regulatory system ColR/ColS is critical for X. citri subsp. citri virulence, growth in planta, biofilm formation, catalase activity, LPS production, and resistance to environmental stress.
Collapse
Affiliation(s)
- Qing Yan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| |
Collapse
|
31
|
Harwood CR, Crawshaw SG, Wipat A. From genome to function: systematic analysis of the soil bacterium bacillus subtilis. Comp Funct Genomics 2010; 2:22-4. [PMID: 18628943 PMCID: PMC2447186 DOI: 10.1002/cfg.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil
and associated water sources. Whilst this bacterium has been studied extensively in the
laboratory, relatively few studies have been undertaken to study its activity in natural
environments. The publication of the B. subtilis genome sequence and subsequent
systematic functional analysis programme have provided an opportunity to develop tools
for analysing the role and expression of Bacillus genes in situ. In this paper we discuss
analytical approaches that are being developed to relate genes to function in environments
such as the rhizosphere.
Collapse
Affiliation(s)
- C R Harwood
- Department of Microbiology and Immunology, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
32
|
Putrins M, Ilves H, Lilje L, Kivisaar M, Hõrak R. The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiol 2010; 10:110. [PMID: 20398259 PMCID: PMC2865465 DOI: 10.1186/1471-2180-10-110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022] Open
Abstract
Background We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol tolerance of the colR-deficient P. putida. Results By using transposon mutagenesis approach we identified a set of phenol-tolerant derivatives of colR-deficient strain. Surprisingly, half of independent phenol tolerant clones possessed miniTn5 insertion in the ttgABC operon. However, though inactivation of TtgABC efflux pump significantly enhanced phenol tolerance, it did not affect phenol-enhanced autolysis of the colR mutant on glucose medium indicating that phenol- and glucose-caused stresses experienced by the colR-deficient P. putida are not coupled. Inactivation of TtgABC pump significantly increased the phenol tolerance of the wild-type P. putida as well. Comparison of phenol tolerance of growing versus starving bacteria revealed that both ColRS and TtgABC systems affect phenol tolerance only under growth conditions and not under starvation. Flow cytometry analysis showed that phenol strongly inhibited cell division and to some extent also caused cell membrane permeabilization to propidium iodide. Single cell analysis of populations of the ttgC- and colRttgC-deficient strains revealed that their membrane permeabilization by phenol resembles that of the wild-type and the colR mutant, respectively. However, cell division of P. putida with inactivated TtgABC pump seemed to be less sensitive to phenol than that of the parental strain. At the same time, cell division appeared to be more inhibited in the colR-mutant strain than in the wild-type P. putida. Conclusions ColRS signal system and TtgABC efflux pump are involved in the phenol tolerance of P. putida. However, as they affect phenol tolerance of growing bacteria only, this indicates that they participate in the regulation of processes which are active during the growth and/or cell division. Single cell analysis data indicated that the cell division step of cell cycle is particularly sensitive to the toxic effect of phenol and its inhibition can be considered as an adaptive response under conditions of phenol stress.
Collapse
Affiliation(s)
- Marta Putrins
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
33
|
Garvis S, Munder A, Ball G, de Bentzmann S, Wiehlmann L, Ewbank JJ, Tümmler B, Filloux A. Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog 2009; 5:e1000540. [PMID: 19662168 PMCID: PMC2714965 DOI: 10.1371/journal.ppat.1000540] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 07/14/2009] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity. The increase in hospital acquired and multi-drug resistant bacterial infections calls for an urgent development of new antimicrobials. As such, the identification and characterization of novel molecular targets involved in bacterial virulence has become a common goal for researchers. The use of non-mammalian hosts, such as the nematode Caenorhabditis elegans, is useful to accelerate this process. In our study, we developed a high-throughput screening method, which further facilitates the use of C. elegans, and allows the rapid screening of a large collection of bacterial mutants at the genomic scale. We have used Pseudomonas aeruginosa, a potent opportunistic pathogen, to perform this study. The screening of more than 2,000 mutant strains allowed the characterization of a mutant affected in the cheB2 gene. Importantly, this mutant was shown to be impaired in a mouse model of infection, supporting that our new screen is a good model to identify virulence genes relevant for infection in mammals. The cheB2 gene encodes a component of a chemotaxis pathway, which is likely involved in the perception of stimuli during the infection process, and allows an appropriate adaptive response for a successful infection. Our method could be applied to other bacterial pathogens and will help researchers discover candidate genes leading to the design of novel antimicrobials.
Collapse
Affiliation(s)
- Steven Garvis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, Centre National de la Recherche Scientifique, IMM, Marseille, France
| | - Antje Munder
- Klinische Forschergruppe, Center of Biochemistry and Pediatrics, Hannover Medical School, Hannover, Germany
| | - Geneviève Ball
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, Centre National de la Recherche Scientifique, IMM, Marseille, France
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, Centre National de la Recherche Scientifique, IMM, Marseille, France
| | - Lutz Wiehlmann
- Klinische Forschergruppe, Center of Biochemistry and Pediatrics, Hannover Medical School, Hannover, Germany
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Burkhard Tümmler
- Klinische Forschergruppe, Center of Biochemistry and Pediatrics, Hannover Medical School, Hannover, Germany
| | - Alain Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, Centre National de la Recherche Scientifique, IMM, Marseille, France
- Imperial College London, Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, South Kensington Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Segura A, Rodríguez-Conde S, Ramos C, Ramos JL. Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2009; 2:452-64. [PMID: 21255277 PMCID: PMC3815906 DOI: 10.1111/j.1751-7915.2009.00113.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/12/2009] [Indexed: 01/14/2023] Open
Abstract
With the increase in quality of life standards and the awareness of environmental issues, the remediation of polluted sites has become a priority for society. Because of the high economic cost of physico-chemical strategies for remediation, the use of biological tools for cleaning-up contaminated sites is a very attractive option. Rhizoremediation, the use of rhizospheric microorganisms in the bioremediation of contaminants, is the biotechnological approach that we explore in this minireview. We focus our attention on bacterial interactions with the plant surface, responses towards root exudates, and how plants and microbes communicate. We analyse certain strategies that may improve rhizoremediation, including the utilization of endophytes, and finally we discuss several rhizoremediation strategies that have opened ways to improve biodegradation.
Collapse
Affiliation(s)
- Ana Segura
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Microbiology, Professor Albareda 1, E-18008 Granada, Spain.
| | | | | | | |
Collapse
|
35
|
Kivistik PA, Kivi R, Kivisaar M, Hõrak R. Identification of ColR binding consensus and prediction of regulon of ColRS two-component system. BMC Mol Biol 2009; 10:46. [PMID: 19445690 PMCID: PMC2689224 DOI: 10.1186/1471-2199-10-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/16/2009] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Conserved two-component system ColRS of Pseudomonas genus has been implicated in several unrelated phenotypes. For instance, deficiency of P. putida ColRS system results in lowered phenol tolerance, hindrance of transposition of Tn4652 and lysis of a subpopulation of glucose-grown bacteria. In order to discover molecular mechanisms behind these phenotypes, we focused here on identification of downstream components of ColRS signal transduction pathway. RESULTS First, highly similar ColR binding sites were mapped upstream of outer membrane protein-encoding oprQ and a putative methyltransferase-encoding PP0903. These two ColR binding sequences were used as an input in computational genome-wide screening for new potential ColR recognition boxes upstream of different genes in P. putida. Biological relevance of a set of in silico predicted ColR-binding sites was analysed in vivo by studying the effect of ColR on transcription from promoters carrying these sites. This analysis disclosed seven novel genes of which six were positively and one negatively regulated by ColR. Interestingly, all promoters tested responded more significantly to the over-expression than to the absence of ColR suggesting that either ColR is limiting or ColS-activating signal is low under the conditions applied. The binding sites of ColR in the promoters analysed were validated by gel mobility shift and/or DNase I footprinting assays. ColR binding consensus was defined according to seven ColR binding motifs mapped by DNase I protection assay and this consensus was used to predict minimal regulon of ColRS system. CONCLUSION Combined usage of experimental and computational approach enabled us to define the binding consensus for response regulator ColR and to discover several new ColR-regulated genes. For instance, genes of outer membrane lipid A 3-O-deacylase PagL and cytoplasmic membrane diacylglycerol kinase DgkA are the members of ColR regulon. Furthermore, over 40 genes were predicted to be putatively controlled by ColRS two-component system in P. putida. It is notable that many of ColR-regulated genes encode membrane-related products thus confirming the previously proposed role of ColRS system in regulation of membrane functionality.
Collapse
Affiliation(s)
- Paula A Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, Tartu 51010, Estonia.
| | | | | | | |
Collapse
|
36
|
Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C. Two similar enhanced root-colonizingPseudomonasstrains differ largely in their colonization strategies of avocado roots andRosellinia necatrixhyphae. Environ Microbiol 2008; 10:3295-304. [DOI: 10.1111/j.1462-2920.2008.01721.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
38
|
Kamilova F, Lamers G, Lugtenberg B. Biocontrol strainPseudomonas fluorescensWCS365 inhibits germination ofFusarium oxysporumspores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 2008; 10:2455-61. [DOI: 10.1111/j.1462-2920.2008.01638.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Qian W, Han ZJ, Tao J, He C. Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1128-1138. [PMID: 18616409 DOI: 10.1094/mpmi-21-8-1128] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The gram-negative bacterium Xanthomonas campestris pv. campestris is the causal agent of black rot disease of cruciferous plants. Its genome encodes a large repertoire of two-component signal transduction systems (TCSTSs), which consist of histidine kinases and response regulators (RR) to monitor and respond to environmental stimuli. To investigate the biological functions of these TCSTS genes, we aimed to inactivate all 54 RR genes in X. campestris pv. campestris ATCC 33913, and successfully generated 51 viable mutants using the insertion inactivation method. Plant inoculation identified two novel response regulator genes (XCC1958 and XCC3107) that are involved in virulence of this strain. Genetic complementation demonstrated that XCC3107, designated as vgrR (virulence and growth regulator), also affects bacterial growth and activity of extracellular proteases. In addition, we assessed the survival of these mutants under various stresses, including osmotic stress, high sodium concentration, heat shock, and sodium dodecyl sulfate exposure, and identified a number of genes that may be involved in the general stress response of X. campestris pv. campestris. Mutagenesis and phenotypic characterization of RR genes in this study will facilitate future studies on signaling networks in this important phytopathogenic bacterium.
Collapse
Affiliation(s)
- Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
40
|
A putative colR(XC1049)-colS(XC1050) two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. Res Microbiol 2008; 159:569-78. [PMID: 18694822 DOI: 10.1016/j.resmic.2008.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 01/20/2023]
Abstract
The ColR-ColS two-component signal transduction system was originally characterized as a regulatory system involved in the capacity of root-colonizing biocontrol bacterium Pseudomonas fluorescens to colonize plant roots. There are three pairs of putative colR-colS two-component regulatory systems annotated in the phytopathogen Xanthomonas campestris pathovar campestris. Mutational studies revealed that one of them, named colR(XC1049) and colS(XC1050), is a global regulatory system involved in various cellular processes, including virulence, hypersensitive response and stress tolerance. Growth rate determination showed that, although the colR(XC1049) and colS(XC1050) mutants are not auxotrophic, colR(XC1049) and colS(XC1050) are required for the pathogen to proliferate well in standard media and host plants. Assays of beta-glucuronidase activities of plasmid-driven promoter-gusA reporters and/or semi-quantitative RT-PCR demonstrated that colR(XC1049) and colS(XC1050) positively regulate expression of hrpC and hrpE operons, and that expression of colR(XC1049) and colS(XC1050) is not controlled by key hrp regulators HrpG and HrpX.
Collapse
|
41
|
Putrins M, Ilves H, Kivisaar M, Hõrak R. ColRS two-component system prevents lysis of subpopulation of glucose-grown Pseudomonas putida. Environ Microbiol 2008; 10:2886-93. [PMID: 18657172 DOI: 10.1111/j.1462-2920.2008.01705.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ColRS two-component system is well conserved in pseudomonads, but its exact role has remained obscure. Here, we report that Pseudomonas putida deficient in ColR experiences serious carbon source-specific stress that leads to the lysis of a subpopulation of bacteria growing on solid glucose medium. We observed that on glucose medium colR-deficient bacteria aggregated, produced a Congo Red-binding substance and had enhanced membrane permeability. Detection of a large amount of cytoplasmic beta-galactosidase and other proteins as well as chromosomal DNA in the growth medium of a colR mutant indicated that cell lysis took place if ColR was absent. Investigation of colony morphology revealed concavities in the centre of the colonies of colR mutant suggesting that cell lysis occurred mainly in the areas of the highest cell density. Analysis of bacteria at a single cell level by flow cytometry showed that population of glucose-grown colR-deficient cells was heterogeneous. In addition to the wild type-like population, we detected a subpopulation of cells with damaged membrane permeable to propidium iodide. Interestingly, inactivation of oprB1 encoding a glucose porin eliminated the cell lysis as well as autoaggregation and membrane leakiness of a colR mutant indicating that glucose influx could be responsible for membrane stress in the absence of ColRS system.
Collapse
Affiliation(s)
- Marta Putrins
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
42
|
Ahn SJ, Yang CH, Cooksey DA. Pseudomonas putida 06909 genes expressed during colonization on mycelial surfaces and phenotypic characterization of mutants. J Appl Microbiol 2008; 103:120-32. [PMID: 17584458 DOI: 10.1111/j.1365-2672.2006.03232.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The main focus of this study was to gain an overall view of Pseudomonas putida 06909 genes involved in the Pseudomonas-Phytophthora interaction as a biological control mechanism, and to understand the roles of these genes. METHODS AND RESULTS Sixteen Ps. putida genes with increased expression on Phytophthora mycelial surfaces were identified using in vivo expression technology (IVET) screening. Sequence analysis of these Phytophthora mycelium-induced (pmi) genes revealed that many of them display similarity to genes known or predicted to be involved in carbohydrate catabolism, energy metabolism, amino acid/nucleotide metabolism, and membrane transport processes. Disruption of three pmi genes encoding succinate semialdehyde dehydrogenase, a dicarboxylic acid transporter, and glyceraldehyde-3-phosphate dehydrogenase showed significant phenotypic differences involved in the colonization processes, including motility, biofilm formation on abiotic surfaces, colony morphology, and competitive colonization of fungal mycelia. All three of these pmi genes were induced by glycogen and other substances, such as organic acids and amino acids utilized by Ps. putida. CONCLUSIONS The IVET screening and mutant characterization can be used to identify bacterial genes that are induced on the mycelial surface and provide insight into the possible mechanisms of mycelial colonization by this bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY The IVET screening through a bacterial genome library might be a huge task. However, because the genes involved in direct interaction with Phytophthora and in bacterial adaptation can be identified, the IVET system will be a valuable tool in studying biocontrol bacteria at the molecular and ecological levels.
Collapse
Affiliation(s)
- S-J Ahn
- Department of Plant Pathology, University of California, Riverside 92521-0122, CA, USA
| | | | | |
Collapse
|
43
|
Nautiyal CS, Srivastava S, Chauhan PS. Rhizosphere Colonization: Molecular Determinants from Plant-Microbe Coexistence Perspective. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Pliego C, Cazorla FM, González-Sánchez MA, Pérez-Jiménez RM, de Vicente A, Ramos C. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res Microbiol 2007; 158:463-70. [PMID: 17467245 DOI: 10.1016/j.resmic.2007.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
Biological control of soil-borne pathogens is frequently based on the application of antagonistic microorganisms selected solely for their ability to produce in vitro antifungal factors. The aim of this work was to select bacteria that efficiently colonize the roots of avocado plants and display antagonism towards Rosellinia necatrix, the causal agent of avocado white root rot. A high frequency of antagonistic strains (ten isolates, 24.4%) was obtained using a novel procedure based on the selection of competitive avocado root tip colonizers. Amplification and sequencing of the 16S rRNA gene, in combination with biochemical characterization, showed that eight and two of the selected isolates belonged to the genera Pseudomonas and Stenotrophomonas, respectively. Characterization of antifungal compounds produced by the antagonistic strains showed variable production of exoenzymes and HCN. Only one of these strains, Pseudomonas sp. AVO94, produced a compound that could be related to antifungal antibiotics. All of the ten selected strains showed twitching motility, a cell movement involved in competitive colonization of root tips. Production of N-acyl-homoserine lactones and indole-3-acetic acid was also reported for some of these isolates. Resistance to several bacterial antibiotics was tested, and three strains showing resistance to only one of them were selected for biocontrol assays. The three selected strains persisted in the rhizosphere of avocado plants at levels considered crucial for efficient biocontrol, 10(5)-10(6) colony forming units/g of root; two of them, Pseudomonas putida AVO102 and Pseudomonas pseudoalcaligenes AVO110, demonstrated significant protection of avocado plants against white root rot.
Collapse
Affiliation(s)
- Clara Pliego
- IFAPA, Centro de Churriana (CICE Junta de Andalucía), Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
de Weert S, Dekkers LC, Bitter W, Tuinman S, Wijfjes AHM, van Boxtel R, Lugtenberg BJJ. The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane. FEMS Microbiol Ecol 2006; 58:205-13. [PMID: 17064262 DOI: 10.1111/j.1574-6941.2006.00158.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas fluorescens strain PCL1210, a competitive tomato root tip colonization mutant of the efficient root colonizing wild type strain WCS365, is impaired in the two-component sensor-response regulator system ColR/ColS. Here we show that a putative methyltransferase/wapQ operon is located downstream of colR/colS and that this operon is regulated by ColR/ColS. Since wapQ encodes a putative lipopolysaccharide (LPS) phosphatase, the possibility was studied that the integrity of the outer membrane of PCL1210 was altered. Indeed, it was shown that mutant PCL1210 is more resistant to various chemically unrelated antibiotics which have to pass the outer membrane for their action. In contrast, the mutant is more sensitive to the LPS-binding antibiotic polymyxin B. Mutant PCL1210 loses growth in competition with its wild type when grown in tomato root exudate. Mutants in the methyltransferase/wapQ operon are also altered in their outer membrane permeability and are defective in competitive tomato root tip colonization. A model for the altered outer membrane of PCL1210 is discussed.
Collapse
Affiliation(s)
- Sandra de Weert
- Institute of Biology, Leiden University, AL Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Roberts DP, McKenna LF, Hu X, Lohrke SM, Kong HS, de Souza JT, Baker CJ, Lydon J. Mutation in cyaA in Enterobacter cloacae decreases cucumber root colonization. Arch Microbiol 2006; 187:101-15. [PMID: 17024489 DOI: 10.1007/s00203-006-0177-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.
Collapse
Affiliation(s)
- Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Bldg. 001, Rm. 140, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hõrak R. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 2006; 188:8109-17. [PMID: 17012397 PMCID: PMC1698186 DOI: 10.1128/jb.01262-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
48
|
Koide T, Vêncio RZN, Gomes SL. Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa. J Bacteriol 2006; 188:5821-30. [PMID: 16885450 PMCID: PMC1540087 DOI: 10.1128/jb.00182-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
Collapse
Affiliation(s)
- Tie Koide
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | | |
Collapse
|
49
|
Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol 2006; 72:7111-22. [PMID: 16936061 PMCID: PMC1636191 DOI: 10.1128/aem.01215-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | |
Collapse
|
50
|
Mavrodi OV, Mavrodi DV, Park AA, Weller DM, Thomashow LS. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. MICROBIOLOGY-SGM 2006; 152:863-872. [PMID: 16514165 DOI: 10.1099/mic.0.28545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain well-conserved genes in fluorescent Pseudomonas spp. are involved in pathogenic interactions between the bacteria and evolutionarily diverse hosts including plants, insects and vertebrate animals. One such gene, dsbA, encodes a periplasmic disulfide-bond-forming enzyme implicated in the biogenesis of exported proteins and cell surface structures. This study focused on the role of dsbA in Pseudomonas fluorescens Q8r1-96, a biological control strain that produces the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and is known for its exceptional ability to colonize the roots of wheat and pea. The deduced DsbA protein from Q8r1-96 is similar to other predicted thiol : disulfide interchange proteins and contains a conserved DsbA catalytic site, a pattern associated with the thioredoxin family active site, and a signal peptide and cleavage site. A dsbA mutant of Q8r1-96 exhibited decreased motility and fluorescence, and altered colony morphology; however, it produced more 2,4-DAPG and total phloroglucinol-related compounds and was more inhibitory in vitro to the fungal root pathogen Gaeumannomyces graminis var. tritici than was the parental strain. When introduced separately into a natural soil, Q8r1-96 and the dsbA mutant did not differ in their ability to colonize the rhizosphere of wheat in greenhouse experiments lasting 12 weeks. However, when the two strains were co-inoculated, the parental strain consistently out-competed the dsbA mutant. It was concluded that dsbA does not contribute to the exceptional rhizosphere competence of Q8r1-96, although the dsbA mutation reduces competitiveness when the mutant competes with the parental strain in the same niche in the rhizosphere. The results also suggest that exoenzymes and multimeric cell surface structures are unlikely to have a critical role in root colonization by this strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Amanda A Park
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - David M Weller
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - Linda S Thomashow
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|