1
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
3
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Friedrich I, Bodenberger B, Neubauer H, Hertel R, Daniel R. Down in the pond: Isolation and characterization of a new Serratia marcescens strain (LVF3) from the surface water near frog's lettuce (Groenlandia densa). PLoS One 2021; 16:e0259673. [PMID: 34748577 PMCID: PMC8575298 DOI: 10.1371/journal.pone.0259673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Serratia marcescens is a species that belongs to the family of Yersiniaceae. This family comprises taxa representing opportunistic human- and phytopathogens but also plant growth-promoting rhizobacteria (PGPR). This study describes a novel Gram-negative strain (LVF3R) of the species Serratia marcescens. The strain was characterized genomically, morphologically, and physiologically. In addition, the potential of the isolate to act as a host strain to assess the diversity of Serratia associated phages in environmental samples was explored. Average nucleotide identity analysis revealed that LVF3R belongs to the species Serratia marcescens. In silico analysis and ProphageSeq data resulted in the identification of one prophage, which is capable of viral particle formation. Electron microscopy showed cells of a rod-shaped, flagellated morphotype. The cells revealed a length and width of 1-1.6 μm and 0.8 μm, respectively. LVF3R showed optimal growth at 30 C and in the presence of up to 2% (w/v) NaCl. It exhibited resistances to ampicillin, erythromycin, oxacillin, oxytetracycline, rifampicin, tetracycline, and vancomycin. Genome data indicate that strain S. marcescens LVF3R is a potential PGPR strain. It harbors genes coding for indole acetic acid (IAA) biosynthesis, siderophore production, plant polymer degradation enzymes, acetoin synthesis, flagellar proteins, type IV secretion system, chemotaxis, phosphorous solubilization, and biofilm formation.
Collapse
Affiliation(s)
- Ines Friedrich
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Bernhard Bodenberger
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Hannes Neubauer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Robert Hertel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
- FG Synthetic Microbiology, Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
6
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
7
|
Zhang L, Chen W, Jiang Q, Fei Z, Xiao M. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparasion of genomics with three Pseudomonas strains. Microbiol Res 2020; 237:126483. [PMID: 32402945 DOI: 10.1016/j.micres.2020.126483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
Pseudomonas chlororaphis subsp. aurantiaca strain JD37 is a plant growth-promoting rhizobacterium (PGPR), which has important biotechnological features such as plant growth promotion, rhizosphere colonization and biocontrol activities. In present study, the genome sequence of JD37 was obtained and comparative genomic analysis were performed to explore unique features of the JD37 genome and its relationship with other Pseudomonas PGPR: P. chlororaphis PA23, P. protegens Pf-5 and P. aeruginosa M18. JD37 possessed a single circular chromosome of 6,702,062 bp in length with an average GC content of 62.75 %. No plasmid was detected in JD37. A total of 5003 functional proteins of JD37 were predicted according to the clusters of orthologous groups (COGs) database. The JD37 genome consisted of various genes involved in plant growth promotion, biocontrol activities and defense responses. Genes involved in the rhizosphere colonization and motility were also found in the genome of JD37, suggesting the common plant growth-promoting traits in PGPR. The identified resistance genes (e.g. those related to metal resistance, antibiotics, and osmotic and temperature-shock) and secondary metabolite biosynthesis revealed the pathways for metabolites it produced. Data presented in present study further provided valuable information on its molecular genetics and adaptive capacity in the rhizosphere niche.
Collapse
Affiliation(s)
- Lei Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Qiuyue Jiang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Ming Xiao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
8
|
Ud-Din AIMS, Khan MF, Roujeinikova A. Broad Specificity of Amino Acid Chemoreceptor CtaA of Pseudomonas fluorescens Is Afforded by Plasticity of Its Amphipathic Ligand-Binding Pocket. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:612-623. [PMID: 31909676 DOI: 10.1094/mpmi-10-19-0277-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motile bacteria follow gradients of nutrients or other environmental cues. Many bacterial chemoreceptors that sense exogenous amino acids contain a double Cache (dCache; calcium channels and chemotaxis receptors) ligand-binding domain (LBD). A growing number of studies suggest that broad-specificity dCache-type receptors that sense more than one amino acid are common. Here, we present an investigation into the mechanism by which the dCache LBD of the chemoreceptor CtaA from a plant growth-promoting rhizobacterium, Pseudomonas fluorescens, recognizes several chemically distinct amino acids. We established that amino acids that signal by directly binding to the CtaA LBD include ones with aliphatic (l-alanine, l-proline, l-leucine, l-isoleucine, l-valine), small polar (l-serine), and large charged (l-arginine) side chains. We determined the structure of CtaA LBD in complex with different amino acids, revealing that its ability to recognize a range of structurally and chemically distinct amino acids is afforded by its easily accessible plastic pocket, which can expand or contract according to the size of the ligand side chain. The amphipathic character of the pocket enables promiscuous interactions with both polar and nonpolar amino acids. The results not only clarify the means by which various amino acids are recognized by CtaA but also reveal that a conserved mobile lid over the ligand-binding pocket adopts the same conformation in all complexes, consistent with this being an important and invariant part of the signaling mechanism.
Collapse
Affiliation(s)
- Abu I M S Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammad F Khan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, Malmstrom RR, Deutschbauer AM, Dangl JL, Visel A. Genome-wide identification of bacterial plant colonization genes. PLoS Biol 2017; 15:e2002860. [PMID: 28938018 PMCID: PMC5627942 DOI: 10.1371/journal.pbio.2002860] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/04/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes. Plants fix carbon to create an abundance of sugars and amino acids, thus providing an enticing environment for microorganisms that reside in soil. Once these microorganisms have colonized the root environment, they can dramatically influence plant growth and development. We set out to identify a comprehensive set of microbial genes that control or influence root colonization, using a genome-wide transposon mutagenesis approach (randomly barcoded transposon sequencing [RB-TnSeq]). By using this method, we identified several hundred genes that, when mutated, affect the ability of the bacterium P. simiae to competitively colonize the root system of the model plant A. thaliana. These included many genes purported to be involved in carbohydrate metabolism, cell wall biosynthesis, and motility, underscoring the notion that sugar metabolism, defense, and motility are all key features of a root-colonizing microbe. We also identified several amino acid transport and metabolism genes with mutations that confer a fitness advantage in root colonization. Lastly, we identified several genes with no known function that significantly alter root colonization ability when mutated. These findings suggest novel engineering strategies to improve biological product development, and will facilitate the mechanistic exploration of the root colonization process.
Collapse
Affiliation(s)
- Benjamin J. Cole
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Meghan E. Feltcher
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Waters
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Tatiana S. Mucyn
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Ryan
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Gaoyan Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Sabah Ul-Hasan
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Meredith McDonald
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Rex R. Malmstrom
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jeffery L. Dangl
- Department of Biology, Department of Microbiology and Immunology, Curriculum in Genetics and Molecular Biology, Howard Hughes Medical Institute, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JLD); (AV)
| | - Axel Visel
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail: (JLD); (AV)
| |
Collapse
|
10
|
Kupferschmied P, Chai T, Flury P, Blom J, Smits THM, Maurhofer M, Keel C. Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial pseudomonads with insect-pathogenic properties. Environ Microbiol 2017; 18:4265-4281. [PMID: 27727519 DOI: 10.1111/1462-2920.13571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022]
Abstract
Some plant-beneficial pseudomonads can invade and kill pest insects in addition to their ability to protect plants from phytopathogens. We explored the genetic basis of O-polysaccharide (O-PS, O-antigen) biosynthesis in the representative insecticidal strains Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 and investigated its role in insect pathogenicity. Both strains produce two distinct forms of O-PS, but differ in the organization of their O-PS biosynthesis clusters. Biosynthesis of the dominant O-PS in both strains depends on a gene cluster similar to the O-specific antigen (OSA) cluster of Pseudomonas aeruginosa. In CHA0 and other P. protegens strains, the OSA cluster is extensively reduced and new clusters were acquired, resulting in high diversity of O-PS structures, possibly reflecting adaptation to different hosts. CHA0 mutants lacking the short OSA form of O-PS were significantly impaired in insect virulence in Galleria injection and Plutella feeding assays. CHA0, PCL1391, and other insecticidal pseudomonads exhibited high resistance to antimicrobial peptides, including cecropins that are central to insect immune defense. Resistance of both model strains depended on the dominant OSA-type O-PS. Our results suggest that O-antigen is essential for successful insect infection and illustrate, for the first time, its importance in resistance of Pseudomonas to antimicrobial peptides.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Tiancong Chai
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pascale Flury
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Parween T, Bhandari P, Siddiqui ZH, Jan S, Fatma T, Patanjali PK. Biofilm: A Next-Generation Biofertilizer. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 2016; 6:37389. [PMID: 27869215 PMCID: PMC5116747 DOI: 10.1038/srep37389] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically trigger immune response in plants. Up-regulation of bd-type cytochromes in Burkholderia Q208 suggests an increased energy production and creates the microaerobic conditions suitable for BNF. In this environment, a series of metabolic pathways are activated in Burkholderia Q208 implicated in oxalotrophy, microaerobic respiration, and formation of PHB granules, enabling energy production under microaerobic conditions. In the plant, genes involved in hypoxia survival are up-regulated and through increased ethylene production, larger aerenchyma is produced in roots which in turn facilitates diffusion of oxygen within the cortex. The detected changes in gene expression, physiology and morphology in the partnership are evidence of a sophisticated interplay between sugarcane and a plant-growth promoting Burkholderia species that advance our understanding of the mutually beneficial processes occurring in the rhizosphere.
Collapse
|
13
|
LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida. PLoS One 2016; 11:e0166078. [PMID: 27812186 PMCID: PMC5094663 DOI: 10.1371/journal.pone.0166078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida. Cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. Moreover, the overexpression of the global regulator Fis decreases surface hydrophobicity by repressing the expression of lapF. Flow cytometry analysis revealed that bacteria producing LapF are more viable when confronted with methanol (a hydrophilic compound) but are more susceptible to 1-octanol (a hydrophobic compound). Thus, these results revealed that LapF is the hydrophobicity factor for the cell surface of P. putida.
Collapse
|
14
|
Newman MA, Dow JM, Molinaro A, Parrilli M. Invited review: Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. ACTA ACUST UNITED AC 2016; 13:69-84. [PMID: 17621548 DOI: 10.1177/0968051907079399] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial lipopolysaccharides (LPSs) have multiple roles in plant—microbe interactions. LPS contributes to the low permeability of the outer membrane, which acts as a barrier to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPS by plant cells can lead to the triggering of defence responses or to the priming of the plant to respond more rapidly and/or to a greater degree to subsequent pathogen challenge. LPS from symbiotic bacteria can have quite different effects on plants to those of pathogens. Some details are emerging of the structures within LPS that are responsible for induction of these different plant responses. The lipid A moiety is not solely responsible for all of the effects of LPS in plants; core oligosaccharide and O-antigen components can elicit specific responses. Here, we review the effects of LPS in induction of defence-related responses in plants, the structures within LPS responsible for eliciting these effects and discuss the possible nature of the (as yet unidentified) LPS receptors in plants.
Collapse
Affiliation(s)
- Mari-Anne Newman
- Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
15
|
Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 2016; 92:fiw112. [PMID: 27222220 DOI: 10.1093/femsec/fiw112] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds.
Collapse
Affiliation(s)
- Ahmad Mahmood
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Oğuz Can Turgay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rifat Hayat
- Department of Soil Science and Soil Water Conservation, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
16
|
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. [PMID: 26136581 PMCID: PMC4488371 DOI: 10.1128/mmbr.00050-14] [Citation(s) in RCA: 1087] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
Affiliation(s)
- Pablo R. Hardoim
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Stéphane Compant
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | | | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
17
|
The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015. [PMID: 26136581 DOI: 10.1128/mmbr.00050-14.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
|
18
|
El-Kirat-Chatel S, Beaussart A, Boyd CD, O’Toole GA, Dufrêne YF. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem Biol 2014; 9:485-94. [PMID: 24556201 DOI: 10.1021/cb400794e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large adhesin protein LapA mediates adhesion and biofilm formation by Pseudomonas fluorescens. Although adhesion is thought to involve the long multiple repeats of LapA, very little is known about the molecular mechanism by which this protein mediates attachment. Here we use atomic force microscopy to unravel the biophysical properties driving LapA-mediated adhesion. Single-cell force spectroscopy shows that expression of LapA on the cell surface via biofilm-inducing conditions (i.e., phosphate-rich medium) or deletion of the gene encoding the LapG protease (LapA+ mutant) increases the adhesion strength of P. fluorescens toward hydrophobic and hydrophilic substrates, consistent with the adherent phenotypes observed in these conditions. Substrate chemistry plays an unexpected role in modulating the mechanical response of LapA, with sequential unfolding of the multiple repeats occurring only on hydrophilic substrates. Biofilm induction also leads to shortening of the protein extensions, reflecting stiffening of their conformational properties. Using single-molecule force spectroscopy, we next demonstrate that the adhesin is randomly distributed on the surface of wild-type cells and can be released into the solution. For LapA+ mutant cells, we found that the adhesin massively accumulates on the cell surface without being released and that individual LapA repeats unfold when subjected to force. The remarkable adhesive and mechanical properties of LapA provide a molecular basis for the "multi-purpose" adhesion function of LapA, thereby making P. fluorescens capable of colonizing diverse environments.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| | - Chelsea D. Boyd
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - George A. O’Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Yves F. Dufrêne
- Institute
of Life Sciences, Université catholique de Louvain, Croix du
Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Balsanelli E, Tuleski TR, de Baura VA, Yates MG, Chubatsu LS, de Oliveira Pedrosa F, de Souza EM, Monteiro RA. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides. PLoS One 2013; 8:e77001. [PMID: 24130823 PMCID: PMC3793968 DOI: 10.1371/journal.pone.0077001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/05/2013] [Indexed: 11/26/2022] Open
Abstract
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.
Collapse
Affiliation(s)
- Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thalita Regina Tuleski
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Valter Antonio de Baura
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marshall Geoffrey Yates
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Luis P, Gauthier A, Trouvelot S, Poinssot B, Frettinger P. Identification of Plasmopara viticola genes potentially involved in pathogenesis on grapevine suggests new similarities between oomycetes and true fungi. PHYTOPATHOLOGY 2013; 103:1035-44. [PMID: 23634808 DOI: 10.1094/phyto-06-12-0121-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, these organisms share many common features during infection. We identified genes in the oomycete Plasmopara viticola that are potentially involved in pathogenesis in grapevine by using fungal databases and degenerate primers. Fragments of P. viticola genes encoding NADH-ubiquinone oxidoreductase (PvNuo), laccase (PvLac), and invertase (PvInv) were obtained. PvNuo was overexpressed at 2 days postinoculation (dpi), during the development of the first hyphal structures and haustoria. PvLac was overexpressed at 5 dpi when genes related to pterostilbene biosynthesis were induced in grapevine. Transcript level for PvInv increased between 1 and 4 dpi before reaching a plateau. These results might suggest a finely tuned strategy of infection depending on nutrition and plant response. Phylogenetic analyses of PvNuo showed that P. viticola clustered with other oomycetes and was associated with brown algae and diatoms, forming a typical Straminipila clade. Based on the comparison of available sequences for laccases and invertases, the group formed by P. viticola and other oomycetes tended to be more closely related to Opisthokonta than to Straminipila. Convergent evolution or horizontal gene transfer could explain the presence of fungus-like genes in P. viticola.
Collapse
|
22
|
Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics 2013; 195:1319-35. [PMID: 24077305 DOI: 10.1534/genetics.113.154948] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype-a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)-the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a β-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance.
Collapse
|
23
|
Shen X, Hu H, Peng H, Wang W, Zhang X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 2013; 14:271. [PMID: 23607266 PMCID: PMC3644233 DOI: 10.1186/1471-2164-14-271] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
Abstract
Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon (related to heavy metal resistance) and a gene cluster involved in type IV pilus biosynthesis, which confers adhesion ability. Conclusions Comparative genomic analysis of four representative PGPR revealed some conserved regions, indicating common characteristics (metabolism of plant-derived compounds, heavy metal resistance, and rhizosphere colonization) among these pseudomonad PGPR. Genomic regions specific to each strain provide clues to its lifestyle, ecological adaptation, and physiological role in the rhizosphere.
Collapse
Affiliation(s)
- Xuemei Shen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Santoyo G, Orozco-Mosqueda MDC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillusand Pseudomonas: a review. BIOCONTROL SCIENCE AND TECHNOLOGY 2012; 22:855-872. [PMID: 0 DOI: 10.1080/09583157.2012.694413] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
25
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
26
|
Lee Y, Seo H, Yeom J, Park W. Molecular characterization of the extracellular matrix in a Pseudomonas putida dsbA mutant: implications for acidic stress defense and plant growth promotion. Res Microbiol 2011; 162:302-10. [DOI: 10.1016/j.resmic.2010.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/27/2022]
|
27
|
Hurdle JG, O'Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 2011; 9:62-75. [PMID: 21164535 DOI: 10.1038/nrmicro2474] [Citation(s) in RCA: 602] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for treating persistent infections. The clinical applicability of these approaches is exemplified by the efficacy of lipoglycopeptides that damage bacterial membranes and of the diarylquinoline TMC207, which inhibits membrane-bound ATP synthase. Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.
Collapse
Affiliation(s)
- Julian G Hurdle
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | |
Collapse
|
28
|
Dutta S, Podile AR. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 2010; 36:232-44. [PMID: 20635858 DOI: 10.3109/10408411003766806] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interaction of plant growth promoting rhizobacteria (PGPR) with host plants is an intricate and interdependent relationship involving not only the two partners but other biotic and abiotic factors of the rhizosphere region. Survival and establishment of PGPR in the rhizosphere is a major concern of agricultural microbiologists. Various factors that play a determining role include the composition of root exudates, properties of bacterial strain, soil status, and activities of other soil microbes. This review focuses on the different components that affect root colonization of PGPR and the underlying principles behind the success of these bugs to tide over the unfavorable conditions.
Collapse
Affiliation(s)
- Swarnalee Dutta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046 India
| | | |
Collapse
|
29
|
Harwood CR, Crawshaw SG, Wipat A. From genome to function: systematic analysis of the soil bacterium bacillus subtilis. Comp Funct Genomics 2010; 2:22-4. [PMID: 18628943 PMCID: PMC2447186 DOI: 10.1002/cfg.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil
and associated water sources. Whilst this bacterium has been studied extensively in the
laboratory, relatively few studies have been undertaken to study its activity in natural
environments. The publication of the B. subtilis genome sequence and subsequent
systematic functional analysis programme have provided an opportunity to develop tools
for analysing the role and expression of Bacillus genes in situ. In this paper we discuss
analytical approaches that are being developed to relate genes to function in environments
such as the rhizosphere.
Collapse
Affiliation(s)
- C R Harwood
- Department of Microbiology and Immunology, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
30
|
Effect of bacteriaphage and exopolysaccharide on root colonization and rhizosphere competence by Pseudomonas fluorescens. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 2010; 72:313-27. [PMID: 20370828 DOI: 10.1111/j.1574-6941.2010.00860.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review evaluates the importance of root exudates in determining rhizosphere bacterial community structure. We present evidence that indicates that: (1) the direct influence of root exudates on rhizosphere bacterial communities is limited to small spatiotemporal windows related to root apices; (2) upon rapid assimilation by microorganisms, root exudates are modified, independent of plant influences, before rerelease into the rhizosphere by the microorganisms themselves--thus, at short distances from root apices, rhizosphere carbon pools are unlikely to be dominated by root exudates; and (3) many of the major compounds found in root exudates are ubiquitous in the rhizosphere as they are found in other pools of rhizodeposits and in microbial exudates. Following this argument, we suggest that the importance of root exudates in structuring rhizosphere bacterial communities needs to be considered in the context of the wider contribution of other rhizosphere carbon pools. Finally, we discuss the implications of rhizosphere bacterial distribution trends for the development of effective strategies to manage beneficial plant-microorganism interactions.
Collapse
|
32
|
English MM, Coulson TJD, Horsman SR, Patten CL. Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol 2009; 108:2180-90. [PMID: 19951377 DOI: 10.1111/j.1365-2672.2009.04620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Plant growth-promoting rhizobacteria (PGPR) introduced into soil often do not compete effectively with indigenous micro-organisms for plant colonization. The aim of this study was to identify novel genes that are important for root colonization by the PGPR Enterobacter cloacae UW5. METHODS AND RESULTS A library of transposon mutants of Ent. cloacae UW5 was screened for mutants with altered ability to colonize canola roots using a thermal asymmetric interlaced (TAIL)-PCR-based approach. A PCR fragment from one mutant was reproducibly amplified at greater levels from genomic DNA extracted from mutant pools recovered from seedling roots 6 days after seed inoculation compared to that from the cognate inoculum cultures. Competition assays confirmed that the purified mutant designated Ent. cloacae J28 outcompetes the wild-type strain on roots but not in liquid cultures. In Ent. cloacae J28, the transposon is inserted upstream of the hns gene. Quantitative RT-PCR showed that transposon insertion increased expression of hns on roots. CONCLUSIONS These results indicate that increased expression of hns in Ent. cloacae enhances competitive colonization of roots. SIGNIFICANCE AND IMPACT OF THE STUDY A better understanding of the genes involved in plant colonization will contribute to the development of PGPR that can compete more effectively in agricultural soils.
Collapse
Affiliation(s)
- M M English
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | | | | | |
Collapse
|
33
|
Segura A, Rodríguez-Conde S, Ramos C, Ramos JL. Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2009; 2:452-64. [PMID: 21255277 PMCID: PMC3815906 DOI: 10.1111/j.1751-7915.2009.00113.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/12/2009] [Indexed: 01/14/2023] Open
Abstract
With the increase in quality of life standards and the awareness of environmental issues, the remediation of polluted sites has become a priority for society. Because of the high economic cost of physico-chemical strategies for remediation, the use of biological tools for cleaning-up contaminated sites is a very attractive option. Rhizoremediation, the use of rhizospheric microorganisms in the bioremediation of contaminants, is the biotechnological approach that we explore in this minireview. We focus our attention on bacterial interactions with the plant surface, responses towards root exudates, and how plants and microbes communicate. We analyse certain strategies that may improve rhizoremediation, including the utilization of endophytes, and finally we discuss several rhizoremediation strategies that have opened ways to improve biodegradation.
Collapse
Affiliation(s)
- Ana Segura
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Microbiology, Professor Albareda 1, E-18008 Granada, Spain.
| | | | | | | |
Collapse
|
34
|
Cheng Z, Duan J, Hao Y, McConkey BJ, Glick BR. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:686-94. [PMID: 19445593 DOI: 10.1094/mpmi-22-6-0686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of canola root exudates on the proteome of Pseudomonas putida UW4 and the mutant strain P. putida UW4/AcdS(-), which lacks a functional 1-aminocyclopropane-1-carboxylate deaminase gene, was examined using two-dimensional difference in-gel electrophoresis. Seventy-two proteins with significantly altered expression levels in the presence of canola root exudates were identified by mass spectrometry. Many of these proteins are involved in nutrient transport and utilization, cell envelope synthesis, and transcriptional or translational regulation and, hence, may play important roles in plant-bacterial interactions. Four proteins showing large changes in expression in response to canola root exudates in both the wild-type and mutant strains of P. putida UW4 (i.e., outer membrane protein F, peptide deformylase, transcription regulator Fis family protein, and a previously uncharacterized protein) were both overexpressed and disrupted in P. putida UW4 in an effort to better understand their functions. Functional studies of these modified strains revealed significantly enhanced or inhibited plant-growth-promoting abilities compared with the wild-type P. putida UW4, in agreement with the suggested involvement of three of these four proteins in plant-bacterial interactions. The work reported here suggests strategies to both identify potential antibacterial agents and develop bacterial strains that might be useful adjuncts to agriculture. This approach may be an effective means of identifying key proteins mediating the interactions of bacteria with their rhizosphere environment.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
35
|
Whitaker JW, McConkey GA, Westhead DR. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 2009; 10:R36. [PMID: 19368726 PMCID: PMC2688927 DOI: 10.1186/gb-2009-10-4-r36] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 12/02/2022] Open
Abstract
Metabolic network analysis in multiple eukaryotes identifies how horizontal and endosymbiotic gene transfer of metabolic enzyme-encoding genes leads to functional gene gain during evolution. Background Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes. Results The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae. Conclusions The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.
Collapse
Affiliation(s)
- John W Whitaker
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | | | | |
Collapse
|
36
|
Gorski L, Duhé JM, Flaherty D. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes. PLoS One 2009; 4:e5142. [PMID: 19357783 PMCID: PMC2664462 DOI: 10.1371/journal.pone.0005142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/14/2009] [Indexed: 12/22/2022] Open
Abstract
The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases.
Collapse
Affiliation(s)
- Lisa Gorski
- US Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, California, United States of America.
| | | | | |
Collapse
|
37
|
Díaz C, Schilardi PL, dos Santos Claro PC, Salvarezza RC, Fernández Lorenzo de Mele MA. Submicron trenches reduce the Pseudomonas fluorescens colonization rate on solid surfaces. ACS APPLIED MATERIALS & INTERFACES 2009; 1:136-143. [PMID: 20355765 DOI: 10.1021/am8000677] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacterial adhesion and spreading on biomaterials are considered key features of pathogenicity. Roughness and topography of the substrate have been reported to affect bacterial adhesion, but little is known about their effect on spreading. Submicron row and channel tuning with bacterial diameter (S2) were designed to test bacterial motility on these surfaces. Random nanometer-sized structures (S1) were used as controls. Optical microscopy and AFM were employed to detect biological and surface pattern details in the micro- and nanoscale, respectively. Results showed that motility strategies (flagella orientation, elongation, aggregation in rafts, formation of network structures, and development of a bacterial frontier) were affected by the presence of submicropatterns. Importantly, the rate of bacterial spreading on S2 was significantly reduced and influenced by the orientation of the submicropatterns. Consequently, submicroengineered substrates could be employed as a tool to downgrade bacterial colonization. Such patterns could impact on the design of proper engineered structures to control biofilm spreading on solid surfaces.
Collapse
Affiliation(s)
- Carolina Díaz
- Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | | | | | | | | |
Collapse
|
38
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
39
|
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 2008; 10:1271-84. [PMID: 18312393 DOI: 10.1111/j.1462-2920.2007.01541.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three transposon mutants of Rhizobium tropici CIAT899 affected in lipopolysaccharide (LPS) biosynthesis were characterized and their maize rhizosphere and endophytic root colonization abilities were evaluated. The disrupted genes coded for the following putative products: the ATPase component of an O antigen ABC-2 type transporter (wzt), a nucleotide-sugar dehydratase (lpsbeta2) and a bifunctional enzyme producing GDP-mannose (noeJ). Electrophoretic analysis of affinity purified LPS showed that all mutants lacked the smooth LPS bands indicating an O antigen minus phenotype. In the noeJ mutant, the rough LPS band migrated faster than the parental band, suggesting a truncated LPS core. When inoculated individually, the wzt and noeJ mutants colonize the rhizosphere and root to a lower extent than the parental strain while no differences were observed between the lpsbeta2 mutant and the parental strain. All mutants were impaired in competitive rhizosphere and root colonization. Pleiotropic effects of the mutations on known colonization traits such as motility and growth rate were observed, but they were not sufficient to explain the colonization behaviours. It was found that the LPS mutants were sensitive to the maize antimicrobial 6-methoxy-2-benzoxazolinone (MBOA). Only the combined effects of altered growth rate and susceptibility to maize antimicrobials could account for all the observed colonization phenotypes. The results suggest an involvement of the LPS in protecting R. tropici against maize defence response during rhizosphere and root colonization.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
40
|
Nautiyal CS, Srivastava S, Chauhan PS. Rhizosphere Colonization: Molecular Determinants from Plant-Microbe Coexistence Perspective. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007; 92:367-89. [PMID: 17588129 DOI: 10.1007/s10482-007-9167-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/12/2007] [Indexed: 11/29/2022]
Abstract
Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apartado 4084, 14080 Cordoba, Spain.
| | | |
Collapse
|
42
|
Nian H, Zhang J, Song F, Fan L, Huang D. Isolation of transposon mutants and characterization of genes involved in biofilm formation by Pseudomonas fluorescens TC222. Arch Microbiol 2007; 188:205-13. [PMID: 17453174 DOI: 10.1007/s00203-007-0235-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 03/07/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Biofilm formation mutants are often found to have defective or altered motility. The motility phenotype was exploited to identify Pseudomonas fluorescens biofilm formation mutants. Fourteen motility mutants were obtained from P. fluorescens isolate TC222 and eight stable mutants were studied further. The eight transposon insertion mutants showed altered ability to form biofilm compared with the parent. Five Tn5-inserted genes from these mutants were cloned and sequenced. Genetic analysis showed that two insertions were located in genes affecting multiple cell surface characteristics, including lipopolysaccharide (rfbD) and polar flagella (fliR). Three genes encoding for a putative Mig-14 family protein (epsB), a probable bacteriophage signal peptide protein (bspA) and a soluble pyridine nucleotide transhydrogenase (pyrA) were reported for the first time to be involved in biofilm formation. Complementation experiments of rfbD and epsB genes proved that biofilm formation of the corresponding mutants could be restored. Further semi-quantitative reverse transcription-PCR analysis showed that both rfbD and epsB can express their transcripts much higher in the complemented strains than that in wild-type strains. The transcripts of both genes in their mutants could not be detected.
Collapse
Affiliation(s)
- Hongjuan Nian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E. Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environ Microbiol 2007; 9:1017-34. [PMID: 17359273 DOI: 10.1111/j.1462-2920.2006.01228.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signature-tagged mutagenesis (STM) was used to identify genetic determinants of fitness associated with two key ecological processes mediated by bacteria. Burkholderia vietnamiensis strain G4 was used as a model bacterium to investigate: phenol degradation as a model of bioremediation, and pea rhizosphere colonization as a prerequisite to biological control and phytoremediation. A total of 1900 mutants were screened and 196 putative fitness mutants identified; the genetic basis of 137 of these mutations was determined by correlation to the G4 genome. The phenol-STM screen was more successful at identifying phenol degradation mutations (83 mutants; 4.4% hit rate) than a conventional agar-based phenol screen (49 mutants, 5319 screened, 0.92% hit rate). The combination of both screens completely defined the components of the TOM pathway in strain G4 and also identified novel accessory genes not previously implicated in phenol utilization. The rhizosphere-STM screen identified 113 mutants (5.9% hit rate); 107 had reduced tag signals indicative of poor rhizosphere colonization (Rhiz-), while six mutants produced high hybridization signals suggesting increased rhizosphere competence (Rhiz+). Competition assays confirmed that 69% of Rhiz- mutants tested (24/35) were severely compromised in their rhizosphere fitness. Seventy Rhiz- mutations mapped to genes with the following putative functions: amino acid biosynthesis (25; 36%), general metabolism (18; 26%), hypothetical (9; 13%), regulatory genes (4; 5.7%), transport and stress (2 each; 2.8% respectively). One of the most interesting discoveries mediated by the rhizosphere-STM screen was the identification of three Rhiz+ mutants inactivated within a single virulence-associated autotransporter adhesin gene; this mutation consistently produced a hyper-colonization phenotype suggesting a highly novel role for this surface adhesin during plant interactions. Our study has shown that STM can be successfully applied to ecologically important microbial interactions, defining the underlying genetic systems important for biotechnological fitness of environmental bacteria such those from the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Louise A O'Sullivan
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | | | | | | | | | | |
Collapse
|
44
|
Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. PHYTOPATHOLOGY 2007; 97:250-6. [PMID: 18944383 DOI: 10.1094/phyto-97-2-0250] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have many traits that make them well suited as biocontrol agents of soilborne pathogens. Tremendous progress has been made in characterizing the process of root colonization by pseudomonads, the biotic and abiotic factors affecting colonization, bacterial traits and genes contributing to rhizosphere competence, and the mechanisms of pathogen suppression. This review looks back over the last 30 years of Pseudomonas biocontrol research and highlights key studies, strains, and findings that have had significant impact on shaping our current understanding of biological control by bacteria and the direction of future research.
Collapse
|
45
|
Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol 2006; 72:7111-22. [PMID: 16936061 PMCID: PMC1636191 DOI: 10.1128/aem.01215-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | |
Collapse
|
46
|
Mavrodi OV, Mavrodi DV, Park AA, Weller DM, Thomashow LS. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96. MICROBIOLOGY-SGM 2006; 152:863-872. [PMID: 16514165 DOI: 10.1099/mic.0.28545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain well-conserved genes in fluorescent Pseudomonas spp. are involved in pathogenic interactions between the bacteria and evolutionarily diverse hosts including plants, insects and vertebrate animals. One such gene, dsbA, encodes a periplasmic disulfide-bond-forming enzyme implicated in the biogenesis of exported proteins and cell surface structures. This study focused on the role of dsbA in Pseudomonas fluorescens Q8r1-96, a biological control strain that produces the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and is known for its exceptional ability to colonize the roots of wheat and pea. The deduced DsbA protein from Q8r1-96 is similar to other predicted thiol : disulfide interchange proteins and contains a conserved DsbA catalytic site, a pattern associated with the thioredoxin family active site, and a signal peptide and cleavage site. A dsbA mutant of Q8r1-96 exhibited decreased motility and fluorescence, and altered colony morphology; however, it produced more 2,4-DAPG and total phloroglucinol-related compounds and was more inhibitory in vitro to the fungal root pathogen Gaeumannomyces graminis var. tritici than was the parental strain. When introduced separately into a natural soil, Q8r1-96 and the dsbA mutant did not differ in their ability to colonize the rhizosphere of wheat in greenhouse experiments lasting 12 weeks. However, when the two strains were co-inoculated, the parental strain consistently out-competed the dsbA mutant. It was concluded that dsbA does not contribute to the exceptional rhizosphere competence of Q8r1-96, although the dsbA mutation reduces competitiveness when the mutant competes with the parental strain in the same niche in the rhizosphere. The results also suggest that exoenzymes and multimeric cell surface structures are unlikely to have a critical role in root colonization by this strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Amanda A Park
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - David M Weller
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
| | - Linda S Thomashow
- USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
47
|
Toth IK, Pritchard L, Birch PRJ. Comparative genomics reveals what makes an enterobacterial plant pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:305-36. [PMID: 16704357 DOI: 10.1146/annurev.phyto.44.070505.143444] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bacterial family Enterobacteriaceae contains some of the most devastating human and animal pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and Shigella. These are among the best-studied of any organisms, yet there is much to be learned about the nature and evolution of interactions with their hosts and with the wider environment. Comparative and functional genomics have fundamentally improved our understanding of their modes of adaptation to different ecological niches and the genes that determine their pathogenicity. In addition to animal pathogens, Enterobacteriaceae include important plant pathogens, such as Erwinia carotovora subsp. atroseptica (Eca), the first plant-pathogenic enterobacterium to be sequenced. This review focuses on genomic comparisons between Eca and other enterobacteria, with particular emphasis on the differences that exemplify or explain the plant-associated lifestyle(s) of Eca. Horizontal gene transfer in Eca may directly have led to the acquisition of a number of determinants that mediate its interactions, pathogenic or otherwise, with plants, offering a glimpse into its evolutionary divergence from animal-pathogenic enterobacteria.
Collapse
Affiliation(s)
- Ian K Toth
- Plant Pathology Program, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | |
Collapse
|
48
|
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951-9. [PMID: 16151072 PMCID: PMC1214602 DOI: 10.1128/aem.71.9.4951-4959.2005] [Citation(s) in RCA: 878] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
49
|
Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 2005; 7:1673-85. [PMID: 16232283 DOI: 10.1111/j.1462-2920.2005.00891.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the last years, the number of human infections caused by opportunistic pathogens has increased dramatically. One natural reservoir of opportunistic pathogens is the rhizosphere, the zone around roots that is influenced by the plant. Due to a high content of nutrients, this habitat is a 'microbial hot-spot', where bacterial abundances including those with strong antagonistic traits are enhanced. Various bacterial genera, including Burkholderia, Enterobacter, Herbaspirillum, Ochrobactrum, Pseudomonas, Ralstonia, Staphylococcus and Stenotrophomonas, contain root-associated strains that can encounter bivalent interactions with both plant and human hosts. Mechanisms responsible for colonization of the rhizosphere and antagonistic activity against plant pathogens are similar to those responsible for colonization of human organs and tissues, and pathogenicity. Multiple resistances against antibiotics are not only found with clinical strains but also with strains isolated from the rhizosphere. High competition, the occurrence of diverse antibiotics in the rhizosphere, and enhanced horizontal gene transfer rates in this microenvironment appear to contribute to the high levels of natural resistances. While opportunistic bacteria from the rhizosphere have some properties in common, each of these emerging pathogens has its own features, which are discussed in detail for Burkholderia, Ochrobactrum and Stenotrophomonas.
Collapse
Affiliation(s)
- Gabriele Berg
- University of Rostock, Department of Life Sciences, Institute of Microbiology, Albert-Einstein-Strasse 3, D-18051 Rostock, Germany.
| | | | | |
Collapse
|
50
|
Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M. Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. MICROBIOLOGY-SGM 2005; 150:3889-3897. [PMID: 15528673 DOI: 10.1099/mic.0.27362-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of plant-associated micro-organisms to colonize and compete in the rhizosphere is specially relevant for the biotechnological application of micro-organisms as inoculants. Pseudomonads are one of the best root colonizers and they are widely used in plant-pathogen biocontrol and in soil bioremediation. This study analyses the motility mechanism of the well-known biocontrol strain Pseudomonas fluorescens F113. A 6.5 kb region involved in the flagellar filament synthesis, containing the fliC, flaG, fliD, fliS, fliT and fleQ genes and part of the fleS gene, was sequenced and mutants in this region were made. Several non-motile mutants affected in the fliC, fliS and fleQ genes, and a fliT mutant with reduced motility properties, were obtained. These mutants were completely displaced from the root tip when competing with the wild-type F113 strain, indicating that the wild-type motility properties are necessary for competitive root colonization. A mutant affected in the flaG gene had longer flagella, but the same motility and colonization properties as the wild-type. However, in rich medium or in the absence of iron limitation, it showed a higher motility, suggesting the possibility of improving competitive root colonization by manipulating the motility processes.
Collapse
Affiliation(s)
- Silvia Capdevila
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - María Sánchez-Contreras
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|