1
|
Toribio R, Muñoz A, Sánchez F, Ponz F, Castellano MM. High overexpression of CERES, a plant regulator of translation, induces different phenotypical defence responses during TuMV infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:256-267. [PMID: 33899980 DOI: 10.1111/tpj.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Mutations in the eukaryotic translation initiation factors eIF4E and eIF(iso)4E confer potyvirus resistance in a range of plant hosts. This supports the notion that, in addition to their role in translation of cellular mRNAs, eIF4E isoforms are also essential for the potyvirus cycle. CERES is a plant eIF4E- and eIF(iso)4E-binding protein that, through its binding to the eIF4Es, modulates translation initiation; however, its possible role in potyvirus resistance is unknown. In this article, we analyse if the ectopic expression of AtCERES is able to interfere with turnip mosaic virus replication in plants. Our results demonstrate that, during infection, the ectopic expression of CERES in Nicotiana benthamiana promotes the development of a mosaic phenotype when it is accumulated to moderate levels, but induces veinal necrosis when it is accumulated to higher levels. This necrotic process resembles a hypersensitive response (HR)-like response that occurs with different HR hallmarks. Remarkably, Arabidopsis plants inoculated with a virus clone that promotes high expression of CERES do not show signs of infection. These final phenotypical outcomes are independent of the capacity of CERES to bind to eIF4E. All these data suggest that CERES, most likely due to its leucine-rich repeat nature, could act as a resistance protein, able to promote a range of different defence responses when it is highly overexpressed from viral constructs.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
2
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
3
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
4
|
Sánchez F, Manrique P, Mansilla C, Lunello P, Wang X, Rodrigo G, López-González S, Jenner C, González-Melendi P, Elena SF, Walsh J, Ponz F. Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1304-1315. [PMID: 26646245 DOI: 10.1094/mpmi-05-15-0111-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.
Collapse
Affiliation(s)
- Flora Sánchez
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Manrique
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Mansilla
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Lunello
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Xiaowu Wang
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Rodrigo
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Silvia López-González
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Carol Jenner
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Pablo González-Melendi
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Santiago F Elena
- 2 Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
- 4 The Santa Fe Institute, Santa Fe, New Mexico, U.S.A
| | - John Walsh
- 3 University of Warwick, Wellesbourne, Warwick, U.K.; and
| | - Fernando Ponz
- 1 Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
5
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:28-39. [PMID: 27839076 DOI: 10.1094/mpmi-00-00-1015-rev.testissue] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Addi- tionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus- induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, inter- action, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions cur- rently used by the research community. In addition to ad- dressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
| | - David Zaitlin
- 2 Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington 40546, U.S.A
| | - Rayapati A Naidu
- 3 Department of Plant Pathology, Irrigated Agriculture Research & Extension Center, Washington State University, Prosser 99350, U.S.A
| | - Steven A Lommel
- 4 Department of Plant Pathology, North Carolina State University, Raleigh 27695, U.S.A
| |
Collapse
|
6
|
Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:705-16. [PMID: 24930633 DOI: 10.1111/tpj.12586] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi-0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map-based cloning delimited rwm1 on chromosome 1 in a 114-kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus-encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N-terminal domain of cPGK2 is involved in rwm1-mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus-induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Genetics and Breeding of Fruits and Vegetables, INRA-UR1052, Dom. St Maurice, CS 60094, F-84143, Montfavet Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Casteel CL, Yang C, Nanduri AC, De Jong HN, Whitham SA, Jander G. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:653-63. [PMID: 24372679 DOI: 10.1111/tpj.12417] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/19/2013] [Accepted: 12/10/2013] [Indexed: 05/27/2023]
Abstract
Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission.
Collapse
Affiliation(s)
- Clare L Casteel
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
8
|
Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sánchez F, Ponz F, Asurmendi S. Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1486-1498. [PMID: 23945002 DOI: 10.1094/mpmi-07-13-0190-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Losses produced by virus diseases depend mostly on symptom severity. Turnip mosaic virus (TuMV) is one of the most damaging and widespread potyvirus infecting members of the family Brassicaceae, including Arabidopsis thaliana. We used JPN1 and UK1 TuMV strains to characterize viral infections regarding symptom development, senescence progression, antioxidant response, reactive oxygen species (ROS) accumulation, and transcriptional profiling. Both isolates, despite accumulating similar viral titers, induced different symptomatology and strong differences in oxidative status. Early differences in several senescence-associated genes linked to the ORE1 and ORS1 regulatory networks as well as persistent divergence in key ROS production and scavenging systems of the plant were detected. However, at a later stage, both strains induced nutrient competition, indicating that senescence rates are influenced by different mechanisms upon viral infections. Analyses of ORE1 and ORS1 levels in infected Brassica juncea plants showed a similar pattern, suggesting a conserved differential response to both strains in Brassicaceae spp. Transcriptional analysis of the ORE1 and ORS1 regulons showed similarities between salicylic acid (SA) response and the early induction triggered by UK1, the most severe strain. By means of SA-defective NahG transgenic plants, we found that differential senescence progression and ROS accumulation between strains rely on an intact SA pathway.
Collapse
|
9
|
Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:638-52. [PMID: 18643983 DOI: 10.1111/j.1365-313x.2008.03629.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis/virology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Botrytis/pathogenicity
- Caulimovirus/pathogenicity
- Cucumovirus/pathogenicity
- DNA, Bacterial/genetics
- Disease Susceptibility/microbiology
- Disease Susceptibility/virology
- Gene Expression Regulation, Plant
- Genes, Plant
- Immunity, Innate/genetics
- Mutagenesis, Insertional
- Mutation
- Myo-Inositol-1-Phosphate Synthase/genetics
- Myo-Inositol-1-Phosphate Synthase/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phytic Acid/biosynthesis
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/virology
- Potyvirus/pathogenicity
- Pseudomonas syringae/pathogenicity
- RNA, Plant/genetics
- Salicylic Acid/metabolism
- Signal Transduction
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Tobacco Mosaic Virus/pathogenicity
- Tymovirus/pathogenicity
Collapse
Affiliation(s)
- Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
10
|
Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1015-26. [PMID: 18616398 DOI: 10.1094/mpmi-21-8-1015] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
Collapse
Affiliation(s)
- Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | |
Collapse
|
11
|
Sicard O, Loudet O, Keurentjes JJB, Candresse T, Le Gall O, Revers F, Decroocq V. Identification of quantitative trait loci controlling symptom development during viral infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:198-207. [PMID: 18184064 DOI: 10.1094/mpmi-21-2-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In compatible interactions between plants and viruses that result in systemic infection, symptom development is a major phenotypic trait. However, host determinants governing this trait are mostly unknown, and the mechanisms underlying it are still poorly understood. In a previous study on the Arabidopsis thaliana-Plum pox virus (PPV) pathosystem, we showed a large degree of variation in symptom development among susceptible accessions. In particular, Cvi-1 (Cape Verde islands) accumulates viral particules but remains symptomless, Col-0 (Columbia) sometimes shows weak symptoms compared with Ler (Landsberg erecta), which always shows severe symptoms. Genetic analyses of Col x Ler and Cvi x Ler F2 and recombinant inbred line (RIL) populations suggested that symptom development as well as viral accumulation traits are polygenic and quantitative. Three of the symptom quantitative trait loci (QTL) identified could be confirmed in near-isogenic lines, including PSI1 (PPV symptom induction 1), which was identified on the distal part of chromosome 1 in both RIL populations. With respect to viral accumulation, several factors have been detected and, interestingly, in the Col x Ler population, two out of three viral accumulation QTL colocalized with loci controlling symptom development, although correlation analysis showed weak linearity between symptom severity and virus accumulation. In addition, in the Cvi x Ler RIL population, a digenic recessive determinant controlling PPV infection was identified.
Collapse
Affiliation(s)
- Ophélie Sicard
- UMR Génomique, Diversité et Pouvoir Pathogène, Institut National de la Recherche Agronomique-Université Bordeaux 2, IBVM, , BP81, 33883 Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Vega-Arreguín JC, Gronenborn B, Ramírez BC. Arabidopsis thaliana is a host of the legume nanovirus Faba bean necrotic yellows virus. Virus Res 2007; 128:81-7. [PMID: 17512075 DOI: 10.1016/j.virusres.2007.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
We report infection of Arabidopsis thaliana with the legume nanovirus Faba bean necrotic yellows virus (FBNYV) by its insect vector Aphis craccivora. Symptoms of FBNYV infection on A. thaliana include stunting and reduced apical dominance, and are rather mild, compared to the severe necrosis and early plant death induced by the virus in the natural host Vicia faba. An inoculation access period of 6h is sufficient to transmit FBNYV to A. thaliana. FBNYV is readily transmitted back from A. thaliana to V. faba, where it induces the characteristic severe disease symptoms. Hence, passage through A. thaliana does not affect FBNYV pathogenicity. FBNYV accumulates to the highest levels in roots and stems, compared to cauline and rosette leaves. In cauline leaves, the kinetics of virus accumulation correlates with the amount of master Rep protein accumulation.
Collapse
Affiliation(s)
- Julio C Vega-Arreguín
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, Bât 23, Gif-sur-Yvette 91198, France.
| | | | | |
Collapse
|
13
|
Decroocq V, Sicard O, Alamillo JM, Lansac M, Eyquard JP, García JA, Candresse T, Le Gall O, Revers F. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:541-9. [PMID: 16673941 DOI: 10.1094/mpmi-19-0541] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Twelve Arabidopsis accessions were challenged with Plum pox potyvirus (PPV) isolates representative of the four PPV strains. Each accession supported local and systemic infection by at least some of the PPV isolates, but high variability was observed in the behavior of the five PPV isolates or the 12 Arabidopsis accessions. Resistance to local infection or long-distance movement occurred in about 40% of all the accession-isolate combinations analyzed. Except for Nd-1, all accessions showed resistance to local infection by PPV-SoC; in the Landsberg erecta (Ler) accession, this resistance was compromised by sgt1 and rar1 mutations, suggesting that it could be controlled by an R gene-mediated resistance pathway. While most of the susceptible accessions were symptomless, PPV induced severe symptoms on inflorescences in C24, Ler, and Bay-0 as early as 15 days after inoculation. Genetic analyses indicated that these interaction phenotypes are controlled by different genetic systems. The restriction of long-distance movement of PPV-El Amar and of another member of genus Potyvirus, Lettuce mosaic virus, in Col-0 requires the RTM genes, indicating for the first time that the RTM system may provide a broad range, potyvirus-specific protection against systemic infection. The restriction to PPV-PS long-distance movement in Cvi-1 is controlled by a single recessive gene, designated rpv1, which was mapped to chromosome 1. The nuclear inclusion polymerase b-capsid protein region of the viral genome appears to be responsible for the ability of PPV-R to overcome rpv1-mediated resistance.
Collapse
Affiliation(s)
- V Decroocq
- UMR GDPP INRA-Université Victor Segalen Bordeaux 2, BP81, 33883 Villenave d'Ornon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kaneko YH, Inukai T, Suehiro N, Natsuaki T, Masuta C. Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 110:33-40. [PMID: 15517145 DOI: 10.1007/s00122-004-1824-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/22/2004] [Indexed: 05/24/2023]
Abstract
In the pathosystem of turnip mosaic virus (TuMV) and Arabidopsis thaliana, two distinct symptoms (mosaic symptom and veinal necrosis) were observed that were dependent upon the combination of the TuMV isolate and the Arabidopsis ecotype. The Col-0 ecotype developed mosaic symptoms after infection with the TuMV isolate Azu while the Ler ecotype developed veinal necrosis after infection with the same TuMV isolate. The Ler phenotype is controlled by a single dominant gene TuNI (TuMV necrosis inducer) which is located on chromosome 1. The TuNI gene was precisely mapped to the ~105 kb interval between the two markers of mXF41 and mRF28 by using several types of DNA polymorphism markers. Within this region, which included largely duplicated sequences, a total of 19 putative genes were predicted and 15 of these were classified into five gene families. The genes belonging to the gene families At1g58480 and At1g58602 may function in response to infection by pathogens. The gene family At1g58480 encodes lipase-like proteins, which might be involved in the induction of defence responses that are mediated by salicylic acid. The gene family At1g58602 encodes the CC-NBS-LRR (CNL) proteins, which are known to function as one of the plant resistance (R) proteins against pathogens. In the present study, the possibility that TuNI might function as an R gene was discussed.
Collapse
Affiliation(s)
- Yo-Hei Kaneko
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
15
|
Fujisaki K, Hagihara F, Azukawa Y, Kaido M, Okuno T, Mise K. Identification and characterization of the SSB1 locus involved in symptom development by Spring beauty latent virus infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:967-975. [PMID: 15384487 DOI: 10.1094/mpmi.2004.17.9.967] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The natural variation of Arabidopsis thaliana in response to a bromovirus, Spring beauty latent virus (SBLV), was examined. Of 63 Arabidopsis accessions tested, all were susceptible when inoculated with SBLV, although there was a large degree of variation in symptom development. Most accessions, including Columbia (Col-0), were symptomless or developed only mild symptoms, but four accessions, including S96, showed severe symptoms of SBLV infection. Genetic analysis suggested that the difference in the responses of Col-0 and S96 to SBLV was controlled by a single semidominant locus. We have designated this locus SSB1 (symptom development by SBLV infection). By using genetic markers, SSB1 was mapped to chromosome IV. The patterns of distribution and accumulation of SBLV in sensitive accessions were similar to those in the insensitive accessions. In addition, symptom development in S96 by SBLV infection was critically interrupted by the presence of the NahG gene, which encodes salicylic acid (SA) hydroxylase. These data suggest that symptom development in A. thaliana controlled by SSB1 is independent of the efficiency of SBLV multiplication and is dependent on SA signaling.
Collapse
Affiliation(s)
- Koki Fujisaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Dzianott A, Bujarski JJ. Infection and RNA recombination of Brome mosaic virus in Arabidopsis thaliana. Virology 2004; 318:482-92. [PMID: 14972517 DOI: 10.1016/j.virol.2003.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 09/09/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
Ecotypes of Arabidopsis thaliana supported the replication and systemic spread of Brome mosaic virus (BMV) RNAs. Infection was induced either by manual inoculation with viral RNA or by BMV virions, demonstrating that virus disassembly did not prevent infection. When in vitro-transcribed BMV RNAs 1-3 were used, production of subgenomic RNA4 was observed, showing that BMV RNA replication and transcription had occurred. Furthermore, inoculations of the transgenic Arabidopsis line that expressed a suppressor of RNA interference (RNAi) pathway markedly increased the BMV RNA concentrations. Inoculations with designed BMV RNA3 recombination vectors generated both homologous and nonhomologous BMV RNA-RNA recombinants. Thus, all cellular factors essential for BMV RNA replication, transcription, and RNA recombination were shown to be present in Arabidopsis. The current scope of understanding of the model Arabidopsis plant system should facilitate the identification of these factors governing the BMV life cycle.
Collapse
Affiliation(s)
- Aleksandra Dzianott
- Department of Biological Sciences, Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
17
|
Sánchez F, Wang X, Jenner CE, Walsh JA, Ponz F. Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res 2003; 94:33-43. [PMID: 12837555 DOI: 10.1016/s0168-1702(03)00122-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Turnip mosaic virus (TuMV) is a member of the potyvirus genus with a wide host range and highly variable in its biological characteristics. Analysis of the CP gene sequences from databases, combined with the experimental analysis of the CP gene of further isolates, using data derived from sequence or restriction analysis, has allowed the genetic classification of 60 TuMV isolates or sequences. Two main genetic clusters MB (mostly Brassica isolates) and MR (mostly Radish isolates) were found, together with several apparently independent lineages. Isolates in the latter could be grouped as Intermediate between Brassica and Radish clusters (IBR) or outside Brassica and Radish clusters (OBR), according to their genetic distance to the main clusters. The genetic diversity of TuMV isolates deposited in the databases was increased with the sequences of the CP gene of seven selected isolates, mainly belonging to IBR or OBR groups. There was a correlation between the MR genetic cluster and JPN 1 serotype.
Collapse
Affiliation(s)
- F Sánchez
- Departamento de Biotecnología, INIA, Autopista A-6, Km 7, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
18
|
Revers F, Guiraud T, Houvenaghel MC, Mauduit T, Le Gall O, Candresse T. Multiple resistance phenotypes to Lettuce mosaic virus among Arabidopsis thaliana accessions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:608-16. [PMID: 12848426 DOI: 10.1094/mpmi.2003.16.7.608] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With the aim to characterize plant and viral factors involved in the molecular interactions between plants and potyviruses, a Lettuce mosaic virus (LMV)-Arabidopsis thaliana pathosystem was developed. Screening of Arabidopsis accessions with LMV isolates indicated the existence of a large variability in the outcome of the interaction, allowing the classification of Arabidopsis accessions into seven susceptibility groups. Using a reverse genetic approach, the genome-linked protein of LMV, a multifunctional protein shown to be involved in viral genome amplification and movement of potyviruses, was established as the viral determinant responsible for the ability to overcome the resistance of the Niederzenz accession to LMV-0. Preliminary genetic analyses from F2 and recombinant inbred lines available between susceptible and resistant Arabidopsis accessions revealed the existence of at least three resistance phenotypes to LMV with different genetic bases. One dominant resistance gene, designated LLM1, involved in blocking the replication or cell-to-cell movement of the LMV-0 isolate in the Columbia accession, was mapped to chromosome I and shown to be linked to the marker nga280. At the same time, genetic analyses of segregating F2 populations were consistent with the restriction of the systemic movement of the LMV-AF199 isolate in Columbia being controlled by two dominant genes and with the complete resistance to all tested LMV isolates of the Cape Verde islands (Cvi) accession being conferred by a single recessive resistance gene. Sequencing of the eukaryotic translation initiation factor 4E genes from the different LMV-resistant Arabidopsis accessions showed that these factors are not directly involved in the characterized resistance phenotypes.
Collapse
Affiliation(s)
- Frédéric Revers
- UMR GDPP, IBVM-INRA, BP 81, 33883 Villenave d'Ornon Cedex, France.
| | | | | | | | | | | |
Collapse
|
19
|
Walsh JA, Jenner CE. Turnip mosaic virus and the quest for durable resistance. MOLECULAR PLANT PATHOLOGY 2002; 3:289-300. [PMID: 20569337 DOI: 10.1046/j.1364-3703.2002.00132.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED Summary Taxonomy: Turnip mosaic virus (TuMV) is a member of the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. To date, TuMV is the only potyvirus known to infect brassicas. There are potyvirus isolates that appear serologically similar to TuMV when tested with polyclonal antisera that do not readily infect brassicas (Lesemann and Vetten, 1985). Physical properties: Virions are approximately 720 x 15-20 nm flexuous rods (Fig. 1) and are composed of 95% coat protein (CP) and 5% RNA. Hosts: TuMV has been isolated from a wide range of crop and weed plant species. It is known to infect at least 318 species in over 43 dicot families, including Cruciferae, Compositae, Chenopodiaceae, Leguminosae and Caryophyllaceae and is also known to infect monocots. It has the broadest known host range in terms of plant genera and families of any potyvirus. TRANSMISSION Aphid transmitted in the non-persistent manner, by at least 89 species, including Myzus persicae and Brevicoryne brassicae. Useful website: http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/57010072.htm.
Collapse
Affiliation(s)
- John A Walsh
- Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, UK
| | | |
Collapse
|
20
|
Cecchini E, Geri C, Love AJ, Coupland G, Covey SN, Milner JJ. Mutations that delay flowering in Arabidopsis de-couple symptom response from cauliflower mosaic virus accumulation during infection. MOLECULAR PLANT PATHOLOGY 2002; 3:81-90. [PMID: 20569312 DOI: 10.1046/j.1464-6722.2001.00097.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
summary The development of disease symptoms in plants infected with a compatible virus involves complex signalling interactions between host and viral gene products. Photoperiod is an important influence on the transition from vegetative growth to flowering. Symptoms in wild-type Arabidopsis plants grown under long days were much less severe than in plants grown under short days, although under long days, the levels of replicating virus were 1.5-1.8 times greater than in plants grown in short days. We tested the effects on response to CaMV infection of mutations at two of the loci that control the transition from vegetative growth to flowering, FCA and GI. In long days, CaMV-infected fca-1 mutants and strong gi alleles developed much more severe symptoms than wild-type. Despite the increased symptom severity, levels and distribution of replicating CaMV in fca-1 and gi mutants were similar to those in wild-type. In short days, both mutants and wild-type grew vegetatively. Virus accumulation and symptom developments in fca-1 were similar to the wild-type, but in strong gi alleles, symptom progression in apical leaves was very delayed, although virus accumulation was similar to the wild-type controls. The developmental state of the plants influences the symptom response; however, it does not appear to do so by directly effecting overall virus titre or distribution. The altered symptom response of gi mutants in short days suggests an additional role for GI. These mutants provide compelling evidence for the existence of specific pathways for disease signalling.
Collapse
Affiliation(s)
- Edi Cecchini
- Plant Molecular Science Group, Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | |
Collapse
|
21
|
Pereda S, Ehrenfeld N, Medina C, Delgado J, Arce-Johnson P. Comparative analysis of TMV-Cg and TMV-U1 detection methods in infected Arabidopsis thaliana. J Virol Methods 2000; 90:135-42. [PMID: 11064114 DOI: 10.1016/s0166-0934(00)00230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The common strain of the tobacco mosaic virus (TMV-U1), and the crucifer-infecting tobacco mosaic virus (TMV-Cg), both members of Tobamovirus genus, infect efficiently the solanaceous plants such as tomato and tobacco. The crucifer-infecting tobacco mosaic virus (TMV-Cg) also infects Arabidopsis thaliana plant, spreading systemically without causing severe symptoms. In contrast, Arabidopsis is a poor host for TMV-U1 infection. Within the past 10 years, Arabidopsis has developed into a powerful model system for studying plant-pathogen interaction. However, a detailed analysis comparing the accuracy of various viral detection methods has not been reported previously. Four detection methods were evaluated in A. thaliana (ecotype Po-1), infected with TMV-U1 or TMV-Cg. Western blots, enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ RNA hybridization methods were used to determine viral spread at various days post inoculation (dpi) in inoculated and apical non-inoculated leaves. The detection of viral spread of TMV-U1 and TMV-Cg in Arabidopsis, using these four detection methods, supports previous studies, which demonstrate that the systemic spreads of these two viruses differ in Arabidopsis. Western blotting and ELISA detected TMV-Cg at 5dpi, and TMV-U1 at 12 dpi in systemic tissues. Viral spread was detected earlier when using RNA detection methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) was very sensitive for detecting TMV-Cg in A. thaliana, but less sensitive for TMV-U1 detection. In situ RNA hybridization showed differential distribution of TMV-Cg and TMV-U1 in the inoculated leaf and systemic tissues.
Collapse
Affiliation(s)
- S Pereda
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|