1
|
Han L, Sun Y, Zhou X, Hao X, Wu M, Zhang X, Feng J. A novel glycoprotein from Streptomyces sp. triggers early responses of plant defense. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104719. [PMID: 33357541 DOI: 10.1016/j.pestbp.2020.104719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
GP-1, a novel glycoprotein from Streptomyces sp. ZX01 has a plant immunity-inducing effect. GP-1-treated plants exhibited enhanced systemic resistance with a significant reduction in TMV lesions on tobacco leaves, but its antiviral mechanism remains unclear. In this study, early plant defense-related responses, such as Ca2+ influx, callose apposition, oxidative burst, hypersensitive response, programmed cell death, increase in nitric oxide (NO), and stomatal closure, were investigated under GP-1 treatment, and the mechanism of how GP-1 induces viral resistance in Nicotiana benthamiana was studied. Results showed that GP-1 induced [Ca2+]cyt rapidly in tobacco leaves and suspended cells, followed by reactive oxygen species (ROS) and NO elevation. Transcriptome analysis showed significant differences in expression levels between the GP-1-treated N. benthamiana and the control and showed significantly upregulated and enriched pathways including defense and immune reaction. Similar to typical pathogen-associated molecular patterns, GP-1 induced callose deposition and stomatal closure to form defense barriers against pathogen invasion. The expression of defense-related genes further confirmed the above conclusions. By analyzing transcriptome in N. benthamiana and the contents of salicylic acid (SA) and jasmonic acid (JA), GP-1 enhanced viral resistance of tobacco by improving the SA and JA contents, strengthening plant secondary metabolites activities, promoting systemic accumulation of pathogenesis-related proteins in TMV- inoculated tobacco there by producing antiviral activity.
Collapse
Affiliation(s)
- Lirong Han
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yubo Sun
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin Zhou
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xinchang Hao
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Meng Wu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xing Zhang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Luo X, Tian T, Tan X, Zheng Y, Xie C, Xu Y, Yang X. VdNPS, a Nonribosomal Peptide Synthetase, Is Involved in Regulating Virulence in Verticillium dahliae. PHYTOPATHOLOGY 2020; 110:1398-1409. [PMID: 32228378 DOI: 10.1094/phyto-02-20-0031-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nonribosomal peptide synthetases (NPS) are known for the biosynthesis of antibiotics, toxins, and siderophore production. They are also a virulence determinant in different phytopathogens. However, until now, the functional characterization of NPS in Verticillium dahliae has not been reported. Deletion of the NPS gene in V. dahliae led to the decrease of conidia, microsclerotia, and pathogenicity. ΔVdNPS strains were tolerant to H2O2, and the genes involved in H2O2 detoxification, iron/copper transport, and cytoskeleton were differentially expressed in ΔVdNPS. Interestingly, ΔVdNPS strains exhibited hypersensitivity to salicylic acid (SA), and the genes involved in SA hydroxylation were up-regulated in ΔVdNPS compared with wild-type V. dahliae under SA stress. Additionally, during infection, ΔVdNPS induced more pathogenesis-related gene expression, higher reactive oxygen species production, and stronger SA-mediated signaling transduction in host to overcome pathogen. Uncovering the function of VdNPS in pathogenicity could provide a reliable theoretical basis for the development of cultivars with durable resistance against V. dahliae-associated diseases.
Collapse
Affiliation(s)
- Xiumei Luo
- The School of Life Science, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tian
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Xue Tan
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Yixuan Zheng
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ya Xu
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xingyong Yang
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
De Ollas C, Arbona V, Gómez-Cadenas A, Dodd IC. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2103-2116. [PMID: 29432619 PMCID: PMC6018964 DOI: 10.1093/jxb/ery045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/31/2017] [Indexed: 05/23/2023]
Abstract
To determine whether drought-induced root jasmonate [jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile)] accumulation affected shoot responses to drying soil, near-isogenic wild-type (WT) tomato (Solanum lycopersicum cv. Castlemart) and the def-1 mutant (which fails to accumulate jasmonates during water deficit) were self- and reciprocally grafted. Rootstock hydraulic conductance was entirely rootstock dependent and significantly lower in def-1, yet def-1 scions maintained a higher leaf water potential as the soil dried due to their lower stomatal conductance (gs). Stomatal sensitivity to drying soil (the slope of gsversus soil water content) was low in def-1 self-grafts but was normalized by grafting onto WT rootstocks. Although soil drying increased 12-oxo-phytodienoic acid (OPDA; a JA precursor and putative antitranspirant) concentrations in def-1 scions, foliar JA accumulation was negligible and foliar ABA accumulation reduced compared with WT scions. A WT rootstock increased drought-induced ABA and JA accumulation in def-1 scions, but decreased OPDA accumulation. Xylem-borne jasmonates were biologically active, since supplying exogenous JA via the transpiration stream to detached leaves decreased transpiration of WT seedlings but had the opposite effect in def-1. Thus foliar accumulation of both ABA and JA at WT levels is required for both maximum (well-watered) gs and stomatal sensitivity to drying soil.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Vicent Arbona
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
Yang T, Zhu LS, Meng Y, Lv R, Zhou Z, Zhu L, Lin HH, Xi DH. Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco NN by manipulating jasmonic acid-salicylic acid crosstalk. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:116-126. [PMID: 29574244 DOI: 10.1016/j.jplph.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 06/08/2023]
Abstract
Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein (RIP) with a molecular weight of 29 kDa found in plants. This protein has been shown to be effective against a broad range of human viruses and also has anti-tumor activities. However, the mechanism by which α-MMC induces plant defense responses and regulates the N gene to promote resistance to the Tobacco mosaic virus (TMV) is still not clear. By using pharmacological and infection experiments, we found that α-MMC enhances TMV resistance of tobacco plants containing the N gene (tobaccoNN). Our results showed that plants pretreated with 0.5 mg/ml α-MMC could relieve TMV-induced oxidative damage, had enhanced the expression of the N gene and increased biosynthesis of jasmonic acid (JA) and salicylic acid (SA). Moreover, transcription of JA and SA signaling pathway genes were increased, and their expression persisted for a longer period of time in plants pretreated with α-MMC compared with those pretreated with water. Importantly, exogenous application of 1-Aminobenzotriazole (ABT, SA inhibitor) and ibuprofen (JA inhibitor) reduced α-MMC induced plant resistance under viral infection. Thus, our results revealed that α-MMC enhances TMV resistance of tobaccoNN plants by manipulating JA-SA crosstalk.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Li-Sha Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yao Meng
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, China
| | - Rui Lv
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhuo Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lin Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - De-Hui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Oka K, Kobayashi M, Mitsuhara I, Seo S. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. PLANT & CELL PHYSIOLOGY 2013; 54:1999-2010. [PMID: 24071744 DOI: 10.1093/pcp/pct137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nicotiana tabacum (tobacco) cultivars possessing the N resistance gene to Tobacco mosaic virus (TMV) induce a hypersensitive response, which is accompanied by the production of phytohormones such as salicylic acid (SA) and jasmonic acid (JA), to enclose the invaded virus at the initial site of infection, which inhibits viral multiplication and spread. SA functions as a positive regulator of TMV resistance. However, the role of JA in TMV resistance has not been fully elucidated. Exogenously applied methyl jasmonate, a methyl ester of JA, reduced local resistance to TMV and permitted systemic viral movement. Furthermore, in contrast to a previous finding, we demonstrated that silencing of CORONATINE-INSENSITIVE 1 (COI1), a JA receptor, reduced viral accumulation in a tobacco cultivar possessing the N gene, as did that of allene oxide synthase, a JA biosynthetic enzyme. The reduction in viral accumulation in COI1-silenced tobacco plants was correlated with an increase in SA, and lowering SA levels by introducing an SA hydroxylase gene attenuated this reduction. Viral susceptibility did not change in a COI1-silenced tobacco cultivar lacking the N gene. These results suggest that JA signaling is not directly responsible for susceptibility to TMV, but is indirectly responsible for viral resistance through the partial inhibition of SA-mediated resistance conferred by the N gene, and that a balance between endogenous JA and SA levels is important for determining the degree of resistance.
Collapse
Affiliation(s)
- Kumiko Oka
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | |
Collapse
|
6
|
Kobayashi M, Seo S, Hirai K, Yamamoto-Katou A, Katou S, Seto H, Meshi T, Mitsuhara I, Ohashi Y. Silencing of WIPK and SIPK mitogen-activated protein kinases reduces tobacco mosaic virus accumulation but permits systemic viral movement in tobacco possessing the N resistance gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1032-41. [PMID: 20615114 DOI: 10.1094/mpmi-23-8-1032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infection of tobacco cultivars possessing the N resistance gene with Tobacco mosaic virus (TMV) results in confinement of the virus by necrotic lesions at the infection site. Although the mitogen-activated protein kinases WIPK and SIPK have been implicated in TMV resistance, evidence linking them directly to disease resistance is, as yet, insufficient. Viral multiplication was reduced slightly in WIPK- or SIPK-silenced plants but substantially in WIPK/SIPK-silenced plants, and was correlated with an increase in salicylic acid (SA) and a decrease in jasmonic acid (JA). Silencing of WIPK and SIPK in a tobacco cultivar lacking the N gene did not inhibit viral accumulation. The reduction in viral accumulation was attenuated by expressing a gene for an SA-degrading enzyme or by exogenously applying JA. Inoculation of lower leaves resulted in the systemic spread of TMV and formation of necrotic lesions in uninoculated upper leaves. These results suggested that WIPK and SIPK function to negatively regulate local resistance to TMV accumulation, partially through modulating accumulation of SA and JA in an N-dependent manner, but positively regulate systemic resistance.
Collapse
Affiliation(s)
- Michie Kobayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y. Phytoalexin accumulation in the interaction between rice and the blast fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1000-11. [PMID: 20615111 DOI: 10.1094/mpmi-23-8-1000] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast fungus-induced accumulations of major rice diterpene phytoalexins (PA), momilactones A and B, and phytocassanes A through E were studied, focusing on their biosynthesis and detoxification. In resistant rice, all PA started to accumulate at 2 days postinoculation (dpi), at which hypersensitive reaction (HR)-specific small lesions became visible and increased 500- to 1,000-fold at 4 dpi, while the accumulation was delayed and several times lower in susceptible rice. Expression of PA biosynthetic genes was transiently induced at 2 dpi only in resistant plants, while it was highly induced in both plants at 4 dpi. Fungal growth was severely suppressed in resistant plants by 2 dpi but considerably increased at 3 to 4 dpi in susceptible plants. Momilactone A treatment suppressed fungal growth in planta and in vitro, and the fungus detoxified the PA in vitro. These results indicate that HR-associated rapid PA biosynthesis induces severe restriction of fungus, allowing higher PA accumulation in resistant rice, while in susceptible rice, failure of PA accumulation at the early infection stage allows fungal growth. Detoxification of PA would be a tactic of fungus to invade the host plant, and prompt induction of PA biosynthesis upon HR would be a trait of resistant rice to restrict blast fungus.
Collapse
|
8
|
|
9
|
Cai S, Lashbrook CC. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. PLANT PHYSIOLOGY 2008; 146:1305-21. [PMID: 18192438 PMCID: PMC2259061 DOI: 10.1104/pp.107.110908] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed.
Collapse
Affiliation(s)
- Suqin Cai
- Department of Horticulture, Iowa State University, Ames, IA 50011-1100, USA
| | | |
Collapse
|
10
|
Takabatake R, Ando Y, Seo S, Katou S, Tsuda S, Ohashi Y, Mitsuhara I. MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. PLANT & CELL PHYSIOLOGY 2007; 48:498-510. [PMID: 17289794 DOI: 10.1093/pcp/pcm021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although the involvement of heat shock protein 90 (HSP90), mitogen-activated protein kinase (MAPK) cascades and organelle dysfunction in plant hypersensitive cell death has been suggested, the mutual relationship among them has not been elucidated. Here, we show the molecular network of HSP90, the wound-induced protein kinase (WIPK)/salicylic acid-induced protein kinase (SIPK)-mediated MAPK cascade and mitochondrial dysfunction in tobacco mosaic virus (TMV) resistance gene N-dependent cell death. p50, the Avr component for N, NtMEK2(DD), a constitutively active form of a MAPK kinase of WIPK/SIPK, and a mammalian pro-apoptotic factor Bax were used for cell death induction. Suppression of HSP90 and treatment with geldanamycin, a specific inhibitor of HSP90, compromised p50- but not NtMEK2(DD)- or Bax-mediated cell death accompanying the reduction of NtMEK2, WIPK and SIPK activation. In WIPK/SIPK-double knockdown plants, p50- and NtMEK2(DD)- but not Bax-mediated cell death was suppressed. All three types of cell death induced mitochondrial dysfunction, but they were similarly suppressed by Bcl-xL, which is a mammalian anti-apoptotic factor, and prevents mitochondrial dysfunction in plants as it does in animals in the cell death signal pathway. Taken together with the expression profile of hypersensitive reaction marker genes, it was indicated that the MAPK cascade functions downstream of HSP90 and transduces the cell death signal to mitochondria for N gene-dependent cell death. Furthermore, we found that WIPK and SIPK are functionally redundant in cell death signaling using WIPK/SIPK single or double knockdown plants.
Collapse
Affiliation(s)
- Reona Takabatake
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Gális I, Simek P, Narisawa T, Sasaki M, Horiguchi T, Fukuda H, Matsuoka K. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:573-92. [PMID: 16640595 DOI: 10.1111/j.1365-313x.2006.02719.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Target metabolic and large-scale transcriptomic analyses of tobacco (Nicotiana tabacum L.) Bright Yellow-2 (BY-2) cells were employed to identify novel gene(s) involved in methyl jasmonate (MJ)-dependent function in plants. At the metabolic level, we describe the specific accumulation of several phenylpropanoid-polyamine conjugates in MJ-treated BY-2 cells. Furthermore, global gene expression analysis of MJ-treated cells using a 16K cDNA microarray containing expressed sequence tags (ESTs) from BY-2 cells revealed 828 genes that were upregulated by MJ treatment within 48 h. Using time-course expression data we identified a novel MJ-inducible R2R3 MYB-type transcription factor (NtMYBJS1) that was co-expressed in a close temporal pattern with the core phenylpropanoid genes phenylalanine ammonia-lyase (PAL) and 4-coumarate:CoA ligase (4CL). Overexpression of NtMYBJS1 in tobacco BY-2 cells caused accumulation of specific phenylpropanoid conjugates in the cells. Subsequent microarray analysis of NtMYBJS1 transgenic lines revealed that a limited number of genes, including PAL and 4CL, were specifically induced in the presence of the NtMYBJS1 transgene. These results, together with results of both antisense expression analysis and of gel mobility shift assays, strongly indicate that the NtMYBJS1 protein functions in tobacco MJ signal transduction, inducing phenylpropanoid biosynthetic genes and the accumulation of phenylpropanoid-polyamine conjugates during stress.
Collapse
Affiliation(s)
- Ivan Gális
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku,Yokohama 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Takabatake R, Seo S, Mitsuhara I, Tsuda S, Ohashi Y. Accumulation of the two transcripts of the N gene, conferring resistance to tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. PLANT & CELL PHYSIOLOGY 2006; 47:254-61. [PMID: 16361321 DOI: 10.1093/pcp/pci243] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The N gene is a Toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR)-type resistance (R) gene that generates two alternative transcripts, N(S) and N(L). N(S) encodes the full-length N protein while N(L) is predicted to encode a truncated form of the protein lacking most of the LRR region. We found that the two transcripts were accumulated at 20 degrees C, a permissive temperature, but not at 30 degrees C, a non-permissive temperature for the N gene, in tobacco mosaic virus (TMV)-inoculated leaves. When N gene-dependent cell death was triggered by transient 20 degrees C treatment for 2-6 h, considerable levels of the transcripts were accumulated just before cell death, although the levels of N(S) were always higher. The accumulation was induced by transient expression of the 50 kDa helicase domain (p50) of TMV replicase which is the Avr component of N, but not by transient expression of NtMEK2 (DD)-mediated cell death or N gene-independent hypersensitive cell death. These results suggest that the accumulation of N(S) and N(L) is associated with the function of N and, above a certain threshold, triggers N-mediated hypersensitive cell death.
Collapse
Affiliation(s)
- Reona Takabatake
- National Institute of Agrobiological Sciences (NIAS), Kannon-dai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | | | |
Collapse
|
13
|
Park CJ, Shin YC, Lee BJ, Kim KJ, Kim JK, Paek KH. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. PLANTA 2006; 223:168-79. [PMID: 16344945 DOI: 10.1007/s00425-005-0067-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/13/2005] [Indexed: 05/05/2023]
Abstract
Plant WRKY transcription factors were previously implicated in the alteration of gene expression in response to various pathogens. The WRKY proteins constitute a large family of plant transcription factors, whose precise functions have yet to be elucidated. Using a domain-specific differential display procedure, we isolated a WRKY gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) or Xanthomonas campestris pv . vesicatoria (Xcv). The full-length cDNA of CaWRKY-a (Capsicum annuum WRKY-a) encodes a putative polypeptide of 546 amino acids, containing two WRKY domains with a zinc finger motif. The expression of CaWRKY-a could be rapidly induced by not only chemical elicitor such as salicylic acid (SA) or ethephon but also wounding treatments. The nuclear localization of CaWRKY-a was determined in transient expression system using tobacco BY-2 cells by polyethylene glycol (PEG)-mediated transformation experiment. With oligonucleotide molecules containing the putative W-box sequences as a probe, we confirmed that CaWRKY-a protein had W-box-binding activity. These results suggest that CaWRKY-a might be involved as a transcription factor in plant defense-related signal transduction pathways.
Collapse
Affiliation(s)
- Chang-Jin Park
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:135-62. [PMID: 16602946 DOI: 10.1146/annurev.phyto.44.070505.143425] [Citation(s) in RCA: 1666] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
Collapse
Affiliation(s)
- L C van Loon
- Phytopathology, Institute of Environmental Biology, Science Faculty, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
15
|
Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y. Ten Rice Peroxidases Redundantly Respond to Multiple Stresses Including Infection with Rice Blast Fungus. ACTA ACUST UNITED AC 2004; 45:1442-52. [PMID: 15564528 DOI: 10.1093/pcp/pch165] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Class III plant peroxidases are believed to function in diverse physiological processes including disease resistance and wound response, but predicted low substrate specificities and the presence of 70 or more isoforms have made it difficult to define a specific physiological function(s) for each gene. To select pathogen-responsive POX genes, we analyzed the expression profiles of 22 rice POX genes after infection with rice blast fungus. The expression of 10 POX genes among the 22 genes was induced after fungal inoculation in both compatible and incompatible hosts. Seven of the 10 POX genes were expressed at higher levels in the incompatible host than in the compatible host 6-24 h after inoculation by which time no fungus-induced lesions have appeared. Organ-specific expression and stress-induced expression by wounding and treatment with probenazole, an agrichemical against blast fungus, jasmonic acid, salicylic acid and 1-aminocyclopropane-1-carboxylate, a precursor of ethylene, indicated that rice POXs have individual characteristics and can be classified into several types. A comparison of the amino acid sequences of POXs showed that multiple isoforms with a high sequence similarity respond to stress in different or similar ways. Such redundant responses of POX genes may guarantee POX activities that are necessary for self-defense in plant tissues against environmental stresses including pathogen infection.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Department of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Schiff M, Dinesh-Kumar SP. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:800-9. [PMID: 15144381 DOI: 10.1111/j.1365-313x.2004.02085.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tobacco N gene, a member of the Toll-interleukin 1 homology region/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class of resistance (R) genes, confers resistance to tobacco mosaic virus (TMV). We used a candidate gene approach to identify known defense genes that were also involved in N signaling. The requirement for these genes was determined by downregulating their expression using the well-established tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). Silencing of genes encoding a mitogen-activated protein kinase (MAPK) NTF6/NRK1, or an MAPK kinase (MAPKK) MEK1/NQK1, attenuated N-mediated resistance to TMV. We also found that N resistance is compromised in plants in which expression of WRKY1-WRKY3 and MYB1 transcription factors were downregulated. In addition, suppression of jasmonic acid (JA) signaling component COI1 ortholog affected N function. However, downregulation of expression of CTR1 ortholog leads to more rapid hypersensitive response (HR). The involvement of these genes in N- and other R-gene-mediated defense provides further evidence for the convergence of downstream signaling pathways of different R genes.
Collapse
Affiliation(s)
- Yule Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
17
|
Ito N, Takabatake R, Seo S, Hiraga S, Mitsuhara I, Ohashi Y. Induced expression of a temperature-sensitive leucine-rich repeat receptor-like protein kinase gene by hypersensitive cell death and wounding in tobacco plant carrying the N resistance gene. PLANT & CELL PHYSIOLOGY 2002; 43:266-74. [PMID: 11917080 DOI: 10.1093/pcp/pcf031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A gene encoding a receptor-like protein kinase was isolated as the gene induced in the early period of N gene-dependent hypersensitive cell death in tobacco leaves. The kinase domain expressed as a glutathione S-transferase fusion protein was capable of autophosphorylation, indicating that this gene encodes an active protein kinase. A high level of the transcript accumulated before necrotic lesion formation in tobacco mosaic virus (TMV)-inoculated tobacco leaves carrying the N gene but it was low in a tobacco cultivar lacking the N gene. A small but reproducible increase in the transcript was found 1-2 h after a temperature shift from 30 degrees C to 20 degrees C even in healthy leaves, suggesting the gene expression is temperature sensitive. The gene was named WRK for wound-induced receptor-like protein kinase, because the transcript increased to a maximum within 15-30 min of wounding. In suspension cultured tobacco cells, an increase in the transcript was found 15 min after transfer to a new medium, but it was suppressed under high osmotic pressures. The wound-induced WRK accumulation was enhanced by cycloheximide treatment, but not by known defense signal compounds (salicylic acid, jasmonic acid, 1-aminocyclopropan-1-carboxylic acid and abscisic acid) and some plant hormones. Thus, WRK is a wound-inducible and temperature-sensitive protein kinase gene induced before hypersensitive cell death probably through unknown signaling pathways.
Collapse
Affiliation(s)
- Naoko Ito
- Core Research of Evolutionary Science and Technology, 2-3 Surugadai, Kannda, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Gapper NE, Norris GE, Clarke SF, Lill RE, Jameson PE. Novel jasmonate amino acid conjugates in Asparagus officinalis during harvest-induced and natural foliar senescence. PHYSIOLOGIA PLANTARUM 2002; 114:116-124. [PMID: 11982942 DOI: 10.1034/j.1399-3054.2002.1140116.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five jasmonates, including novel tryptophan conjugates of jasmonic acid and dihydrojasmonic acid, were identified in extracts from spears of Asparagus officinalis L. by electrospray tandem mass spectrometry. Spears were harvested and were held dry or with bases immersed in water. The concentrations of jasmonic acid, dihydrojasmonic acid, their tryptophan conjugates, cucurbic acid and methyl jasmonate, were measured by ELISA in spears in the 10 d following harvest. A transient increase that occurred in all spear tips immediately following harvest in the concentration of jasmonates can be attributed to a wounding response. A second increase in the concentration of jasmonates occurred from 7 d after harvest but only in dry-treated spear tips indicating that jasmonates may have accumulated in response to water stress. Jasmonate levels were also monitored during natural foliar senescence. Increased levels of jasmonates occurred after the onset of senescence, implicating them as a consequence rather than a cause of senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand New Zealand Institute for Crop & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand Division of Retrovirology, NIBSC, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | | | | | | | | |
Collapse
|