1
|
De La Fuente L, Navas-Cortés JA, Landa BB. Ten Challenges to Understanding and Managing the Insect-Transmitted, Xylem-Limited Bacterial Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:869-884. [PMID: 38557216 DOI: 10.1094/phyto-12-23-0476-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Juan A Navas-Cortés
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Blanca B Landa
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
2
|
Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains. Appl Environ Microbiol 2023; 89:e0187322. [PMID: 36598481 PMCID: PMC9888226 DOI: 10.1128/aem.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.
Collapse
|
3
|
Castro C, DiSalvo B, Roper MC. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog 2021; 17:e1009813. [PMID: 34499674 PMCID: PMC8428566 DOI: 10.1371/journal.ppat.1009813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - M. Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| |
Collapse
|
4
|
Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS One 2020; 15:e0240101. [PMID: 33007036 PMCID: PMC7531785 DOI: 10.1371/journal.pone.0240101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial phytopathogen Xylella fastidiosa specifically colonizes the plant vascular tissue through a complex process of cell adhesion, biofilm formation, and dispersive movement. Adaptation to the chemical environment of the xylem is essential for bacterial growth and progression of infection. Grapevine xylem sap contains a range of plant secondary metabolites such as phenolics, which fluctuate in response to pathogen infection and plant physiological state. Phenolic compounds are often involved in host-pathogen interactions and influence infection dynamics through signaling activity, antimicrobial properties, and alteration of bacterial phenotypes. The effect of biologically relevant concentrations of phenolic compounds coumaric acid, gallic acid, epicatechin, and resveratrol on growth of X. fastidiosa was assessed in vitro. None of these compounds inhibited bacterial growth, but epicatechin and gallic acid reduced cell-surface adhesion. Cell-cell aggregation decreased with resveratrol treatment, but the other phenolic compounds tested had minimal effect on aggregation. Expression of attachment (xadA) and aggregation (fimA) related genes were altered by presence of the phenolic compounds, consistent with observed phenotypes. All four of the phenolic compounds bound to purified X. fastidiosa lipopolysaccharide (LPS), a major cell-surface component. Information regarding the impact of chemical environment on pathogen colonization in plants is important for understanding the infection process and factors associated with host susceptibility.
Collapse
|
5
|
Rapicavoli JN, Blanco-Ulate B, Muszyński A, Figueroa-Balderas R, Morales-Cruz A, Azadi P, Dobruchowska JM, Castro C, Cantu D, Roper MC. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nat Commun 2018; 9:390. [PMID: 29374171 PMCID: PMC5786101 DOI: 10.1038/s41467-018-02861-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Collapse
Affiliation(s)
- Jeannette N Rapicavoli
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Burbank LP, Van Horn CR. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions. J Bacteriol 2017; 199:e00388-17. [PMID: 28808128 PMCID: PMC5626953 DOI: 10.1128/jb.00388-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022] Open
Abstract
The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts.IMPORTANCEXylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen.
Collapse
Affiliation(s)
- Lindsey P Burbank
- U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| | - Christopher R Van Horn
- U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| |
Collapse
|
7
|
Wang P, Lee Y, Igo MM, Roper MC. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa. MOLECULAR PLANT PATHOLOGY 2017; 18:990-1000. [PMID: 27377476 PMCID: PMC6638236 DOI: 10.1111/mpp.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 05/07/2023]
Abstract
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2 O2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA92521USA
| | - Yunho Lee
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - Michele M. Igo
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - M. Caroline Roper
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA92521USA
| |
Collapse
|
8
|
Burbank LP, Stenger DC. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine. PHYTOPATHOLOGY 2017; 107:388-394. [PMID: 27938243 DOI: 10.1094/phyto-10-16-0374-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| |
Collapse
|
9
|
Burbank LP, Stenger DC. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection. PHYTOPATHOLOGY 2016; 106:928-936. [PMID: 27088393 DOI: 10.1094/phyto-02-16-0097-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757
| |
Collapse
|
10
|
Burbank LP, Stenger DC. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:335-344. [PMID: 26808446 DOI: 10.1094/mpmi-11-15-0260-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Collapse
Affiliation(s)
- Lindsey P Burbank
- Agricultural Research Service, United States Department of Agriculture, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648-9757, U.S.A
| | - Drake C Stenger
- Agricultural Research Service, United States Department of Agriculture, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648-9757, U.S.A
| |
Collapse
|
11
|
O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa. Appl Environ Microbiol 2015; 81:8145-54. [PMID: 26386068 DOI: 10.1128/aem.02383-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen.
Collapse
|
12
|
Zhang S, Chakrabarty PK, Fleites LA, Rayside PA, Hopkins DL, Gabriel DW. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1. PLoS One 2015; 10:e0133796. [PMID: 26218423 PMCID: PMC4517913 DOI: 10.1371/journal.pone.0133796] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.
Collapse
Affiliation(s)
- Shujian Zhang
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Pranjib K. Chakrabarty
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Laura A. Fleites
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Patricia A. Rayside
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Donald L. Hopkins
- Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, United States of America
| | - Dean W. Gabriel
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
13
|
Johnson KL, Cursino L, Athinuwat D, Burr TJ, Mowery P. Potential complications when developing gene deletion clones in Xylella fastidiosa. BMC Res Notes 2015; 8:155. [PMID: 25880211 PMCID: PMC4403849 DOI: 10.1186/s13104-015-1117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce′s disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Methods Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. Results We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. Conclusions We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Collapse
Affiliation(s)
- Kameka L Johnson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Luciana Cursino
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA. .,Current address: Major of Organic Farming Management, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand.
| | - Thomas J Burr
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| |
Collapse
|
14
|
Cursino L, Athinuwat D, Patel KR, Galvani CD, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease. PLoS One 2015; 10:e0121851. [PMID: 25811864 PMCID: PMC4374697 DOI: 10.1371/journal.pone.0121851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Kelly R. Patel
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Cheryl D. Galvani
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Paulo A. Zaini
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Yaxin Li
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Leonardo De La Fuente
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Pierce BK, Voegel T, Kirkpatrick BC. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles. PLoS One 2014; 9:e113504. [PMID: 25426629 PMCID: PMC4245136 DOI: 10.1371/journal.pone.0113504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.
Collapse
Affiliation(s)
- Brittany K. Pierce
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Tanja Voegel
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Bruce C. Kirkpatrick
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:676-85. [PMID: 23441576 DOI: 10.1094/mpmi-12-12-0283-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.
Collapse
Affiliation(s)
- Jennifer C Clifford
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
17
|
Voegel TM, Doddapaneni H, Cheng DW, Lin H, Stenger DC, Kirkpatrick BC, Roper MC. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa. MOLECULAR PLANT PATHOLOGY 2013; 14:256-264. [PMID: 23186359 PMCID: PMC6638743 DOI: 10.1111/mpp.12004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins.
Collapse
Affiliation(s)
- Tanja M Voegel
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Matsumoto A, Huston SL, Killiny N, Igo MM. XatA, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1. Microbiologyopen 2012; 1:33-45. [PMID: 22950010 PMCID: PMC3426408 DOI: 10.1002/mbo3.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/07/2022] Open
Abstract
Xylella fastidiosa Temecula1 is the causative agent of Pierce's disease of grapevine, which is spread by xylem-feeding insects. An important feature of the infection cycle is the ability of X. fastidiosa to colonize and interact with two distinct environments, the xylem of susceptible plants and the insect foregut. Here, we describe our characterization of XatA, the X. fastidiosa autotransporter protein encoded by PD0528. XatA, which is classified as an AT-1 (classical) autotransporter, has a C-terminal β-barrel domain and a passenger domain composed of six tandem repeats of approximately 50 amino acids. Localization studies indicate that XatA is present in both the outer membrane and membrane vesicles and its passenger domain can be found in the supernatant. Moreover, XatA is important for X. fastidiosa autoaggregation and biofilm formation based on mutational analysis and the discovery that Escherichia coli expressing XatA acquire these traits. The xatA mutant also shows a significant decrease in Pierce's disease symptoms when inoculated into grapevines. Finally, X. fastidiosa homologs to XatA, which can be divided into three distinct groups based on synteny, form a single, well-supported clade, suggesting that they arose from a common ancestor.
Collapse
|
19
|
Rott P, Fleites L, Marlow G, Royer M, Gabriel DW. Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:594-605. [PMID: 21190440 DOI: 10.1094/mpmi-07-10-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Xanthomonas albilineans is a xylem-invading pathogen that produces the toxin albicidin that blocks chloroplast differentiation, resulting in disease symptoms of sugarcane leaf scald. In contrast to other xanthomonads, X. albilineans does not possess a hypersensitive response and pathogenicity type III secretion system and does not produce xanthan gum. Albicidin is the only previously known pathogenicity factor in X. albilineans, yet albicidin-deficient mutant strains are still able to efficiently colonize sugarcane. To identify additional host adaptation or pathogenicity factors, sugarcane 'CP80-1743' was inoculated with 1,216 independently derived Tn5 insertions in X. albilineans XaFL07-1 from Florida. Sixty-one Tn5 mutants were affected in development of leaf symptoms or in stalk colonization. The Tn5 insertion sites of these mutants were determined and the interrupted genes were identified using the recently available genomic DNA sequence of X. albilineans GPE PC73 from Guadeloupe. Several pathogenicity-related loci that were not previously reported in Xanthomonas spp. were identified, including loci encoding hypothetical proteins, a membrane fusion protein conferring resistance to novobiocin, transport proteins, TonB-dependent outer-membrane transporters, and an OmpA family outer-membrane protein.
Collapse
Affiliation(s)
- Philippe Rott
- UMR BGPI, CIRAD, TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
20
|
Matsumoto A, Igo MM. Species-specific type II restriction-modification system of Xylella fastidiosa temecula1. Appl Environ Microbiol 2010; 76:4092-5. [PMID: 20418439 PMCID: PMC2893502 DOI: 10.1128/aem.03034-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/19/2010] [Indexed: 11/20/2022] Open
Abstract
The transformation efficiency of Xylella fastidiosa can be increased by interfering with restriction by the strain-specific type II system encoded by the PD1607 and PD1608 genes. Here, we report results for two strategies: in vitro methylation using M.SssI and isolation of DNA from an Escherichia coli strain expressing the methylase PD1607.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Microbiology, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Michele M. Igo
- Department of Microbiology, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
21
|
Voegel TM, Warren JG, Matsumoto A, Igo MM, Kirkpatrick BC. Localization and characterization of Xylella fastidiosa haemagglutinin adhesins. MICROBIOLOGY-SGM 2010; 156:2172-2179. [PMID: 20378647 DOI: 10.1099/mic.0.037564-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Xylella fastidiosa is a gram-negative, xylem-inhabiting, plant-pathogenic bacterium responsible for several important diseases including Pierce's disease (PD) of grapevines. The bacteria form biofilms in grapevine xylem that contribute to the occlusion of the xylem vessels. X. fastidiosa haemagglutinin (HA) proteins are large afimbrial adhesins that have been shown to be crucial for biofilm formation. Little is known about the mechanism of X. fastidiosa HA-mediated cell-cell aggregation or the localization of the adhesins on the cell. We generated anti-HA antibodies and show that X. fastidiosa HAs are present in the outer membrane and secreted both as soluble proteins and in membrane vesicles. Furthermore, the HA pre-proteins are processed from the predicted molecular mass of 360 kDa to a mature 220 kDa protein. Based on this information, we are evaluating a novel form of potential resistance against PD by generating HA-expressing transgenic grapevines.
Collapse
Affiliation(s)
- Tanja M Voegel
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
- Center for Applied Biosciences, University of Freiburg, Germany
| | - Jeremy G Warren
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| | - Ayumi Matsumoto
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Michele M Igo
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Bruce C Kirkpatrick
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| |
Collapse
|
22
|
Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol 2009; 60:53-8. [PMID: 19813054 PMCID: PMC2796966 DOI: 10.1007/s00284-009-9501-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/28/2009] [Indexed: 12/02/2022]
Abstract
Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiting X. fastidiosa growth, as indicated by low minimum inhibitory concentrations (MICs). In addition, phenolic compounds with different structural features exhibited different anti-Xylella capacities. Particularly, catechol, caffeic acid and resveratrol showed strong anti-Xylella activities. Differential response to phenolic compounds was observed among X. fastidiosa strains isolated from grape and almond. Elucidation of secondary metabolite-based host resistance to X. fastidiosa will have broad implication in combating X. fastidiosa-caused plant diseases. It will facilitate future production of plants with improved disease resistance properties through genetic engineering or traditional breeding approaches and will significantly improve crop yield.
Collapse
Affiliation(s)
- Christina E Maddox
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
23
|
Cursino L, Li Y, Zaini PA, De La Fuente L, Hoch HC, Burr TJ. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 2009; 299:193-9. [PMID: 19735464 DOI: 10.1111/j.1574-6968.2009.01747.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | |
Collapse
|
24
|
Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA. Appl Environ Microbiol 2009; 75:2275-83. [PMID: 19218414 PMCID: PMC2675201 DOI: 10.1128/aem.01964-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.
Collapse
Affiliation(s)
- Xiang Yang Shi
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
25
|
Matsumoto A, Young GM, Igo MM. Chromosome-based genetic complementation system for Xylella fastidiosa. Appl Environ Microbiol 2009; 75:1679-87. [PMID: 19151176 PMCID: PMC2655483 DOI: 10.1128/aem.00024-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/08/2009] [Indexed: 12/18/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Microbiology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
26
|
Spinler JK, Zajdowicz SLW, Haller JC, Oram DM, Gill RE, Holmes RK. Development and use of a selectable, broad-host-range reporter transposon for identifying environmentally regulated promoters in bacteria. FEMS Microbiol Lett 2009; 291:143-50. [PMID: 19146571 DOI: 10.1111/j.1574-6968.2008.01430.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This report describes the development and use of TnKnXSp, a selectable broad-host-range reporter transposon with a promoterless aphA gene. Insertion of TnKnXSp into the chromosome of a kanamycin-susceptible bacterium confers resistance to kanamycin only if aphA is transcribed from an active promoter adjacent to the insertion site. We designed TnKnXSp as a tool for identifying environmentally regulated promoters in bacteria and developed general methods for initial characterization of any TnKnXSp integrant. To identify putative iron-regulated promoters in Corynebacterium diphtheriae, we constructed TnKnXSp integrants and identified a subgroup that expressed kanamycin resistance under low-iron, but not high-iron, conditions. We characterized representative integrants with this phenotype, located the TnKnXSp insertion in each, and demonstrated that transcription of aphA was repressed under high-iron vs. low-iron growth conditions. We also demonstrated that TnKnXSp can be used in bacteria other than C. diphtheriae, including Escherichia coli and Bacillus subtilis. Our findings validate TnKnXSp as a useful tool for identifying environmentally regulated promoters in bacteria.
Collapse
Affiliation(s)
- Jennifer K Spinler
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
27
|
De La Fuente L, Burr TJ, Hoch HC. Autoaggregation of Xylella fastidiosa cells is influenced by type I and type IV pili. Appl Environ Microbiol 2008; 74:5579-82. [PMID: 18641157 PMCID: PMC2546647 DOI: 10.1128/aem.00995-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/02/2008] [Indexed: 11/20/2022] Open
Abstract
Autoaggregation of widely dispersed Xylella fastidiosa cells into compact cell masses occurred over a period of hours following 7 to 11 days of growth in microfluidic chambers. Studies involving the use of mutants defective in polarly positioned type I (fimA-negative), type IV (pilB-negative), or both type I and IV (fimA- and pilO-negative) pili revealed the importance and role of pili in the autoaggregation process.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University-New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | |
Collapse
|
28
|
Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant. Arch Microbiol 2007; 189:397-405. [DOI: 10.1007/s00203-007-0330-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/19/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
|
29
|
Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by algU. Appl Environ Microbiol 2007; 73:6748-56. [PMID: 17827317 PMCID: PMC2074953 DOI: 10.1128/aem.01232-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.
Collapse
Affiliation(s)
- Xiang Yang Shi
- Department of Plant Pathology and Microbiology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
30
|
Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1222-30. [PMID: 17918624 DOI: 10.1094/mpmi-20-10-1222] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.
Collapse
Affiliation(s)
- Luciano A Rigano
- Fundación Pablo Cassará, Centro de Ciencia y Tecnología Dr. Cesar Milstein, Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li Y, Hao G, Galvani CD, Meng Y, Fuente LDL, Hoch HC, Burr TJ. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. MICROBIOLOGY-SGM 2007; 153:719-726. [PMID: 17322192 DOI: 10.1099/mic.0.2006/002311-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa, an important phytopathogenic bacterium, causes serious plant diseases including Pierce's disease of grapevine. It is reported here that type I and type IV pili of X. fastidiosa play different roles in twitching motility, biofilm formation and cell-cell aggregation. Type I pili are particularly important for biofilm formation and aggregation, whereas type IV pili are essential for motility, and also function in biofilm formation. Thirty twitching-defective mutants were generated with an EZ : : TN transposome system, and several type-IV-pilus-associated genes were identified, including fimT, pilX, pilY1, pilO and pilR. Mutations in fimT, pilX, pilO or pilR resulted in a twitch-minus phenotype, whereas the pilY1 mutant was twitching reduced. A mutation in fimA resulted in a biofilm-defective and twitching-enhanced phenotype. A fimA/pilO double mutant was twitch minus, and produced almost no visible biofilm. Transmission electron microscopy revealed that the pili, when present, were localized to one pole of the cell. Both type I and type IV pili were present in the wild-type isolate and the pilY1 mutant, whereas only type I pili were present in the twitch-minus mutants. The fimA mutant produced no type I pili. The fimA/pilO double mutant produced neither type I nor type IV pili.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Guixia Hao
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Cheryl D Galvani
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Yizhi Meng
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Leonardo De La Fuente
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - H C Hoch
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Thomas J Burr
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
32
|
Li Q, Xiao X, Wang F. Screening of genes involved in chitinase production in Aeromonas caviae CB101 via transposon mutagenesis. J Appl Microbiol 2007; 102:640-9. [PMID: 17309612 DOI: 10.1111/j.1365-2672.2006.03132.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS To find genes involved in chitinase production in chitinolytic bacterium Aeromonas caviae CB101. METHODS AND RESULTS By transposome mutagenesis, a high-quality mutant library containing around 20,000 insertion mutants was constructed in A. caviae CB101. Mutants with higher, lower and delayed chitinase-producing abilities were identified and analysed further. Genomic sequences flanking the insertion sites of these mutants were amplified by thermal asymmetric interlaced-PCR, cloned and sequenced. The mutated genes involved in chitinase production and/or secretion in CB101 include (i) nagA and nagB gene homologues that are related to the metabolism of the chitin digestion product GlcNAc; (ii) ftsX and exeL gene homologues that are related to transport or secretion systems; (iii) varA and rpoH gene homologues that are related to transcriptional regulator sequences; (iv) other genes with unknown functions. CONCLUSIONS Transposome mutagenesis is an efficient method to identify genes involved in the chitinase production in CB101. Chitinase production in CB101 is a complex system, and genes with various functions were identified in this study. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding regulation of chitinase production in CB101 would make molecular engineering of the bacterium for higher enzyme production possible.
Collapse
Affiliation(s)
- Q Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | | | |
Collapse
|
33
|
De La Fuente L, Burr TJ, Hoch HC. Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 2007; 189:7507-10. [PMID: 17693510 PMCID: PMC2168456 DOI: 10.1128/jb.00934-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) microm min(-1). A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] microm min(-1)) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] microm min(-1)) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Plant Pathology, Cornell University New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | |
Collapse
|
34
|
De La Fuente L, Montanes E, Meng Y, Li Y, Burr TJ, Hoch HC, Wu M. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 2007; 73:2690-6. [PMID: 17293518 PMCID: PMC1855618 DOI: 10.1128/aem.02649-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/26/2007] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa, a bacterium responsible for Pierce's disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 +/- 11 pN. Mutant cells possessing only type I pili required a force of 204 +/- 22 pN for removal, whereas cells possessing only type IV pili required 119 +/- 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:411-9. [PMID: 17427811 DOI: 10.1094/mpmi-20-4-0411] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.
Collapse
Affiliation(s)
- M Caroline Roper
- Department of Plant Pathology, University of California, Davis. Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
36
|
Reddy JD, Reddy SL, Hopkins DL, Gabriel DW. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:403-10. [PMID: 17427810 DOI: 10.1094/mpmi-20-4-0403] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.
Collapse
Affiliation(s)
- Joseph D Reddy
- Department of Plant Pathology, University of Florida, Gainesville 32601, USA
| | | | | | | |
Collapse
|
37
|
Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 2005; 187:5560-7. [PMID: 16077100 PMCID: PMC1196070 DOI: 10.1128/jb.187.16.5560-5567.2005] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plant's vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X. fastidiosa migrates via type IV-pilus-mediated twitching motility at speeds up to 5 mum min(-1) against a rapidly flowing medium (20,000 mum min(-1)). Electron microscopy revealed that there are two length classes of pili, long type IV pili (1.0 to 5.8 mum) and short type I pili (0.4 to 1.0 mum). We further demonstrated that two knockout mutants (pilB and pilQ mutants) that are deficient in type IV pili do not twitch and are inhibited from colonizing upstream vascular regions in planta. In addition, mutants with insertions in pilB or pilQ (possessing type I pili only) express enhanced biofilm formation, whereas a mutant with an insertion in fimA (possessing only type IV pili) is biofilm deficient.
Collapse
Affiliation(s)
- Yizhi Meng
- Department of Plant Pathology, Cornell University-New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Guilhabert MR, Stewart VJ, Kirkpatrick BC. Characterization of putative rolling-circle plasmids from the Gram-negative bacterium Xylella fastidiosa and their use as shuttle vectors. Plasmid 2005; 55:70-80. [PMID: 16140377 DOI: 10.1016/j.plasmid.2005.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 06/14/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
This study was initiated to characterize a small Xylella fastidiosa (X. fastidiosa) plasmid and attempt to create a X. fastidosa/Escherichia coli shuttle vector that was stable in planta. Restriction enzyme analysis of a 1.3kb plasmid DNA from a grape-infecting strain of X. fastidiosa (UCLA) revealed the presence of three similar, but genetically distinct, plasmids, pUCLAs. Evidence that suggests the pUCLA plasmids replicate via a rolling-circle (RC) mechanism include: (i) the presence of ssDNA in X. fastidiosa cells; (ii) the presence of conserved motifs in the predicted ORF1 that are typical of initiator (Rep) proteins associated with RC replication; (iii) high amino acid identity between the putative Rep proteins of pUCLAs and Pf3, a filamentous bacteriophage of Pseudomonas aeruginosa that replicates by a RC mechanism; and (iv) the presence of a putative origin of replication upstream of ORF1 that has the potential to form secondary hairpin structures. One DNA motif present in pUCLA shared sequence similarity to known nicking sites in the origins of replication of other RC plasmids and phages. The shuttle vector, pXF001, successfully transformed grape X. fastidiosa strains and was found to be present as autonomous, structurally unchanged DNA molecules in X. fastidiosa. However, pXF001 was not stably maintained in X. fastidiosa without antibiotic selection.
Collapse
|
39
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
40
|
Amaral AMD, Toledo CP, Baptista JC, Machado MA. Transformation of Xanthomonas axonopodis pv. citri by electroporation. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s0100-41582005000300013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the use of electroporation for transforming Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus (Citrus spp.) canker. It also evaluates the methodology used for this species under different electrical parameters. The bacterium used in the study (Xac 306) was the same strain used for recent complete sequencing of the organism. The use of a plasmid (pUFR047, gentamycin r) is reported here to be able to replicate in cells of Xac. Following the preparation and resuspension of competent cells of Xac at a density of ~4 x 10(10) cfu/ml, in 10% glycerol, and the addition of the replicative plasmid, an electrical pulse was applied to each treatment. Selection of transformants showed a high efficiency of transformation (1.1 x 10(6) transformants/mug DNA), which indicates an effective, and inverse, combination between electrical resistance (50 W) and capacitance (50 µF) for this species, with an electrical field strength of 12.5 kV.cm-1 and 2.7-ms pulse duration. Besides the description of a method for electroporation of Xac 306, this study provides additional information for the use of the technique on studies for production of mutants of this species.
Collapse
|
41
|
Teixeira DDC, Rocha SRP, de Santos MA, Mariano AG, Li WB, Monteiro PB. A Suitable Xylella fastidiosa CVC Strain for Post-Genome Studies. Curr Microbiol 2004; 49:396-9. [PMID: 15696614 DOI: 10.1007/s00284-004-4363-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.
Collapse
Affiliation(s)
- Diva do Carmo Teixeira
- Fundo de Defesa da Citricultura (Fundecitrus), Av. Dr. Adhemar Pereira de Barros, 201, 14807-040, V. Melhado-Araraquara, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
43
|
Newman KL, Almeida RPP, Purcell AH, Lindow SE. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 2003; 69:7319-27. [PMID: 14660381 PMCID: PMC310014 DOI: 10.1128/aem.69.12.7319-7327.2003] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 09/04/2003] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa causes Pierce's disease of grapevine as well as several other major agricultural diseases but is a benign endophyte in most host plants. X. fastidiosa colonizes the xylem vessels of host plants and is transmitted by xylem sap-feeding insect vectors. To understand better the pattern of host colonization and its relationship to disease, we engineered X. fastidiosa to express a green fluorescent protein (Gfp) constitutively and performed confocal laser-scanning microscopic analysis of colonization in a susceptible host, Vitis vinifera. In symptomatic leaves, the fraction of vessels colonized by X. fastidiosa was fivefold higher than in nearby asymptomatic leaves. The fraction of vessels completely blocked by X. fastidiosa colonies increased 40-fold in symptomatic leaves and was the feature of colonization most dramatically linked to symptoms. Therefore, the extent of vessel blockage by bacterial colonization is highly likely to be a crucial variable in symptom expression. Intriguingly, a high proportion (>80%) of colonized vessels were not blocked in infected leaves and instead had small colonies or solitary cells, suggesting that vessel blockage is not a colonization strategy employed by the pathogen but, rather, a by-product of endophytic colonization. We present evidence for X. fastidiosa movement through bordered pits to neighboring vessels and propose that vessel-to-vessel movement is a key colonization strategy whose failure results in vessel plugging and disease.
Collapse
Affiliation(s)
- Karyn L Newman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
44
|
Silva CQD. Hidden Markov models applied to a subsequence of the Xylella fastidiosa genome. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000400018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Sun Q, Wu W, Qian W, Hu J, Fang R, He C. High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett 2003; 226:145-50. [PMID: 13129620 DOI: 10.1016/s0378-1097(03)00583-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A novel transposon mutagenesis system for the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. campestris pv. campestris (Xcc) was developed using a Tn5-based transposome. A highly efficient transformation up to 10(6) transformants per microg transposon DNA was obtained. Southern blot and thermal asymmetric interlaced polymerase chain reaction analyses of Tn5 insertion sites suggested a random mode of transposition. The transposition was stable in the transformants for 20 subcultures. Eighteen thousand and 17000 transformants for Xoo and Xcc, respectively, were generated, corresponding to 4X ORF coverage of the genomes. The libraries will facilitate the identification of pathogenicity-related genes as well as functional genomic analysis in Xoo and Xcc.
Collapse
Affiliation(s)
- Qihong Sun
- Laboratory of Plant Biotechnology, Institute of Microbiology, The Chinese Academy of Sciences, 100080, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Li WB, Pria WD, Lacava PM, Qin X, Hartung JS. Presence of Xylella fastidiosa in Sweet Orange Fruit and Seeds and Its Transmission to Seedlings. PHYTOPATHOLOGY 2003; 93:953-958. [PMID: 18943861 DOI: 10.1094/phyto.2003.93.8.953] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Xylella fastidiosa, a xylem-limited bacterium, causes several economically important diseases in North, Central, and South America. These diseases are transmitted by sharpshooter insects, contaminated budwood, and natural root-grafts. X. fastidiosa extensively colonizes the xylem vessels of susceptible plants. Citrus fruit have a well-developed vascular system, which is continuous with the vascular system of the plant. Citrus seeds develop very prominent vascular bundles, which are attached through ovular and seed bundles to the xylem system of the fruit. Sweet orange (Citrus sinensis) fruit of cvs. Pera, Natal, and Valencia with characteristic symptoms of citrus variegated chlorosis disease were collected for analysis. X. fastidiosa was detected by polymerase chain reaction (PCR) in all main fruit vascular bundles, as well as in the seed and in dissected seed parts. No visual abnormalities were observed in seeds infected with the bacterium. However, the embryos of the infected seeds weighed 25% less than those of healthy seeds, and their germination rate was lower than uninfected seeds. There were about 2,500 cells of X. fastidiosa per infected seed of sweet orange, as quantified using real-time PCR techniques. The identification of X. fastidiosa in the infected seeds was confirmed by cloning and sequencing the specific amplification product, obtained by standard PCR with specific primers. X. fastidiosa was also detected in and recovered from seedlings by isolation in vitro. Our results show that X. fastidiosa can infect and colonize fruit tissues including the seed. We also have shown that X. fastidiosa can be transmitted from seeds to seedlings of sweet orange. To our knowledge, this is the first report of the presence of X. fastidiosa in seeds and its transmission to seedlings.
Collapse
|
47
|
Guilhabert MR, Kirkpatrick BC. Transformation of Xylella fastidiosa with broad host range RSF1010 derivative plasmids. MOLECULAR PLANT PATHOLOGY 2003; 4:279-285. [PMID: 20569388 DOI: 10.1046/j.1364-3703.2003.00175.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The Gram-negative, fastidious bacterium Xylella fastidiosa was successfully transformed with two RSF1010 derivative plasmids belonging to the incompatibility group IncQ, using electroporation. These two derivative plasmids, pXF004 and pXF005, were found to be present as autonomous, structurally unchanged DNA molecules when propagated in X. fastidiosa. However, neither pXF004 nor pXF005 were stably maintained in X. fastidiosa without antibiotic selection. When plasmid DNAs were isolated from X. fastidiosa, or plasmid DNAs isolated from E. coli were supplemented with a TypeOne inhibitor, TRI, the frequency of transformation was increased by 13- or 5-fold, respectively. Plasmid pXF005 was also used to transform one additional grapevine strain of X. fastidiosa.
Collapse
|
48
|
Feil H, Feil WS, Detter JC, Purcel AH, Lindow SE. Site-Directed Disruption of the fimA and fimF Fimbrial Genes of Xylella fastidiosa. PHYTOPATHOLOGY 2003; 93:675-682. [PMID: 18943053 DOI: 10.1094/phyto.2003.93.6.675] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Xylella fastidiosa causes Pierce's disease, a serious disease of grape, citrus variegated chlorosis, almond and oleander leaf scorches, and many other similar diseases. Although the complete genome sequences of several strains of this organism are now available, the function of most genes in this organism, especially those conferring virulence, is lacking. Attachment of X. fastidiosa to xylem vessels and insect vectors may be required for virulence and transmission; therefore, we disrupted fimA and fimF, genes encoding the major fimbrial protein FimA and a homolog of the fimbrial adhesin MrkD, to determine their role in the attachment process. Disruption of the fimA and fimF genes in Temecula1 and STL grape strains of X. fastidiosa was obtained by homologous recombination using plasmids pFAK and pFFK, respectively. These vectors contained a kanamycin resistance gene cloned into either the fimA or fimF genes of X. fastidiosa grape strains Temecula1 or STL. Efficiency of transformation was sufficiently high ( approximately 600 transformants per mug of pFFK DNA) to enable selection of rare recombination events. Polymerase chain reaction and Southern blot analyses of the mutants indicated that a double crossover event had occurred exclusively within the fimA and fimF genes, replacing the chromosomal gene with the disrupted gene and abolishing production of the corresponding proteins, FimA or FimF. Scanning electron microscopy revealed that fimbriae size and number, cell aggregation, and cell size were reduced for the FimA or FimF mutants of X. fastidiosa when compared with the parental strain. FimA or FimF mutants of X. fastidiosa remained pathogenic to grapevines, with bacterial populations slightly reduced compared with those of the wild-type X. fastidiosa cells. These mutants maintained their resistance to kanamycin in planta for at least 6 months in the greenhouse.
Collapse
|
49
|
Hoffman LM, Jendrisak JJ. Transposomes: a system for identifying genes involved in bacterial pathogenesis. Methods Enzymol 2003; 358:128-40. [PMID: 12474383 DOI: 10.1016/s0076-6879(02)58085-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Les M Hoffman
- Epicentre Technologies, Madison, Wisconsin 53713, USA
| | | |
Collapse
|
50
|
Li WB, Zhou CH, Pria WD, Teixeira DC, Miranda VS, Pereira EO, Ayres AJ, He CX, Costa PI, Hartung JS. Citrus and Coffee Strains of Xylella fastidiosa Induce Pierce's Disease in Grapevine. PLANT DISEASE 2002; 86:1206-1210. [PMID: 30818468 DOI: 10.1094/pdis.2002.86.11.1206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierce's disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X. fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.
Collapse
Affiliation(s)
- W-B Li
- USDA-ARS, Beltsville, MD 20705
| | | | - W D Pria
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | | | - V S Miranda
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - E O Pereira
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - A J Ayres
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - C-X He
- Institute of Chemistry, UNESP, Araraquara, SP, Brazil
| | - P I Costa
- Institute of Chemistry, UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|