1
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Ahmad A, Akram W, Wang R, Shahzadi I, Umer M, Yasin NA, Wu T. Pathogenicity factors of Phytophthora melonis revealed by comparative proteomics. JOURNAL OF PLANT INTERACTIONS 2022; 17:183-197. [DOI: 10.1080/17429145.2021.2014581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 06/16/2023]
Affiliation(s)
- Aqeel Ahmad
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences (IFA, GDAAS) / Vegetable Research Institute, Guangdong Academy of Agriculture Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, People’s Republic of China
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rui Wang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences (IFA, GDAAS) / Vegetable Research Institute, Guangdong Academy of Agriculture Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, People’s Republic of China
| | - Iqra Shahzadi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, People’s Republic of China
| | - Muhammad Umer
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, People’s Republic of China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, People’s Republic of China
| | | | - Tingquan Wu
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences (IFA, GDAAS) / Vegetable Research Institute, Guangdong Academy of Agriculture Sciences / Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Rezinciuc S, Sandoval-Sierra JV, Ruiz-León Y, van West P, Diéguez-Uribeondo J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS One 2018; 13:e0190361. [PMID: 29342156 PMCID: PMC5771568 DOI: 10.1371/journal.pone.0190361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
The secondary cysts of the fish pathogen oomycete Saprolegnia parasitica possess bundles of long hooked hairs that are characteristic to this economically important pathogenic species. Few studies have been carried out on elucidating their specific role in the S. parasitica life cycle and the role they may have in the infection process. We show here their function by employing several strategies that focus on descriptive, developmental and predictive approaches. The strength of attachment of the secondary cysts of this pathogen was compared to other closely related species where bundles of long hooked hairs are absent. We found that the attachment of the S. parasitica cysts was around three times stronger than that of other species. The time sequence and influence of selected factors on morphology and the number of the bundles of long hooked hairs conducted by scanning electron microscopy study revealed that these are dynamic structures. They are deployed early after encystment, i.e., within 30 sec of zoospore encystment, and the length, but not the number, of the bundles steadily increased over the encystment period. We also observed that the number and length of the bundles was influenced by the type of substrate and encystment treatment applied, suggesting that these structures can adapt to different substrates (glass or fish scales) and can be modulated by different signals (i.e., protein media, 50 mM CaCl2 concentrations, carbon particles). Immunolocalization studies evidenced the presence of an adhesive extracellular matrix. The bioinformatic analyses of the S. parasitica secreted proteins showed that there is a high expression of genes encoding domains of putative proteins related to the attachment process and cell adhesion (fibronectin and thrombospondin) coinciding with the deployment stage of the bundles of long hooked hairs formation. This suggests that the bundles are structures that might contribute to the adhesion of the cysts to the host because they are composed of these adhesive proteins and/or by increasing the surface of attachment of this extracellular matrix.
Collapse
Affiliation(s)
| | | | | | - Pieter van West
- International Centre for Aquaculture Research and Development at the University of Aberdeen, Aberdeen Oomycete Laboratory, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | | |
Collapse
|
4
|
Chen X, Klemsdal SS, Brurberg MB. Identification and analysis of Phytophthora cactorum genes up-regulated during cyst germination and strawberry infection. Curr Genet 2011; 57:297-315. [PMID: 21698431 DOI: 10.1007/s00294-011-0348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The oomycete Phytophthora cactorum can cause economically important diseases on numerous host plants worldwide, such as crown rot on strawberry. To explore the molecular mechanisms underlying the pathogenicity of P. cactorum on strawberry, transcriptional analysis of P. cactorum during strawberry infection and cyst germination was performed by applying suppression subtractive hybridization (SSH) and effector-specific differential display (ESDD) techniques. Two SSH cDNA libraries were generated, enriched for P. cactorum genes expressed during infection or during cyst germination, respectively, and 137 unique differentially expressed genes were identified. To specifically select RxLR effector genes from P. cactorum, ESDD was performed using RxLR and EER motif-based degenerate primers. Eight RxLR effector candidate genes as well as 67 other genes were identified out of 124 selected fragments. The expression levels of 20 putatively up-regulated genes were further analyzed using real-time RT-PCR, showing that, indeed 19 of these 20 genes were up-regulated during at least one of the studied developmental stages or during strawberry crown invasion, relative to the mycelium. This study provides a first overview of P. cactorum genes that are up-regulated immediately prior to or during strawberry infection and also provides a novel method for selecting RxLR effector genes from the unsequenced genome of P. cactorum.
Collapse
Affiliation(s)
- Xiaoren Chen
- Plant Health and Plant Protection Division, Norwegian Institute for Agricultural and Environmental Research, Høgskoleveien 7, 1432, Ås, Norway
| | | | | |
Collapse
|
5
|
Grenville-Briggs LJ, Avrova AO, Hay RJ, Bruce CR, Whisson SC, van West P. Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biol 2010; 114:702-23. [PMID: 20943180 DOI: 10.1016/j.funbio.2010.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/10/2010] [Accepted: 06/05/2010] [Indexed: 12/11/2022]
Abstract
Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here we have used liquid chromatography tandem mass spectrometry (LC-MS/MS) to facilitate rapid and sensitive quantification of the cell wall proteome. We report the use of LC-MS/MS to identify differentially regulated proteins from the cell walls of three different lifecycle stages of the oomycete plant pathogen Phytophthora infestans: non-sporulating vegetative mycelium, sporulating mycelium, and germinating cysts with appressoria. We have also used quantitative real-time RT-PCR to confirm that the transcripts corresponding to some of these proteins, namely those identified in cell walls of germinating cysts with appressoria, accumulate differentially throughout the lifecycle. These proteins may, therefore, be important for pre-infective development and early pathogenicity. Up to 31 covalently and non-covalently bound cell wall-associated proteins were identified. All of the proteins identified in germinating cysts with appressoria, and several of those from mycelial fractions, were classified as putative effector or pathogen-associated molecular pattern (PAMP) molecules, including members of the CBEL family, the elicitin family, the crinkler (CRN) family and two transglutaminases. Thus, the cell wall of P. infestans may represent an important reservoir for surface-presented, apoplastic effectors or defence activation molecules. Proteins predicted to be cell surface proteins included IPI-B like proteins, mucins, cell wall-associated enzymes and annexin family members. Additionally we identified up to 27 membrane-associated proteins from Triton X-114 phase partitioned mycelial membrane preparations, producing the first inventory of oomycete membrane-associated proteins. Four of these proteins are small Rab-type G-proteins and several are associated with secretion.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Aberdeen Oomycete Laboratory, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Kebdani N, Pieuchot L, Deleury E, Panabières F, Le Berre JY, Gourgues M. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. THE NEW PHYTOLOGIST 2010; 185:248-57. [PMID: 19807870 DOI: 10.1111/j.1469-8137.2009.03048.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Data on plant pathogenic oomycetes are scarce and little is known about the early events leading to the onset of infection. The aim of this work was to analyze the penetration process of the soil-borne plant pathogen Phytophthora parasitica, which has a wide host range. Here, we performed a cytological analysis of the colonization of the first plant cell and developed an inoculation assay for characterizing the entire penetration process through cellular and molecular analyses. We showed that P. parasitica infects roots by producing a specialized structure, the appressorium. We produced the first cDNA library for the penetrating stage of a Phytophthora species and showed it to be highly enriched in pathogenicity-related sequences. These included coding sequences for many cell-degrading enzymes, effectors such as RXLR-containing proteins and proteins involved in protection against plant defense responses. Characterization of the appressorium cDNA library and identification of genes overrepresented early in P. parasitica infection provided us with an unprecedented opportunity to decipher the molecular mechanisms involved in penetration of the plant cells during the initiation of infection by a soil-borne oomycete.
Collapse
Affiliation(s)
- N Kebdani
- UMR Interactions Biotiques et Santé Végétale, INRA1301-CNRS6243-UNSA1301, 400 route des chappes, F-06903 Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
7
|
Le Berre JY, Engler G, Panabières F. Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. THE NEW PHYTOLOGIST 2008; 177:480-492. [PMID: 18028297 DOI: 10.1111/j.1469-8137.2007.02269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The oomycete Phytophthora parasitica is a soilborne pathogen infecting numerous plants. The infection process includes an initial biotrophic stage, followed by a necrotrophic stage. The aim here was to identify genes that are involved in the late stages of infection. Using the host tomato and a transformed strain of P. parasitica expressing the green fluorescent protein (GFP), the various infection steps from recognition of the host to the colonization of plant tissues were studied. This late stage was selected to generate 4000 ESTs (expressed sequence tags), among which approx. 80% were from the pathogen. Comparison with an EST data set created previously from in vitro growth of P. parasitica allowed the identification of several genes, the expression of which might be regulated during late stages of infection. Changes in gene expression of several candidate genes predicted from in silico analysis were validated by quantitative RT-PCR experiments. These results give insights into the molecular bases of the necrotrophic stage of an oomycete pathogen.
Collapse
Affiliation(s)
- Jo-Yanne Le Berre
- UMR INRA1064/CNRS 6192/UNSA Interactions Plantes - Microorganismes et Santé Végétale, Centre INRA de Sophia-Antipolis, BP 167, 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France
| | - Gilbert Engler
- UMR INRA1064/CNRS 6192/UNSA Interactions Plantes - Microorganismes et Santé Végétale, Centre INRA de Sophia-Antipolis, BP 167, 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France
| | - Franck Panabières
- UMR INRA1064/CNRS 6192/UNSA Interactions Plantes - Microorganismes et Santé Végétale, Centre INRA de Sophia-Antipolis, BP 167, 400 route des Chappes, 06903 Sophia-Antipolis Cedex, France
| |
Collapse
|
8
|
Judelson HS, Tani S. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. EUKARYOTIC CELL 2007; 6:1200-9. [PMID: 17483289 PMCID: PMC1951104 DOI: 10.1128/ec.00311-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clustered within the genome of the oomycete phytopathogen Phytophthora infestans are four genes encoding spore-specific nuclear LIM interactor-interacting factors (NIF proteins, a type of transcriptional regulator) that are moderately conserved in DNA sequence. NIFC1, NIFC2, and NIFC3 are zoosporogenesis-induced and grouped within 4 kb, and 20 kb away resides a sporulation-induced form, NIFS. To test the function of the NIFC family, plasmids expressing full-length hairpin constructs of NIFC1 or NIFC2 were stably transformed into P. infestans. This triggered silencing of the cognate gene in about one-third of transformants, and all three NIFC genes were usually cosilenced. However, NIFS escaped silencing despite its high sequence similarity to the NIFC genes. Silencing of the three NIFC genes impaired zoospore cyst germination by 60% but did not affect other aspects of the life cycle. Silencing was transcriptional based on nuclear run-on assays and associated with tighter chromatin packing based on nuclease accessibility experiments. The chromatin alterations extended a few hundred nucleotides beyond the boundaries of the transcribed region of the NIFC cluster and were not associated with increased DNA methylation. A plasmid expressing a short hairpin RNA having sequence similarity only to NIFC1 silenced both that gene and an adjacent member of the gene cluster, likely due to the expansion of a heterochromatic domain from the targeted locus. These data help illuminate the mechanism of silencing in Phytophthora and suggest that caution should be used when interpreting silencing experiments involving closely spaced genes.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
9
|
Prakob W, Judelson HS. Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 2007; 44:726-39. [PMID: 17215149 DOI: 10.1016/j.fgb.2006.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
A large-scale screen for genes induced during sexual development was performed in the heterothallic oomycete Phytophthora infestans, the potato blight agent. Of 15,644 unigenes on an Affymetrix chip, 87 were induced >10-fold during mating, with 28 induced >100-fold. This was validated in independent matings using RNA blots and RT-PCR. Only 44 genes resembled sequences in GenBank. These encoded regulators such as protein kinases, protein phosphatases, and transcription factors, plus enzymes with metabolic, transport, or cell-cycle activities. Several genes were induced during both mating and asexual sporogenesis, suggesting crosstalk between those pathways. In the homothallic species P. phaseoli, 20% of the 87 genes were expressed at higher levels during conditions conducive to oosporogenesis than non-conducive conditions, while the rest were at similar levels. Many of the latter exhibited higher mRNA concentrations in P. phaseoli than in any non-mating culture of P. infestans, suggesting that part of the sexual pathway is active constitutively in homothallics.
Collapse
Affiliation(s)
- Waraporn Prakob
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
10
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
11
|
Meijer HJG, van de Vondervoort PJI, Yin QY, de Koster CG, Klis FM, Govers F, de Groot PWJ. Identification of cell wall-associated proteins from Phytophthora ramorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1348-58. [PMID: 17153919 DOI: 10.1094/mpmi-19-1348] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The oomycete genus Phytophthora comprises a large group of fungal-like plant pathogens. Two Phytophthora genomes recently have been sequenced; one of them is the genome of Phytophthora ramorum, the causal agent of sudden oak death. During plant infection, extracellular proteins, either soluble secreted proteins or proteins associated with the cell wall, play important roles in the interaction with host plants. Cell walls of P. ramorum contain 1 to 1.5% proteins, the remainder almost exclusively being accounted for by glucan polymers. Here, we present an inventory of cell-wall-associated proteins based on mass spectrometric sequence analysis of tryptic peptides obtained by proteolytic digestion of sodium dodecyl sulfate-treated mycelial cell walls. In total, 17 proteins were identified, all of which are authentic secretory proteins. Functional classification based on homology searches revealed six putative mucins or mucin-like proteins, five putative glycoside hydrolases, two transglutaminases, one annexin-like protein, the elicitin protein RAM5, one protein of unknown function, and one Kazal-type protease inhibitor. We propose that the cell wall proteins thus identified are important for pathogenicity.
Collapse
Affiliation(s)
- Harold J G Meijer
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cvitanich C, Salcido M, Judelson HS. Concerted evolution of a tandemly arrayed family of mating-specific genes in Phytophthora analyzed through inter- and intraspecific comparisons. Mol Genet Genomics 2005; 275:169-84. [PMID: 16322999 DOI: 10.1007/s00438-005-0074-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 10/24/2005] [Indexed: 12/01/2022]
Abstract
Multigene families are features of most eukaryotic genomes, which evolve through a variety of mechanisms. This study describes the structure, expression, and evolution of a novel family in the oomycete Phytophthora. In the heterothallic species P. infestans, M96 is expressed specifically during sexual sporogenesis, and encodes a low-complexity extracellular protein that may be a component of oospore walls. Intriguingly, M96 exists in P. infestans as 22 relatively homogeneous loci tandemly repeated at a single site, which is partitioned by inversions and retroelements into subclusters exhibiting semi-independent evolution. M96 relatives were detected in other heterothallic and homothallic oomycetes including species closely (P. mirabilis, P. phaseoli) or distantly (P. ramorum, P. sojae) related to P. infestans. Those M96 relatives also exhibit oosporogenesis-specific expression and are arrayed multigene families. Nucleotide changes and repeat expansion diversify M96 in each species, however, paralogues are more related than orthologues. Concerted evolution through gene conversion and not strong purifying selection appears to be the major contributor to intraspecific homogenization. Divergence and concerted evolution was also detected between isolates of P. infestans. The divergence of M96 proteins between P. infestans, P. ramorum, and P. sojae exceeds that of typical proteins, reflecting trends in reproductive proteins from other kingdoms.
Collapse
Affiliation(s)
- Cristina Cvitanich
- Department of Plant Pathology, University of California, Riverside, 92521, USA
| | | | | |
Collapse
|
13
|
Blackman LM, Mitchell HJ, Hardham AR. Characterisation of manganese superoxide dismutase from Phytophthora nicotianae. ACTA ACUST UNITED AC 2005; 109:1171-83. [PMID: 16279411 DOI: 10.1017/s0953756205003771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three polypeptides with manganese superoxide dismutase (MnSOD) activity were found in mycelium, zoospores and germinated cysts of Phytophthora nicotianae. Their relative molecular weights in non-denaturing gels were approximately 34.5, 36 and 50 kDa. No evidence for the presence of either iron or copper/zinc SODs was detected at any of the developmental stages examined. The level of activity of the MnSOD polypeptides was similar in mycelia and spores. Degenerate PCR was used to amplify partial genes of two different MnSODs, designated PnMnSODI and PnMnSOD2, from P. nicotianae. Southern blot analysis indicated that there are two PnMnSOD1 genes in the P. nicotianae genome. Full length sequence was obtained for one of these genes, PnMnSOD1a, from a P. nicotianae bacterial artificial chromosome (BAC) library. RNA blots probed with PnMnSOD1 showed similar levels of expression in vegetative and sporulating hyphae, lower levels in germinated cysts and no detectable expression in zoospores. PnMnSOD1a had 96%, 97 % and 99 % amino acid identity with homologous genes from P. ramorum, P. infestans and P. sojae, respectively. The second gene cloned from P. nicotianae, PnMnSOD2, had only 38 % amino acid identity with PnMnSOD1a and was homologous to MnSODs that possessed an N-terminal mitochondrial targeting sequence in Phytophthora species and other eukaryotes. Southern blots indicated that there is one copy of PnMnSOD2 in the P. nicotianae genome. PnMnSOD2 was expressed at similar levels in mycelia and germinated cysts but PnMnSOD2 transcripts were not detectable in zoospores.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Australia.
| | | | | |
Collapse
|
14
|
Nürnberger T, Lipka V. Non-host resistance in plants: new insights into an old phenomenon. MOLECULAR PLANT PATHOLOGY 2005; 6:335-45. [PMID: 20565662 DOI: 10.1111/j.1364-3703.2005.00279.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Resistance of an entire plant species to all isolates of a microbial species is referred to as non-host or species resistance. An interplay of both constitutive barriers and inducible reactions comprises the basis for this most durable form of plant disease resistance. Activation of inducible plant defence responses is probably brought about by the recognition of invariant pathogen-associated molecular patterns (PAMP) that are characteristic of whole classes of microbial organisms. PAMP perception systems and PAMP-induced signalling cascades partially resemble those known to mediate activation of innate immune responses in animals, suggesting an evolutionarily ancient molecular concept of non-self recognition and immunity in eukaryotes. Genetic dissection has recently provided clues for SNARE-complex-mediated exocytosis and directed vesicle trafficking in executing plant non-host resistance. Recent functional analysis of bacterial effector proteins indicates that establishment of infection in susceptible plants is associated with suppression of plant species resistance.
Collapse
Affiliation(s)
- Thorsten Nürnberger
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | |
Collapse
|
15
|
Panabières F, Amselem J, Galiana E, Le Berre JY. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet Biol 2005; 42:611-23. [PMID: 15950158 DOI: 10.1016/j.fgb.2005.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/07/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Phytophthora parasitica is a soilborne oomycete pathogen capable of infecting a wide range of plants, including many solanaceous plants. In a first step towards large-scale gene discovery, we generated expressed sequence tags (ESTs) from a cDNA library constructed using mycelium grown in synthetic medium. A total of 3568 ESTs were assembled into 2269 contiguous sequences. Functional categorization could be performed for 65.45% of ESTs. A significant portion of the transcripts encodes proteins of common metabolic pathways. The most prominent sequences correspond to members of the elicitin family, and enzymes involved in the lipid metabolism. A number of genes potentially involved in pathogenesis were also identified, which may constitute virulence determinants.
Collapse
Affiliation(s)
- Franck Panabières
- INRA UMR 1064, Unité Interactions Plantes-Microorganismes et Santé Végétale, 400 route des Chappes, F-06930 Sophia-Antipolis cedex, France.
| | | | | | | |
Collapse
|
16
|
Abstract
Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
17
|
Tani S, Yatzkan E, Judelson HS. Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:330-337. [PMID: 15000400 DOI: 10.1094/mpmi.2004.17.3.330] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Zoospores are a critical component of the disease cycles of most oomycete pathogens. To better understand this stage, genes induced during zoosporogenesis were identified from Phytophthora infestans, the potato late blight pathogen. Using cDNA arrays representing 2,600 genes expressed during zoosporogenesis, 69 genes showing >fourfold increases in mRNA levels were identified, of which 22 exhibited >100-fold induction. Included were putative protein kinases, transcription factors, ion channels, and other regulators. The expression of 15 genes was characterized in detail using zoosporogenesis time courses, other developmental stages, different temperature regimes, and tissue treated with signaling inhibitors. The latter were of interest because zoosporogenesis is known to be cold induced and inhibited by calcium channel blockers such as verapamil; moreover, in this study, inhibitors of phospholipase C (U-73122) and inositol trisphosphate receptor-gated calcium channels (2-aminoethoxydiphenyl borate) also were shown to block zoosporogenesis. The results indicated that the cytoplasmic and transcriptional changes occurring during zoosporogenesis are regulated by several pathways. For example, verapamil inhibited zoosporogenesis but not the up-regulation of most genes; the induction of some genes required while others were independent of calcium or phospholipid signaling; and, although most genes were induced in sporangia at 10 degrees C but not 24 degrees C, one was induced at both temperatures.
Collapse
Affiliation(s)
- Shuji Tani
- Department of Plant Pathology, University of California, Riverside 92521, USA
| | | | | |
Collapse
|