1
|
Dimaria G, Sicilia A, Modica F, Russo M, Bazzano MC, Massimino ME, Piero ARL, Bella P, Catara V. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiol Res 2024; 287:127833. [PMID: 39032265 DOI: 10.1016/j.micres.2024.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Francesco Modica
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | | | | | - Maria Elena Massimino
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy.
| |
Collapse
|
2
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
3
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
4
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
5
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
6
|
Chen J, Sharifi R, Khan MSS, Islam F, Bhat JA, Kui L, Majeed A. Wheat Microbiome: Structure, Dynamics, and Role in Improving Performance Under Stress Environments. Front Microbiol 2022; 12:821546. [PMID: 35095825 PMCID: PMC8793483 DOI: 10.3389/fmicb.2021.821546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Wheat is an important cereal crop species consumed globally. The growing global population demands a rapid and sustainable growth of agricultural systems. The development of genetically efficient wheat varieties has solved the global demand for wheat to a greater extent. The use of chemical substances for pathogen control and chemical fertilizers for enhanced agronomic traits also proved advantageous but at the cost of environmental health. An efficient alternative environment-friendly strategy would be the use of beneficial microorganisms growing on plants, which have the potential of controlling plant pathogens as well as enhancing the host plant's water and mineral availability and absorption along with conferring tolerance to different stresses. Therefore, a thorough understanding of plant-microbe interaction, identification of beneficial microbes and their roles, and finally harnessing their beneficial functions to enhance sustainable agriculture without altering the environmental quality is appealing. The wheat microbiome shows prominent variations with the developmental stage, tissue type, environmental conditions, genotype, and age of the plant. A diverse array of bacterial and fungal classes, genera, and species was found to be associated with stems, leaves, roots, seeds, spikes, and rhizospheres, etc., which play a beneficial role in wheat. Harnessing the beneficial aspect of these microbes is a promising method for enhancing the performance of wheat under different environmental stresses. This review focuses on the microbiomes associated with wheat, their spatio-temporal dynamics, and their involvement in mitigating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | | | - Faisal Islam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Ling Kui
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aasim Majeed
- Plant Molecular Genetics Laboratory, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
7
|
Vignassa M, Meile JC, Chiroleu F, Soria C, Leneveu-Jenvrin C, Schorr-Galindo S, Chillet M. Pineapple Mycobiome Related to Fruitlet Core Rot Occurrence and the Influence of Fungal Species Dispersion Patterns. J Fungi (Basel) 2021; 7:175. [PMID: 33670857 PMCID: PMC7997448 DOI: 10.3390/jof7030175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Fruitlet Core Rot (FCR) is a fungal disease that negatively impacts the quality of pineapple, in particular the 'Queen Victoria' cultivar. The main FCR causal agent has been identified as Fusariumananatum. This study focused on the correlation between FCR disease occurrence, fungal diversity, and environmental factors. FCR incidence and fungal species repartition patterns were spatially contextualized with specific surrounding parameters of the experimental plots. The mycobiome composition of healthy and diseased fruitlets was compared in order to search for potential fungal markers. A total of 240 pineapple fruits were sampled, and 344 fungal isolates were identified as belonging to 49 species among 17 genera. FCR symptom distribution revealed a significant gradient that correlated to that of the most abundant fungal species. The association of wind direction and the position of proximal cultivated crops sharing pathogens constituted an elevated risk of FCR incidence. Five highly represented species were assayed by Koch's postulates, and their pathogenicity was confirmed. These novel pathogens belonging to Fusariumfujikuroi and Talaromycespurpureogenus species complexes were identified, unravelling the complexity of the FCR pathosystem and the difficulty of apprehending the pathogenesis over the last several decades. This study revealed that FCR is an airborne disease characterized by a multi-partite pathosystem.
Collapse
Affiliation(s)
- Manon Vignassa
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Qua-lisud, F-97410 Saint-Pierre, 97410 Réunion, France; (J.-C.M.); (C.S.); (M.C.)
- Unité Mixte de Recherche Qualisud, Université de Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut Agro, Institut de Recherche pour le Développement, Université de La Réunion, Montpellier, France;
| | - Jean-Christophe Meile
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Qua-lisud, F-97410 Saint-Pierre, 97410 Réunion, France; (J.-C.M.); (C.S.); (M.C.)
- Unité Mixte de Recherche Qualisud, Université de Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut Agro, Institut de Recherche pour le Développement, Université de La Réunion, Montpellier, France;
| | - Frédéric Chiroleu
- Centre de coopération internationale en recherche agronomique pour le développement CIRAD, UMR PVBMT, 97410 Saint-Pierre, F-97410 La Réunion, France;
| | - Christian Soria
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Qua-lisud, F-97410 Saint-Pierre, 97410 Réunion, France; (J.-C.M.); (C.S.); (M.C.)
- Unité Mixte de Recherche Qualisud, Université de Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut Agro, Institut de Recherche pour le Développement, Université de La Réunion, Montpellier, France;
| | - Charlène Leneveu-Jenvrin
- Unité Mixte de Recherche Qualisud, Université de La Réunion, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Université de Montpellier, Institut Agro, Avignon Université, Sainte-Clotilde, France;
| | - Sabine Schorr-Galindo
- Unité Mixte de Recherche Qualisud, Université de Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut Agro, Institut de Recherche pour le Développement, Université de La Réunion, Montpellier, France;
| | - Marc Chillet
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Qua-lisud, F-97410 Saint-Pierre, 97410 Réunion, France; (J.-C.M.); (C.S.); (M.C.)
- Unité Mixte de Recherche Qualisud, Université de Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut Agro, Institut de Recherche pour le Développement, Université de La Réunion, Montpellier, France;
| |
Collapse
|
8
|
Yu XQ, Yan X, Zhang MY, Zhang LQ, He YX. Flavonoids repress the production of antifungal 2,4-DAPG but potentially facilitate root colonization of the rhizobacterium Pseudomonas fluorescens. Environ Microbiol 2020; 22:5073-5089. [PMID: 32363709 DOI: 10.1111/1462-2920.15052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization. Using a label-free quantitative proteomics approach, we showed that apigenin and phloretin significantly reduced the biosynthesis of the antifungal metabolite 2,4-DAPG and further identified a novel flavonoid-sensing TetR regulator PhlH, which was shown to modulate 2,4-DAPG production by regulating the expression of 2,4-DAPG hydrolase PhlG. Although having similar structures, apigenin and phloretin could also influence different physiological characteristics of P. fluorescens 2P24, with apigenin decreasing the biofilm formation and phloretin inducing expression of proteins involved in the denitrification and arginine fermentation processes. Taken together, our results suggest that plant-derived flavonoids could be sensed by the TetR regulator PhlH in P. fluorescens 2P24 and acts as important signalling molecules that strengthen mutually beneficial interactions between plants and non-symbiotic beneficial rhizobacteria.
Collapse
Affiliation(s)
- Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Meng-Yuan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Kwon YS, Jeon CW, Bae DW, Seo JS, Thomashow LS, Weller DM, Kwak YS. Construction of a proteome reference map and response of Gaeumannomyces graminis var. tritici to 2,4-diacetylphloroglucinol. Fungal Biol 2018; 122:1098-1108. [PMID: 30342625 DOI: 10.1016/j.funbio.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt), is one of the most serious root diseases in wheat production. In this study, a proteomic platform based on 2-dimensional gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Tandem Mass Spectrometry (MALDI-TOF/TOF MS) was used to construct the first proteome database reference map of G. graminis var. tritici and to identify the response of the pathogen to 2,4-diacetylphloroglucinol (DAPG), which is a natural antibiotic produced by antagonistic Pseudomonas spp. in take-all suppressive soils. For mapping, a total of 240 spots was identified that represented 209 different proteins. The most abundant biological function categories in the Ggt proteome were related to carbohydrate metabolism (21%), amino acid metabolism (15%), protein folding and degradation (12%), translation (11%), and stress response (10%). In total, 51 Ggt proteins were affected by DAPG treatment. Based on gene ontology, carbohydrate metabolism, amino acid metabolism, stress response, and protein folding and degradation proteins were the ones most modulated by DAPG treatment. This study provides the first extensive proteomic reference map constructed for Ggt and represents the first time that the response of Ggt to DAPG has been characterized at the proteomic level.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Chang-Wook Jeon
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Su Seo
- Environmental Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Linda S Thomashow
- United States Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, USA
| | - David M Weller
- United States Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, USA
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
10
|
Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 2018; 9:3429. [PMID: 30143616 PMCID: PMC6109063 DOI: 10.1038/s41467-018-05683-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Interactions between bacteria and fungi have great environmental, medical, and agricultural importance, but the molecular mechanisms are largely unknown. Here, we study the interactions between the bacterium Pseudomonas piscium, from the wheat head microbiome, and the plant pathogenic fungus Fusarium graminearum. We show that a compound secreted by the bacteria (phenazine-1-carboxamide) directly affects the activity of fungal protein FgGcn5, a histone acetyltransferase of the SAGA complex. This leads to deregulation of histone acetylation at H2BK11, H3K14, H3K18, and H3K27 in F. graminearum, as well as suppression of fungal growth, virulence, and mycotoxin biosynthesis. Therefore, an antagonistic bacterium can inhibit growth and virulence of a plant pathogenic fungus by manipulating fungal histone modification.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ziyue Wen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Carvajal M, Vergara A, Contreras J, Osorio M, Seeger M. Biotransformation of geranylated- and acetylated-phloroglucinols by Gibberella fujikuroi into molecules with increased antifungal activity against Botrytis cinerea. Fungal Biol 2018; 122:752-760. [PMID: 30007426 DOI: 10.1016/j.funbio.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
Terpenylated phenols possess interesting biological activities. These properties vary mainly according to the type of terpene associated and the degree of oxidation of the molecule. The search for new active molecules for application in different areas of knowledge includes the structural modification of these through ecological methodologies, such as biotransformation. The aims of this study were the biotransformation of geranylated- and acetylated-phloroglucinol by the fungus Gibberella fujikuroi and the evaluation of the antifungal activity of the derivatives. Five major derivatives were identified after biotransformation, highlighting the formation of specific monoacetylated products. In vitro antifungal activity assays against the phytopathogenic fungus Botrytis cinerea indicated that deacetylated derivatives possess higher activity compared to the precursor molecule. In other biotransformation reactions, a relationship between the release of the alkyl chain from the aromatic ring with a decrease of the antifungal activity, was observed. The in vivo tests in infected tomato plants with B. cinerea confirmed the antifungal activity of the derivatives observed in in vitro experiments.
Collapse
Affiliation(s)
- Marcela Carvajal
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile; Centro de Biotecnología "DAL", Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile.
| | - Alejandra Vergara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile; Centro de Biotecnología "DAL", Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Javier Contreras
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Mauricio Osorio
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile; Centro de Biotecnología "DAL", Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| |
Collapse
|
12
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
13
|
Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product. Appl Environ Microbiol 2017; 83:AEM.01419-17. [PMID: 28821548 DOI: 10.1128/aem.01419-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022] Open
Abstract
Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.
Collapse
|
14
|
Abstract
Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.
Collapse
Affiliation(s)
- Ben Lugtenberg
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Faina Kamilova
- Koppert Biological Systems, Veilingweg 14, PO Box 155, 2650 AD Berkel en Rodenrijs, Netherlands
| |
Collapse
|
15
|
Khaksar G, Treesubsuntorn C, Thiravetyan P. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:326-336. [PMID: 27362296 DOI: 10.1016/j.plaphy.2016.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
16
|
Abstract
Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.
Collapse
Affiliation(s)
- Alexander Schouten
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
17
|
de Souza EM, Granada CE, Sperotto RA. Plant Pathogens Affecting the Establishment of Plant-Symbiont Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:15. [PMID: 26834779 PMCID: PMC4721146 DOI: 10.3389/fpls.2016.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Eduardo M. de Souza
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
| | - Camille E. Granada
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Centro de Gestão Organizacional, Centro Universitário UNIVATESLajeado, Brazil
| | - Raul A. Sperotto
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- *Correspondence: Raul A. Sperotto
| |
Collapse
|
18
|
L. F. MEYER SUSAN, L. EVERTS KATHRYNE, MCSPADDEN GARDENER BRIAN, P. MASLER EDWARD, M. E. ABDELNABBY HAZEM, M. SKANTAR ANDREA. Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon. J Nematol 2016. [DOI: 10.21307/jofnem-2017-008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Ruiz C, Gómez M, Villamizar L. Prototipo de formulación y atmósfera de empaque para la cepa antagonista Pseudomonas fluorescens Ps006. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2015. [DOI: 10.15446/rev.colomb.biote.v17n2.54282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p><strong>Título en ingles</strong>: Formulation prototype and atmosphere packaging for the antagonistic strain Pseudomonas fluorescens PS006</p><p>El aislamiento Pseudomonas fluorescens Ps006 demostró alto potencial para ser usado como principio activo de un bioinsumo, por su capacidad para producir biosurfactantes, actividad solubilizadora de fósforo y antagonista ante diferentes fitopatógenos. Por tal razón, el presente trabajo tuvo como objetivos desarrollar y caracterizar un prototipo de formulación a base de P. fluorescens Ps006, estable bajo condiciones de almacenamiento. Inicialmente se caracterizó el principio activo y se seleccionaron los auxiliares de formulación compatibles con el mismo, evaluándose la estabilidad de su mezcla con tres soportes sólidos, a dos humedades diferentes (10% y 20%) durante tres meses de almacenamiento a temperaturas de 8, 18 y 28 ± 2°C. El principio activo demostró actividad antagonista in vitro sobre cuatro fitopatógenos y la temperatura y la humedad afectaron su estabilidad durante el almacenamiento. A los prototipos de formulación más estables en cuanto a viabilidad y actividad biocontroladora se les evaluó su estabilidad en presencia y ausencia de oxígeno y de protectores de membrana. Se seleccionó el soporte S1 al 20% de humedad mezclado con el principio activo sin adición de protectores de membrana y almacenado en presencia de oxígeno, por ser el tratamiento más estable durante seis meses de alamacenamiento a tres temperaturas, con pérdidas de viabilidad inferiores al 5%.</p>
Collapse
|
20
|
Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? FRONTIERS IN PLANT SCIENCE 2015; 6:566. [PMID: 26284088 PMCID: PMC4515547 DOI: 10.3389/fpls.2015.00566] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/09/2015] [Indexed: 05/18/2023]
Abstract
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.
Collapse
Affiliation(s)
- Marc Bardin
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Sakhr Ajouz
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Morgane Comby
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Miguel Lopez-Ferber
- Laboratoire de Génie de l’Environnement Industriel, Ecole des Mines d’Alès, Institut Mines-Telecom, Alès, France
| | - Benoît Graillot
- Laboratoire de Génie de l’Environnement Industriel, Ecole des Mines d’Alès, Institut Mines-Telecom, Alès, France
- Natural Plant Protection,Arysta LifeScience Group, Pau, France
| | - Myriam Siegwart
- Plantes et Systèmes de Culture Horticoles Unit, Institut National de la Recherche Agronomique, UR1115, Avignon, France
| | - Philippe C. Nicot
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| |
Collapse
|
21
|
Haldar S, Sengupta S. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiol J 2015; 9:1-7. [PMID: 25926899 PMCID: PMC4406998 DOI: 10.2174/1874285801509010001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Rhizosphere, the interface between soil and plant roots, is a chemically complex environment which supports the development and growth of diverse microbial communities. The composition of the rhizosphere microbiome is dynamic and controlled by multiple biotic and abiotic factors that include environmental parameters, physiochemical properties of the soil, biological activities of the plants and chemical signals from the plants and bacteria which inhabit the soil adherent to root-system. Recent advancement in molecular and microbiological techniques has unravelled the interactions among rhizosphere residents at different levels. In this review, we elaborate on various factors that determine plant-microbe and microbe-microbe interactions in the rhizosphere, with an emphasis on the impact of host genotype and developmental stages which together play pivotal role in shaping the nature and diversity of root exudations. We also discuss about the coherent functional groups of microorganisms that colonize rhizosphere and enhance plant growth and development by several direct and indirect mechanisms. Insights into the underlying structural principles of indigenous microbial population and the key determinants governing rhizosphere ecology will provide directions for developing techniques for profitable applicability of beneficial microorganisms in sustainable agriculture and nature restoration.
Collapse
Affiliation(s)
- Shyamalina Haldar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| |
Collapse
|
22
|
Daskin JH, Bell SC, Schwarzkopf L, Alford RA. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline. PLoS One 2014; 9:e100378. [PMID: 24941262 PMCID: PMC4062522 DOI: 10.1371/journal.pone.0100378] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity, bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures spanning those likely to be encountered in the field.
Collapse
Affiliation(s)
- Joshua H. Daskin
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Sara C. Bell
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Ross A. Alford
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
23
|
Weiland JE. Pythium Species and Isolate Diversity Influence Inhibition by the Biological Control Agent Streptomyces lydicus. PLANT DISEASE 2014; 98:653-659. [PMID: 30708563 DOI: 10.1094/pdis-05-13-0482-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Disease control of soilborne pathogens by biological control agents (BCAs) is often inconsistent under field conditions. This inconsistency may be partly influenced by pathogen diversity if there is a differential response among pathogen species and isolates to selected BCAs. The responses of 148 Pythium isolates obtained from soil at three forest nurseries and representative of 16 Pythium spp. were evaluated in the presence of Streptomyces lydicus strain WYEC108 in an in vitro assay. Percent growth inhibition, inhibition zone distance, mortality, and growth rate were recorded for each isolate, and data were analyzed for effects of species and isolate. Responses of three Pythium spp. (Pythium irregulare, P. sylvaticum, and P. ultimum) were further analyzed for a location (nursery) effect. Although S. lydicus inhibited all Pythium isolates, differences in percent growth inhibition, inhibition zone distance, and mortality were observed among Pythium spp. and isolates. Small but significant location effects were also noted. Growth rate also varied among Pythium spp. and isolates and was found to strongly bias percent growth inhibition and, to a lesser degree, inhibition zone distance; depending on which measure was used, slower-growing isolates appeared less sensitive (growth inhibition) or more sensitive (inhibition zone) to S. lydicus than faster-growing isolates. Results illustrate the importance of using multiple, representative pathogen isolates in preliminary BCA inhibition assays as well as accounting for the effect of pathogen growth rate on pathogen inhibition by BCAs. Future studies should take pathogen diversity into account when evaluating biological control efficacy.
Collapse
Affiliation(s)
- Jerry E Weiland
- United States Department of Agriculture-Agriculture Research Service, Horticultural Crops Research Laboratory, and Oregon State University, Department of Botany and Plant Pathology, Corvallis 97331
| |
Collapse
|
24
|
Mehta CM, Palni U, Franke-Whittle IH, Sharma AK. Compost: its role, mechanism and impact on reducing soil-borne plant diseases. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:607-22. [PMID: 24373678 DOI: 10.1016/j.wasman.2013.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 05/14/2023]
Abstract
Soil-borne plant pathogens are responsible for causing many crop plant diseases, resulting in significant economic losses. Compost application to agricultural fields is an excellent natural approach, which can be taken to fight against plant pathogens. The application of organic waste products is also an environmentally friendly alternative to chemical use, which unfortunately is the most common approach in agriculture today. This review analyses pioneering and recent compost research, and also the mechanisms and mode of action of compost microbial communities for reducing the activity of plant pathogens in agricultural crops. In addition, an approach for improving the quality of composts through the microbial communities already present in the compost is presented. Future agricultural practices will almost definitely require integrated research strategies to help combat plant diseases.
Collapse
Affiliation(s)
- C M Mehta
- Department of Biological Sciences, College of Basic Science and Humanities, G. B. P. U. A. & T. Pantnagar, U.S. Nagar, Uttarakhand, India; Department of Botany, D.S.B. Campus, Kumaun University Nainital, Uttarakhand, India
| | - Uma Palni
- Department of Botany, D.S.B. Campus, Kumaun University Nainital, Uttarakhand, India
| | - I H Franke-Whittle
- Leopold-Franzens University, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| | - A K Sharma
- Department of Biological Sciences, College of Basic Science and Humanities, G. B. P. U. A. & T. Pantnagar, U.S. Nagar, Uttarakhand, India.
| |
Collapse
|
25
|
|
26
|
Troppens DM, Chu M, Holcombe LJ, Gleeson O, O'Gara F, Read ND, Morrissey JP. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genet Biol 2013; 56:135-46. [PMID: 23624246 DOI: 10.1016/j.fgb.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature.
Collapse
|
27
|
Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:322-34. [PMID: 23445507 DOI: 10.1111/1567-1364.12037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae is a proven model to investigate the effects of small molecules and drugs on fungal and eukaryotic cells. In this study, the mode of action of an antifungal metabolite, 2,4-diacetylphloroglucinol (DAPG), was determined. Applying a combination of genetic and physiological approaches, it was established that this bacterial metabolite acts as a proton ionophore and dissipates the proton gradient across the mitochondrial membrane. The uncoupling of respiration and ATP synthesis ultimately leads to growth inhibition and is the primary toxic effect of DAPG. A genome-wide screen identified 154 DAPG-tolerant mutants and showed that there are many alterations in cellular metabolism that can confer at least some degree of tolerance to this uncoupler. One mutant, ydc1, was studied in some more detail as it displayed increased tolerance to both DAPG and the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) and appears to be unconnected to other tolerant mutant strains. Deleting YDC1 alters sphingolipid homoeostasis in the cell, and we suggest here that this may be linked to reduced drug sensitivity. Sphingolipids and their derivatives are important eukaryotic signal molecules, and the observation that altering homoeostasis may affect yeast response to metabolic uncoupling agents raises some intriguing questions for future studies.
Collapse
|
28
|
Naushad HS, Gupta RS. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PLoS One 2013; 8:e55216. [PMID: 23408961 DOI: 10.1016/j.biocontrol.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/19/2012] [Indexed: 05/20/2023] Open
Abstract
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1-3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
Collapse
Affiliation(s)
- Hafiz Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
29
|
Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antonie Van Leeuwenhoek 2012; 102:677-87. [DOI: 10.1007/s10482-012-9766-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
30
|
Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 2011; 75:583-609. [PMID: 22126995 PMCID: PMC3232736 DOI: 10.1128/mmbr.00020-11] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi can form a range of physical associations that depend on various modes of molecular communication for their development and functioning. These bacterial-fungal interactions often result in changes to the pathogenicity or the nutritional influence of one or both partners toward plants or animals (including humans). They can also result in unique contributions to biogeochemical cycles and biotechnological processes. Thus, the interactions between bacteria and fungi are of central importance to numerous biological questions in agriculture, forestry, environmental science, food production, and medicine. Here we present a structured review of bacterial-fungal interactions, illustrated by examples sourced from many diverse scientific fields. We consider the general and specific properties of these interactions, providing a global perspective across this emerging multidisciplinary research area. We show that in many cases, parallels can be drawn between different scenarios in which bacterial-fungal interactions are important. Finally, we discuss how new avenues of investigation may enhance our ability to combat, manipulate, or exploit bacterial-fungal complexes for the economic and practical benefit of humanity as well as reshape our current understanding of bacterial and fungal ecology.
Collapse
Affiliation(s)
- P Frey-Klett
- INRA, UMR1136 Interactions Arbres-Microorganismes, 54280 Champenoux, France.
| | | | | | | | | | | |
Collapse
|
31
|
Urrea R, Cabezas L, Sierra R, Cárdenas M, Restrepo S, Jiménez P. Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. J Appl Microbiol 2011; 111:707-16. [PMID: 21714836 DOI: 10.1111/j.1365-2672.2011.05092.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Cape gooseberries (Physalis peruviana) have become increasingly important in Colombia for both domestic consumption and the international export market. Vascular wilting caused by Fusarium oxysporum is the most damaging disease to P. peruviana crops in Colombia. The control of this pathogen is mainly carried out by chemical and cultural practices, increasing production costs and generating resistance. Therefore, the objectives of this study were to test rhizobacteria isolates from P. peruviana rhizosphere against F. oxysporum under in vitro and in vivo conditions. METHODS AND RESULTS Over 120 strains were isolated, and five were selected for their high inhibition of F. oxysporum growth and conidia production under in vitro conditions. These strains inhibited growth by 41-58% and reduced three- to fivefold conidia production. In the in vivo assays, all the tested isolates significantly reduced fungal pathogenicity in terms of virulence. Isolate B-3.4 was the most efficient in delaying the onset of the first symptoms. All isolates were identified as belonging to the genus Pseudomonas except for A-19 (Bacillus sp.). CONCLUSIONS Our results confirmed that there are prospective rhizobacteria strains that can be used as biological control agents; some of them being able to inhibit in vitro F. oxysporum growth and sporulation. SIGNIFICANCE AND IMPACT OF THE STUDY Incorporating these bacteria into biological control strategies for the disease that causes high economical losses in the second most exported fruit from Colombia would result in a reduced impact on environment and economy.
Collapse
Affiliation(s)
- R Urrea
- Laboratorio de Fitopatología, Facultad de Ciencias, Universidad Militar Nueva Granada, Bogotá, DC, Colombia
| | | | | | | | | | | |
Collapse
|
32
|
Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moënne-Loccoz Y, Prigent-Combaret C. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology (Reading) 2011; 157:1694-1705. [DOI: 10.1099/mic.0.043943-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonads producing the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) can control soil-borne phytopathogens, but their impact on other plant-beneficial bacteria remains poorly documented. Here, the effects of synthetic Phl and Phl+
Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators were investigated. Most A. brasilense strains were moderately sensitive to Phl. In vitro, Phl induced accumulation of carotenoids and poly-β-hydroxybutyrate-like granules, cytoplasmic membrane damage and growth inhibition in A. brasilense Cd. Experiments with P. fluorescens F113 and a Phl− mutant indicated that Phl production ability contributed to in vitro growth inhibition of A. brasilense Cd and Sp245. Under gnotobiotic conditions, each of the three strains, P. fluorescens F113 and A. brasilense Cd and Sp245, stimulated wheat growth. Co-inoculation of A. brasilense Sp245 and Pseudomonas resulted in the same level of phytostimulation as in single inoculations, whereas it abolished phytostimulation when A. brasilense Cd was used. Pseudomonas Phl production ability resulted in lower Azospirillum cell numbers per root system (based on colony counts) and restricted microscale root colonization of neighbouring Azospirillum cells (based on confocal microscopy), regardless of the A. brasilense strain used. Therefore, this work establishes that Phl+ pseudomonads have the potential to interfere with A. brasilense phytostimulators on roots and with their plant growth promotion capacity.
Collapse
Affiliation(s)
- Olivier Couillerot
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Emeline Combes-Meynet
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Joël F. Pothier
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Floriant Bellvert
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Elita Challita
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Marie-Andrée Poirier
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - René Rohr
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Gilles Comte
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Yvan Moënne-Loccoz
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| | - Claire Prigent-Combaret
- CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
- Université Lyon 1, Villeurbanne, France
- Université de Lyon, F-69622, Lyon, France
| |
Collapse
|
33
|
Kwak YS, Han S, Thomashow LS, Rice JT, Paulitz TC, Kim D, Weller DM. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl Environ Microbiol 2011; 77:1770-6. [PMID: 21193664 PMCID: PMC3067262 DOI: 10.1128/aem.02151-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/21/2010] [Indexed: 11/20/2022] Open
Abstract
2,4-Diacetylphloroglucinol (2,4-DAPG), an antibiotic produced by Pseudomonas fluorescens, has broad-spectrum antibiotic activity, inhibiting organisms ranging from viruses, bacteria, and fungi to higher plants and mammalian cells. The biosynthesis and regulation of 2,4-DAPG in P. fluorescens are well described, but the mode of action against target organisms is poorly understood. As a first step to elucidate the mechanism, we screened a deletion library of Saccharomyces cerevisiae in broth and agar medium supplemented with 2,4-DAPG. We identified 231 mutants that showed increased sensitivity to 2,4-DAPG under both conditions, including 22 multidrug resistance-related mutants. Three major physiological functions correlated with an increase in sensitivity to 2,4-DAPG: membrane function, reactive oxygen regulation, and cell homeostasis. Physiological studies with wild-type yeast validated the results of the mutant screens. The chemical-genetic fitness profile of 2,4-DAPG resembled those of menthol, sodium azide, and hydrogen peroxide determined in previous high-throughput screening studies. Collectively, these findings indicate that 2,4-DAPG acts on multiple basic cellular processes.
Collapse
Affiliation(s)
- Youn-Sig Kwak
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - Sangjo Han
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - Linda S. Thomashow
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - Jennifer T. Rice
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - Timothy C. Paulitz
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - Dongsup Kim
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| | - David M. Weller
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea, USDA-ARS, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, Washington 99164-6430, Institute for the Biocentury, KAIST, Daejeon 305-701, South Korea
| |
Collapse
|
34
|
Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 2010; 29:248-58. [PMID: 21147211 DOI: 10.1016/j.biotechadv.2010.12.001] [Citation(s) in RCA: 463] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/29/2022]
Abstract
Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.
Collapse
Affiliation(s)
- Y Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
35
|
Nosir W, McDonald J, Woodward S. Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms. J Ind Microbiol Biotechnol 2010; 38:21-7. [DOI: 10.1007/s10295-010-0842-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/26/2010] [Indexed: 11/30/2022]
|
36
|
Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microbiol 2010; 76:5263-8. [PMID: 20525866 DOI: 10.1128/aem.02941-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil bacteria are heavily consumed by protozoan predators, and many bacteria have evolved defense strategies such as the production of toxic exometabolites. However, the production of toxins is energetically costly and therefore is likely to be adjusted according to the predation risk to balance the costs and benefits of predator defense. We investigated the response of the biocontrol bacterium Pseudomonas fluorescens CHA0 to a common predator, the free-living amoeba Acanthamoeba castellanii. We monitored the effect of the exposure to predator cues or direct contact with the predators on the expression of the phlA, prnA, hcnA, and pltA genes, which are involved in the synthesis of the toxins, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, hydrogen cyanide, and pyoluteorin, respectively. Predator chemical cues led to 2.2-, 2.0-, and 1.2-fold increases in prnA, phlA, and hcnA expression, respectively, and to a 25% increase in bacterial toxicity. The upregulation of the tested genes was related to the antiprotozoan toxicity of the corresponding toxins. Pyrrolnitrin and DAPG had the highest toxicity, suggesting that bacteria secrete a predator-specific toxin cocktail. The response of the bacteria was elicited by supernatants of amoeba cultures, indicating that water-soluble chemical compounds were responsible for induction of the bacterial defense response. In contrast, direct contact of bacteria with living amoebae reduced the expression of the four bacterial toxin genes by up to 50%, suggesting that protozoa can repress bacterial toxicity. The results indicate that predator-prey interactions are a determinant of toxin production by rhizosphere P. fluorescens and may have an impact on its biocontrol potential.
Collapse
|
37
|
Gleeson O, O'Gara F, Morrissey JP. The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2009; 97:261-73. [PMID: 20091224 DOI: 10.1007/s10482-009-9407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Pseudomonas fluorescens strains are known to produce a wide range of secondary metabolites including phenazines, siderophores, pyoluteorin, and 2,4 diacetylphloroglucinol (DAPG). DAPG is of particular interest because of its antifungal properties and because its production is associated with inhibition of phytopathogenic fungi in natural disease-suppressive soils. This trait has been exploited to develop strains of P. fluorescens that have potential application as biocontrol agents. Although the biochemistry, genetics and regulation of DAPG production have been well-studied, relatively little is known about how DAPG inhibits fungal growth and how fungi respond to DAPG. Employing a yeast model and a combination of phenotypic assays, molecular genetics and molecular physiological probes, we established that inhibition of fungal growth is caused by impairment of mitochondrial function. The effect of DAPG on yeast is largely fungistatic but DAPG also induces the formation of petite cells. Expression of the multidrug export proteins Pdr5p and Snq2p is increased by DAPG-treatment but this appears to be a secondary effect of mitochondrial damage as no role in enhancing DAPG-tolerance was identified for either Pdr5p or Snq2p.
Collapse
Affiliation(s)
- Olive Gleeson
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
38
|
Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME JOURNAL 2009; 3:977-91. [PMID: 19369971 DOI: 10.1038/ismej.2009.33] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Natural disease-suppressive soils provide an untapped resource for the discovery of novel beneficial microorganisms and traits. For most suppressive soils, however, the consortia of microorganisms and mechanisms involved in pathogen control are unknown. To date, soil suppressiveness to Fusarium wilt disease has been ascribed to carbon and iron competition between pathogenic Fusarium oxysporum and resident non-pathogenic F. oxysporum and fluorescent pseudomonads. In this study, the role of bacterial antibiosis in Fusarium wilt suppressiveness was assessed by comparing the densities, diversity and activity of fluorescent Pseudomonas species producing 2,4-diacetylphloroglucinol (DAPG) (phlD+) or phenazine (phzC+) antibiotics. The frequencies of phlD+ populations were similar in the suppressive and conducive soils but their genotypic diversity differed significantly. However, phlD genotypes from the two soils were equally effective in suppressing Fusarium wilt, either alone or in combination with non-pathogenic F. oxysporum strain Fo47. A mutant deficient in DAPG production provided a similar level of control as its parental strain, suggesting that this antibiotic does not play a major role. In contrast, phzC+ pseudomonads were only detected in the suppressive soil. Representative phzC+ isolates of five distinct genotypes did not suppress Fusarium wilt on their own, but acted synergistically in combination with strain Fo47. This increased level of disease suppression was ascribed to phenazine production as the phenazine-deficient mutant was not effective. These results suggest, for the first time, that redox-active phenazines produced by fluorescent pseudomonads contribute to the natural soil suppressiveness to Fusarium wilt disease and may act in synergy with carbon competition by resident non-pathogenic F. oxysporum.
Collapse
Affiliation(s)
- Sylvie Mazurier
- INRA, Université de Bourgogne, UMR 1229 Microbiologie des Sols et de l'Environnement, Dijon cedex, France
| | | | | | | |
Collapse
|
39
|
Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 2009; 55:233-43. [PMID: 19337734 DOI: 10.1007/s00294-009-0241-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/04/2009] [Accepted: 03/16/2009] [Indexed: 01/20/2023]
Abstract
Interactions between bacteria and fungi are well known, but it is often underestimated how intimate and decisive such associations can be with respect to behaviour and survival of each participating organism. In this article we review recent advances in molecular bacterium-fungus interactions, combining the data of different model systems. Emphasis is given to the positive or negative consequences these interactions have on the microbe accommodating plants and animals. Intricate mechanisms of antagonism and tolerance have emerged, being as important for the biological control of plants against fungal diseases as for the human body against fungal infections. Bacterial growth promoters of fungal mycelium have been characterized, and these may as well assist plant-fungus mutualism as disease development in animals. Some of the toxins that have been previously associated with fungi are actually produced by endobacteria, and the mechanisms that lie behind the maintenance of such exquisite endosymbioses are fascinating. Bacteria do cause diseases in fungi, and a synergistic action between bacterial toxins and extracellular enzymes is the hallmark of such diseases. The molecular study of bacterium-fungus associations has expanded our view on microbial communication, and this promising field shows now great potentials in medicinal, agricultural and biotechnological applications.
Collapse
Affiliation(s)
- Mika T Tarkka
- UFZ, Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle, Germany.
| | | | | |
Collapse
|
40
|
Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C. 2,4-diacetylphloroglucinol alters plant root development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1349-58. [PMID: 18785830 DOI: 10.1094/mpmi-21-10-1349] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.
Collapse
|
41
|
Abstract
Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientific research (NWO), EET, the European Commission and INTAS.
Collapse
|
42
|
Park SY, Kim R, Ryu CM, Choi SK, Lee CH, Kim JG, Park SH. Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa. FEMS Microbiol Ecol 2008; 65:229-37. [PMID: 18459968 DOI: 10.1111/j.1574-6941.2008.00492.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Paenibacillus polymyxa, a Gram-positive low-G+C spore-forming soil bacterium, belongs to the plant growth-promoting rhizobacteria. The swarming motility of P. polymyxa strain E681 was greatly induced by a secondary metabolite, citrinin, produced by Penicillium citrinum KCTC6549 in a dose-dependent manner at concentrations of 2.5-15.0 microg mL(-1) on tryptic soy agar plates containing 1.0% (w/v) agar. Flagellum staining showed that citrinin activated the production of flagella by P. polymyxa. This result was supported by reverse transcriptase-PCR analysis of gene expression, which showed increased transcriptional levels of sigD and hag homologues of P. polymyxa E681 in the presence of citrinin. The results presented here show that a mycotoxin, citrinin, has a newly identified function of inducing bacterial motility by transcriptional activation of related genes. This finding contributes to our understanding of the interactions between bacteria and fungal strains in nature.
Collapse
Affiliation(s)
- Soo-Young Park
- Systems Microbiology Research Center, KRIBB, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environ Microbiol 2008; 10:1145-57. [DOI: 10.1111/j.1462-2920.2007.01531.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
McSpadden Gardener BB. Diversity and Ecology of Biocontrol Pseudomonas spp. in Agricultural Systems. PHYTOPATHOLOGY 2007; 97:221-226. [PMID: 18944378 DOI: 10.1094/phyto-97-2-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Diverse Pseudomonas spp. may act as biological controls of plant pathogens, but the ecology of those natural populations is not well understood. And, while biocontrol potential has been identified in multiple pseudomonad strains, the linkages between genotype and phenotype have yet to be fully delineated. However, intensive studies of one class of biocontrol strains, i.e., those that can produce 2,4-diacetylphloroglucionl (DAPG), have provided new insights into the diversity, distribution, and interactions of biocontrol pseudomonads. Those studies also laid the foundation for future research and development of pseudomonad-based biocontrol strategies. Over the past several years, numerous studies have also revealed that biocontrol pseudomonads are widely distributed in agricultural soils, and that multiple crop and soil factors can affect their abundance and activities. Recent work has shown that a variety of farm management practices that reduce soilborne disease pressure can also alter the rhizosphere abundance of DAPG producers in complex ways. Such studies provide support for the hypothesis of an ecological feedback mechanism whereby a native biocontrol population increase and subsequently reduce root disease severity following infection. It is well established that complex biological interactions can take place among bio-control pseudomonads, plant pathogens, their hosts, and other members of the microbial community. The net result of such interactions likely dilutes biocontrol efficacy at the field scale. Nonetheless, inoculation can be effective, and several successful applications of biocontrol pseudomonads have been developed. Future applications of microbial ecology research will hopefully improve the consistency and efficacy of bio-control mediated by Pseudomonas spp. Current applications and future opportunities for improving pseudomonad-based biological control are discussed.
Collapse
|
45
|
Viebahn M, Doornbos R, Wernars K, van Loon LC, Smit E, Bakker PAHM. Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol 2006; 7:1775-85. [PMID: 16232292 DOI: 10.1111/j.1462-2920.2005.00783.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A long-term field experiment (1999-2002) was conducted to monitor effects on the indigenous microflora of Pseudomonas putida WCS358r and two transgenic derivatives constitutively producing phenazine-1-carboxylic acid (PCA) or 2,4-diacetylphloroglucinol (DAPG). The strains were introduced as seed coating on wheat into the same field plots each year. Rhizosphere populations of ascomycetes were analysed using denaturing gradient gel electrophoresis (DGGE). To evaluate the significance of changes caused by the genetically modified microorganisms (GMMs), they were compared with effects caused by a crop rotation from wheat to potato. In the first year, only the combination of both GMMs caused a significant shift in the ascomycete community. After the repeated introductions this effect was no longer evident. However, cropping potato significantly affected the ascomycete community. This effect persisted into the next year when wheat was grown. Clone libraries were constructed from samples taken in 1999 and 2000, and sequence analysis indicated ascomycetes of common genera to be present. Most species occurred in low frequencies, distributed almost evenly in all treatments. However, in 1999 Microdochium occurred in relatively high frequencies, whereas in the following year no Microdochium species were detected. On the other hand, Fusarium-like organisms were low in 1999, and increased in 2000. Both the DGGE and the sequence analysis revealed that repeated introduction of P. putida WCS358r had no major effects on the ascomycete community in the wheat rhizosphere, but demonstrated a persistent difference between the rhizospheres of potato and wheat.
Collapse
Affiliation(s)
- Mareike Viebahn
- Section of Phytopathology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Bottiglieri M, Keel C. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 2006; 72:418-27. [PMID: 16391073 PMCID: PMC1352262 DOI: 10.1128/aem.72.1.418-427.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.
Collapse
Affiliation(s)
- Mélanie Bottiglieri
- Département de Microbiologie Fondamentale, Bātiment de Biologie, Université de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | | |
Collapse
|
47
|
Abo K, Klein KK, Edel-Hermann V, Gautheron N, Traore D, Steinberg C. High Genetic Diversity Among Strains of Fusarium oxysporum f. sp. vasinfectum from Cotton in Ivory Coast. PHYTOPATHOLOGY 2005; 95:1391-6. [PMID: 18943549 DOI: 10.1094/phyto-95-1391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT Seventeen isolates of Fusarium oxysporum f. sp. vasinfectum from the Ivory Coast were characterized using vegetative compatibility group (VCG), restriction fragment length polymorphism of the ribosomal inter-genic spacer region (IGS), and mating type (MAT) idiomorph, and compared with a worldwide collection of the pathogen containing all available reference strains. Some of the isolates were identical to known reference strains for all three traits, whereas others had previously unknown varieties of IGS and (possibly) VCG. One or the other MAT idiomorph was present in each of the new isolates and the reference strains. The new isolates and reference strains were grouped based upon the three traits. Strains from the Ivory Coast were found in 7 of 11 groups detected, suggesting multiple sources for Fusarium wilt in the country. Despite the presence of both MAT idiomorphs among isolates, no evidence for recombination was found.
Collapse
|
48
|
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951-9. [PMID: 16151072 PMCID: PMC1214602 DOI: 10.1128/aem.71.9.4951-4959.2005] [Citation(s) in RCA: 878] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
49
|
van Rij ET, Girard G, Lugtenberg BJJ, Bloemberg GV. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology (Reading) 2005; 151:2805-2814. [PMID: 16079356 DOI: 10.1099/mic.0.28063-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production of the antifungal metabolite phenazine-1-carboxamide (PCN) byPseudomonas chlororaphisstrain PCL1391 is essential for the suppression of tomato foot and root rot caused by the soil-borne fungusF. oxysporumf. sp.radicis-lycopersici. The authors have shown previously that fusaric acid (FA), a phytotoxin produced byFusarium oxysporum, represses the production of PCN and of the quorum-sensing signalN-hexanoyl-l-homoserine lactone (C6-HSL). Here they report that PCN repression by FA is maintained even during PCN-stimulating environmental conditions such as additional phenylalanine, additional ferric iron and a low Mg2+concentration. Constitutive expression ofphzIorphzRincreases the production of C6-HSL and abolishes the repression of PCN production by FA. Transcriptome analysis usingP. chlororaphisPCL1391 microarrays showed that FA represses expression of the phenazine biosynthetic operon (phzABCDEFGH) and of the quorum-sensing regulatory genesphzIandphzR. FA does not alter expression of the PCN regulatorsgacS,rpoSandpsrA. In conclusion, reduction of PCN levels by FA is due to direct or indirect repression ofphzRandphzI. Microarray analyses identified genes of which the expression is strongly influenced by FA. Genes highly upregulated by FA are also upregulated by iron starvation inPseudomonas aeruginosa. This remarkable overlap in the expression profile suggests an overlapping stress response to FA and iron starvation.
Collapse
Affiliation(s)
- E Tjeerd van Rij
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Geneviève Girard
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Ben J J Lugtenberg
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Guido V Bloemberg
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
50
|
Abstract
Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Dieter Haas
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|