1
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Goyal RK, Habtewold JZ. Evaluation of Legume-Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments. Microorganisms 2023; 11:1454. [PMID: 37374957 PMCID: PMC10302611 DOI: 10.3390/microorganisms11061454] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plants often experience unfavorable conditions during their life cycle that impact their growth and sometimes their survival. A temporary phase of such stress, which can result from heavy metals, drought, salinity, or extremes of temperature or pH, can cause mild to enormous damage to the plant depending on its duration and intensity. Besides environmental stress, plants are the target of many microbial pathogens, causing diseases of varying severity. In plants that harbor mutualistic bacteria, stress can affect the symbiotic interaction and its outcome. To achieve the full potential of a symbiotic relationship between the host and rhizobia, it is important that the host plant maintains good growth characteristics and stay healthy under challenging environmental conditions. The host plant cannot provide good accommodation for the symbiont if it is infested with diseases and prone to other predators. Because the bacterium relies on metabolites for survival and multiplication, it is in its best interests to keep the host plant as stress-free as possible and to keep the supply stable. Although plants have developed many mitigation strategies to cope with stress, the symbiotic bacterium has developed the capability to augment the plant's defense mechanisms against environmental stress. They also provide the host with protection against certain diseases. The protective features of rhizobial-host interaction along with nitrogen fixation appear to have played a significant role in legume diversification. When considering a legume-rhizobial symbiosis, extra benefits to the host are sometimes overlooked in favor of the symbionts' nitrogen fixation efficiency. This review examines all of those additional considerations of a symbiotic interaction that enable the host to withstand a wide range of stresses, enabling plant survival under hostile regimes. In addition, the review focuses on the rhizosphere microbiome, which has emerged as a strong pillar of evolutionary reserve to equip the symbiotic interaction in the interests of both the rhizobia and host. The evaluation would draw the researchers' attention to the symbiotic relationship as being advantageous to the host plant as a whole and the role it plays in the plant's adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, AB T4L 1W1, Canada
| | | |
Collapse
|
4
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
5
|
Martini MC, Vacca C, Torres Tejerizo GA, Draghi WO, Pistorio M, Lozano MJ, Lagares A, Del Papa MF. ubiF is involved in acid stress tolerance and symbiotic competitiveness in Rhizobium favelukesii LPU83. Braz J Microbiol 2022; 53:1633-1643. [PMID: 35704174 DOI: 10.1007/s42770-022-00780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.
Collapse
Affiliation(s)
- María Carla Martini
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Gonzalo A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 115 49 y 50 (1900), Buenos Aires, La Plata, Argentina.
| |
Collapse
|
6
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
7
|
Wang T, Balla B, Kovács S, Kereszt A. Varietas Delectat: Exploring Natural Variations in Nitrogen-Fixing Symbiosis Research. FRONTIERS IN PLANT SCIENCE 2022; 13:856187. [PMID: 35481136 PMCID: PMC9037385 DOI: 10.3389/fpls.2022.856187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively called rhizobia plays an important role in the global nitrogen cycle and is an essential component of sustainable agriculture. Genetic determinants directing the development and functioning of the interaction have been identified with the help of a very limited number of model plants and bacterial strains. Most of the information obtained from the study of model systems could be validated on crop plants and their partners. The investigation of soybean cultivars and different rhizobia, however, has revealed the existence of ineffective interactions between otherwise effective partners that resemble gene-for-gene interactions described for pathogenic systems. Since then, incompatible interactions between natural isolates of model plants, called ecotypes, and different bacterial partner strains have been reported. Moreover, diverse phenotypes of both bacterial mutants on different host plants and plant mutants with different bacterial strains have been described. Identification of the genetic factors behind the phenotypic differences did already and will reveal novel functions of known genes/proteins, the role of certain proteins in some interactions, and the fine regulation of the steps during nodule development.
Collapse
Affiliation(s)
- Ting Wang
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Benedikta Balla
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Szilárd Kovács
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Attila Kereszt
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
8
|
Transcriptome Analysis Reveals the Genes Involved in Bifidobacterium Longum FGSZY16M3 Biofilm Formation. Microorganisms 2021; 9:microorganisms9020385. [PMID: 33672820 PMCID: PMC7917626 DOI: 10.3390/microorganisms9020385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation has evolved as an adaptive strategy for bacteria to cope with harsh environmental conditions. Currently, little is known about the molecular mechanisms of biofilm formation in bifidobacteria. A time series transcriptome sequencing analysis of both biofilm and planktonic cells of Bifidobacterium longum FGSZY16M3 was performed to identify candidate genes involved in biofilm formation. Protein–protein interaction network analysis of 1296 differentially expressed genes during biofilm formation yielded 15 clusters of highly interconnected nodes, indicating that genes related to the SOS response (dnaK, groS, guaB, ruvA, recA, radA, recN, recF, pstA, and sufD) associated with the early stage of biofilm formation. Genes involved in extracellular polymeric substances were upregulated (epsH, epsK, efp, frr, pheT, rfbA, rfbJ, rfbP, rpmF, secY and yidC) in the stage of biofilm maturation. To further investigate the genes related to biofilm formation, weighted gene co-expression network analysis (WGCNA) was performed with 2032 transcript genes, leading to the identification of nine WGCNA modules and 133 genes associated with response to stress, regulation of gene expression, quorum sensing, and two-component system. These results indicate that biofilm formation in B. longum is a multifactorial process, involving stress response, structural development, and regulatory processes.
Collapse
|
9
|
Srivastava A, Murugaiyan J, Garcia JAL, De Corte D, Hoetzinger M, Eravci M, Weise C, Kumar Y, Roesler U, Hahn MW, Grossart HP. Combined Methylome, Transcriptome and Proteome Analyses Document Rapid Acclimatization of a Bacterium to Environmental Changes. Front Microbiol 2020; 11:544785. [PMID: 33042055 PMCID: PMC7522526 DOI: 10.3389/fmicb.2020.544785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain’s adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jayaseelan Murugaiyan
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany.,Department of Biotechnology, SRM University-AP, Guntur, India
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Daniele De Corte
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Matthias Hoetzinger
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, Konstanz, Germany
| | - Uwe Roesler
- Centre for Infectious Medicine, Institute for Animal Health and Environmental Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
10
|
Choi E, Jeon H, Oh JI, Hwang J. Overexpressed L20 Rescues 50S Ribosomal Subunit Assembly Defects of bipA-Deletion in Escherichia coli. Front Microbiol 2020; 10:2982. [PMID: 31998269 PMCID: PMC6962249 DOI: 10.3389/fmicb.2019.02982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is highly conserved in a large variety of bacteria and belongs to the translational GTPases, based on sequential and structural similarities. Despite its conservation in bacteria, bipA is not essential for cell growth under normal growth conditions. However, at 20°C, deletion of bipA causes not only severe growth defects but also several phenotypic changes such as capsule production, motility, and ribosome assembly, indicating that it has global regulatory properties. Our recent studies revealed that BipA is a novel ribosome-associating GTPase, whose expression is cold-shock-inducible and involved in the incorporation of the ribosomal protein (r-protein) L6. However, the precise mechanism of BipA in 50S ribosomal subunit assembly is not completely understood. In this study, to demonstrate the role of BipA in the 50S ribosomal subunit and possibly to find an interplaying partner(s), a genomic library was constructed and suppressor screening was conducted. Through screening, we found a suppressor gene, rplT, encoding r-protein L20, which is assembled at the early stage of ribosome assembly and negatively regulates its own expression at the translational level. We demonstrated that the exogenous expression of rplT restored the growth of bipA-deleted strain at low temperature by partially recovering the defects in ribosomal RNA processing and ribosome assembly. Our findings suggest that the function of BipA is pivotal for 50S ribosomal subunit biogenesis at a low temperature and imply that BipA and L20 may exert coordinated actions for proper ribosome assembly under cold-shock conditions.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Choi E, Hwang J. The GTPase BipA expressed at low temperature in Escherichia coli assists ribosome assembly and has chaperone-like activity. J Biol Chem 2018; 293:18404-18419. [PMID: 30305394 DOI: 10.1074/jbc.ra118.002295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
BPI-inducible protein A (BipA) is a conserved ribosome-associated GTPase in bacteria that is structurally similar to other GTPases associated with protein translation, including IF2, EF-Tu, and EF-G. Its binding site on the ribosome appears to overlap those of these translational GTPases. Mutations in the bipA gene cause a variety of phenotypes, including cold and antibiotics sensitivities and decreased pathogenicity, implying that BipA may participate in diverse cellular processes by regulating translation. According to recent studies, a bipA-deletion strain of Escherichia coli displays a ribosome assembly defect at low temperature, suggesting that BipA might be involved in ribosome assembly. To further investigate BipA's role in ribosome biogenesis, here, we compared and analyzed the ribosomal protein compositions of MG1655 WT and bipA-deletion strains at 20 °C. Aberrant 50S ribosomal subunits (i.e. 44S particles) accumulated in the bipA-deletion strain at 20 °C, and the ribosomal protein L6 was absent in these 44S particles. Furthermore, bipA expression was significantly stimulated at 20 °C, suggesting that it encodes a cold shock-inducible GTPase. Moreover, the transcriptional regulator cAMP receptor protein (CRP) positively promoted bipA expression only at 20 °C. Importantly, GFP and α-glucosidase refolding assays revealed that BipA has chaperone activity. Our findings indicate that BipA is a cold shock-inducible GTPase that participates in 50S ribosomal subunit assembly by incorporating the L6 ribosomal protein into the 44S particle during the assembly.
Collapse
Affiliation(s)
- Eunsil Choi
- From the Department of Microbiology, Pusan National University, Busan 46241, Korea
| | - Jihwan Hwang
- From the Department of Microbiology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
12
|
Jun D, Minic Z, Bhat SV, Vanderlinde EM, Yost CK, Babu M, Dahms TES. Metabolic Adaptation of a C-Terminal Protease A-Deficient Rhizobium leguminosarum in Response to Loss of Nutrient Transport. Front Microbiol 2018; 8:2617. [PMID: 29354107 PMCID: PMC5758756 DOI: 10.3389/fmicb.2017.02617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Abstract
Post-translational modification expands the functionality of the proteome beyond genetic encoding, impacting many cellular processes. Cleavage of the carboxyl terminus is one of the many different ways proteins can be modified for functionality. Gel-electrophoresis and mass spectrometric-based techniques were used to identify proteins impacted by deficiency of a C-terminal protease, CtpA, in Rhizobium leguminosarum bv. viciae 3841. Predicted CtpA substrates from 2D silver stained gels were predominantly outer membrane and transport proteins. Proteins with altered abundance in the wild type and ctpA (RL4692) mutant, separated by 2D difference gel electrophoresis, were selected for analysis by mass spectrometry. Of those identified, 9 were the periplasmic solute-binding components of ABC transporters, 5 were amino acid metabolic enzymes, 2 were proteins involved in sulfur metabolism, and 1 each was related to carbon metabolism, protein folding and signal transduction. Alterations to ABC-binding-cassette transporters, nutrient uptake efficiency and to amino acid metabolism indicated an impact on amino acid metabolism and transport for the ctpA mutant, which was validated by measured amino acid levels.
Collapse
Affiliation(s)
- Dong Jun
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Zoran Minic
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Supriya V. Bhat
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Elizabeth M. Vanderlinde
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
- Department of Biology, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Chris K. Yost
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| |
Collapse
|
13
|
Xu M, Zhao J, Yu L, Yang ST. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J Biotechnol 2017; 263:36-44. [DOI: 10.1016/j.jbiotec.2017.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
|
14
|
Taking a Step Back from Back-Translocation: an Integrative View of LepA/EF4's Cellular Function. Mol Cell Biol 2017; 37:MCB.00653-16. [PMID: 28320876 DOI: 10.1128/mcb.00653-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis, the translation of mRNA into a polypeptide facilitated by the ribosome, is assisted by a variety of protein factors, some of which are GTPases. In addition to four highly conserved and well-understood GTPases with known function, there are also a number of noncanonical GTPases that are implicated in translation but whose functions are not fully understood. LepA/EF4 is one of these noncanonical GTPases. It is highly conserved and present in bacteria, mitochondria, and chloroplasts, but its functional role in the cell remains unknown. LepA's sequence and domain arrangement are very similar to those of other translational GTPases, but it contains a unique C-terminal domain (CTD) that is likely essential to its specific function in the cell. Three main hypotheses about the function of LepA have been brought forward to date: (i) LepA is a back-translocase, (ii) LepA relieves ribosome stalling or facilitates sequestration, and (iii) LepA is involved in ribosome biogenesis. This review examines the structural and biochemical information available on bacterial LepA and discusses it on the background of the available in vivo information from higher organisms in order to broaden the view regarding LepA's functional role in the cell and how the structure of its unique CTD might be involved in facilitating this role.
Collapse
|
15
|
Liu P, Myo T, Ma W, Lan D, Qi T, Guo J, Song P, Guo J, Kang Z. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus. FRONTIERS IN PLANT SCIENCE 2016; 7:873. [PMID: 27446108 PMCID: PMC4914568 DOI: 10.3389/fpls.2016.00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 05/29/2023]
Abstract
Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Guo
- *Correspondence: Jun Guo, ; Zhensheng Kang,
| | | |
Collapse
|
16
|
Ero R, Kumar V, Chen Y, Gao YG. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function. RNA Biol 2016; 13:1258-1273. [PMID: 27325008 PMCID: PMC5207388 DOI: 10.1080/15476286.2016.1201627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.
Collapse
Affiliation(s)
- Rya Ero
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Veerendra Kumar
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| | - Yun Chen
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Yong-Gui Gao
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| |
Collapse
|
17
|
Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol 2016; 101:531-44. [PMID: 27149325 DOI: 10.1111/mmi.13412] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| | - Gert Bange
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| |
Collapse
|
18
|
Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC. Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:113. [PMID: 27247624 PMCID: PMC4886415 DOI: 10.1186/s13068-016-0523-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/09/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND Clostridium acetobutylicum has been a focus of research because of its ability to produce high-value compounds that can be used as biofuels. Lignocellulose is a promising feedstock, but the lignin-cellulose-hemicellulose biomass complex requires chemical pre-treatment to yield fermentable saccharides, including cellulose-derived cellobiose, prior to bioproduction of acetone-butanol-ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition. The effects of lignin on cellular metabolism were evaluated for C. acetobutylicum grown on medium containing either cellobiose only or cellobiose plus lignin. Microscopy, gas chromatography and 8-plex iTRAQ-based quantitative proteomic technologies were applied to interrogate the effect of lignin on cellular morphology, fermentation and the proteome. RESULTS Our results demonstrate that C. acetobutylicum has reduced performance for solvent production when lignin is present in the medium. Medium supplemented with 1 g L(-1) of lignin led to delay and decreased solvents production (ethanol; 0.47 g L(-1) for cellobiose and 0.27 g L(-1) for cellobiose plus lignin and butanol; 0.13 g L(-1) for cellobiose and 0.04 g L(-1) for cellobiose plus lignin) at 20 and 48 h, respectively, resulting in the accumulation of acetic acid and butyric acid. Of 583 identified proteins (FDR < 1 %), 328 proteins were quantified with at least two unique peptides. Up- or down-regulation of protein expression was determined by comparison of exponential and stationary phases of cellobiose in the presence and absence of lignin. Of relevance, glycolysis and fermentative pathways were mostly down-regulated, during exponential and stationary growth phases in presence of lignin. Moreover, proteins involved in DNA repair, transcription/translation and GTP/ATP-dependent activities were also significantly affected and these changes were associated with altered cell morphology. CONCLUSIONS This is the first comprehensive analysis of the cellular responses of C. acetobutylicum to lignin at metabolic and physiological levels. These data will enable targeted metabolic engineering strategies to optimize biofuel production from biomass by overcoming limitations imposed by the presence of lignin.
Collapse
Affiliation(s)
- Mahendra P. Raut
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Narciso Couto
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Trong K. Pham
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Caroline Evans
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - Josselin Noirel
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
- />Chaire de Bioinformatique, LGBA, Conservatoire National Des Arts Et Métiers, 75003 Paris, France
| | - Phillip C. Wright
- />The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
- />School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| |
Collapse
|
19
|
Structure of BipA in GTP form bound to the ratcheted ribosome. Proc Natl Acad Sci U S A 2015; 112:10944-9. [PMID: 26283392 DOI: 10.1073/pnas.1513216112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3',5'-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation.
Collapse
|
20
|
Efficient assembly of ribosomes is inhibited by deletion of bipA in Escherichia coli. J Bacteriol 2015; 197:1819-27. [PMID: 25777676 DOI: 10.1128/jb.00023-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The bacterial BipA protein belongs to the EF-G family of translational GTPases and has been postulated to be either a regulatory translation factor or a ribosome assembly factor. To distinguish between these hypotheses, we analyzed the effect of bipA deletion on three phenotypes associated with ribosome assembly factors: cold sensitivity, ribosome subunit distribution, and rRNA processing. We demonstrated that a ΔbipA strain exhibits a cold-sensitive phenotype that is similar to, and synergistic with, that of a strain with a known ribosome assembly factor, deaD. Additionally, the bipA deletion strain displayed a perturbed ribosome subunit distribution when grown at low temperature, similar to that of a deaD mutant, and again, the double mutant showed additive effects. The primary ribosomal deficiency noted was a decreased level of the 50S subunit and the appearance of a presumed pre-50S particle. Finally, deletion of bipA resulted in accumulation of pre23S rRNA, as did deletion of deaD. We further found that deletion of rluC, which encodes a pseudouridine synthase that modifies the 23S rRNA at three sites, suppressed all three phenotypes of the bipA mutant, supporting and extending previous findings. Together, these results suggest that BipA is important for the correct and efficient assembly of the 50S subunit of the ribosome at low temperature but when unmodified by RluC, the ribosomes become BipA independent for assembly. IMPORTANCE The ribosome is the complex ribonucleoprotein machine responsible for protein synthesis in all cells. Although much has been learned about the structure and function of the ribosome, we do not fully understand how it is assembled or the accessory proteins that increase efficiency of biogenesis and function. This study examined one such protein, BipA. Our results indicate that BipA either directly or indirectly enhances the formation of the 50S subunit of the ribosome, particularly at low temperature. In addition, ribosomes contain a large number of modified nucleosides, including pseudouridines. This work demonstrates that the function of BipA is tied to the modification status of the ribosome and may help us understand why these modifications have been retained.
Collapse
|
21
|
Atkinson GC. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 2015; 16:78. [PMID: 25756599 PMCID: PMC4342817 DOI: 10.1186/s12864-015-1289-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ribosome translates mRNA to protein with the aid of a number of accessory protein factors. Translational GTPases (trGTPases) are an integral part of the 'core set' of essential translational factors, and are some of the most conserved proteins across life. This study takes advantage of the wealth of available genomic data, along with novel functional information that has come to light for a number of trGTPases to address the full evolutionary and functional diversity of this superfamily across all domains of life. RESULTS Through sensitive sequence searching combined with phylogenetic analysis, 57 distinct subfamilies of trGTPases are identified: 14 bacterial, 7 archaeal and 35 eukaryotic (of which 21 are known or predicted to be organellar). The results uncover the functional evolution of trGTPases from before the last common ancestor of life on earth to the current day. CONCLUSIONS While some trGTPases are universal, others are limited to certain taxa, suggesting lineage-specific translational control mechanisms that exist on a base of core factors. These lineage-specific features may give organisms the ability to tune their translation machinery to respond to their environment. Only a fraction of the diversity of the trGTPase superfamily has been subjected to experimental analyses; this comprehensive classification brings to light novel and overlooked translation factors that are worthy of further investigation.
Collapse
|
22
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
23
|
Baldridge GD, Baldridge AS, Witthuhn BA, Higgins L, Markowski TW, Fallon AM. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line. Mol Microbiol 2014; 94:537-56. [PMID: 25155417 DOI: 10.1111/mmi.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/22/2023]
Abstract
Wolbachia pipientis, a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein 'footprint' dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulphurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation.
Collapse
Affiliation(s)
- Gerald D Baldridge
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN, 55108, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gomes DF, da Silva Batista JS, Rolla AAP, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics 2014; 15:643. [PMID: 25086822 PMCID: PMC4287336 DOI: 10.1186/1471-2164-15-643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariangela Hungria
- Embrapa Soja, Embrapa Soja, C,P, 231, 86001-970 Londrina, Paraná, Brazil.
| |
Collapse
|
25
|
Peng J, Hao B, Liu L, Wang S, Ma B, Yang Y, Xie F, Li Y. RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free-living cells. PLoS One 2014; 9:e93626. [PMID: 24695521 PMCID: PMC3973600 DOI: 10.1371/journal.pone.0093626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Mesorhizobium huakuii 7653R occurs either in nitrogen-fixing symbiosis with its host plant, Astragalus sinicus, or free-living in the soil. The M. huakuii 7653R genome has recently been sequenced. To better understand the complex biochemical and developmental changes that occur in 7653R during bacteroid development, RNA-Seq and Microarrays were used to investigate the differential transcriptomes of 7653R bacteroids and free-living cells. The two approaches identified several thousand differentially expressed genes. The most prominent up-regulation occurred in the symbiosis plasmids, meanwhile gene expression is concentrated to a set of genes (clusters) in bacteroids to fulfill corresponding functional requirements. The results suggested that the main energy metabolism is active while fatty acid metabolism is inactive in bacteroid and that most of genes relevant to cell cycle are down-regulated accordingly. For a global analysis, we reconstructed a protein-protein interaction (PPI) network for 7653R and integrated gene expression data into the network using Cytoscape. A highly inter-connected subnetwork, with function enrichment for nitrogen fixation, was found, and a set of hubs and previously uncharacterized genes participating in nitrogen fixation were identified. The results described here provide a broader biological landscape and novel insights that elucidate rhizobial bacteroid differentiation, nitrogen fixation and related novel gene functions.
Collapse
Affiliation(s)
- Jieli Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Baohai Hao
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shanming Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Binguang Ma
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yi Yang
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
26
|
Zhai Z, Douillard FP, An H, Wang G, Guo X, Luo Y, Hao Y. Proteomic characterization of the acid tolerance response inLactobacillus delbrueckiisubsp.bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol 2013; 16:1524-37. [DOI: 10.1111/1462-2920.12280] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/06/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | | | - Haoran An
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Guohong Wang
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Xinghua Guo
- Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Yunbo Luo
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| | - Yanling Hao
- Key Laboratory of Functional Dairy; Co-constructed by Ministry of Education and Beijing Municipality; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 China
| |
Collapse
|
27
|
Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA. Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. PLoS Genet 2013; 9:e1003716. [PMID: 23990803 PMCID: PMC3749937 DOI: 10.1371/journal.pgen.1003716] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/26/2013] [Indexed: 01/03/2023] Open
Abstract
Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes--a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein--were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of factors required by a single ExPEC isolate to survive within varying host environments.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Colin W. Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Brian K. Dalley
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kael F. Fischer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- ARUP Laboratories, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
28
|
Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. THE NEW PHYTOLOGIST 2013; 198:875-886. [PMID: 23432463 DOI: 10.1111/nph.12198] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/17/2013] [Indexed: 05/03/2023]
Abstract
Plant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete. The role of NFP in this interaction was further analysed by overexpression of NFP and by transcriptome analyses. nfp, but not lyk3, mutants were significantly more susceptible than wildtype plants to A. euteiches, whereas NFP overexpression increased resistance. Transcriptome analyses on A. euteiches inoculation showed that mutation in the NFP gene led to significant changes in the expression of c. 500 genes, notably involved in cell dynamic processes previously associated with resistance to pathogen penetration. nfp mutants also showed an increased susceptibility to the fungus Colletotrichum trifolii. These results demonstrate that NFP intervenes in M. truncatula immunity, suggesting an unsuspected role for NFP in the perception of pathogenic signals.
Collapse
Affiliation(s)
- Thomas Rey
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Amaury Nars
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Marie-Françoise Jardinaud
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Julie Cullimore
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Bernard Dumas
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Clare Gough
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Christophe Jacquet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| |
Collapse
|
29
|
Neidig A, Yeung ATY, Rosay T, Tettmann B, Strempel N, Rueger M, Lesouhaitier O, Overhage J. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol 2013; 13:77. [PMID: 23570569 PMCID: PMC3639842 DOI: 10.1186/1471-2180-13-77] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/04/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic human pathogen and is extremely difficult to treat due to its high intrinsic and adaptive antibiotic resistance, ability to form biofilms in chronic infections and broad arsenal of virulence factors, which are finely regulated. TypA is a GTPase that has recently been identified to modulate virulence in enteric Gram-negative pathogens. RESULTS Here, we demonstrate that mutation of typA in P. aeruginosa resulted in reduced virulence in phagocytic amoebae and human macrophage models of infection. In addition, the typA mutant was attenuated in rapid cell attachment to surfaces and biofilm formation, and exhibited reduced antibiotic resistance to ß-lactam, tetracycline and antimicrobial peptide antibiotics. Quantitative RT-PCR revealed the down-regulation, in a typA mutant, of important virulence-related genes such as those involved in regulation and assembly of the Type III secretion system, consistent with the observed phenotypes and role in virulence of P. aeruginosa. CONCLUSIONS These data suggest that TypA is a newly identified modulator of pathogenesis in P. aeruginosa and is involved in multiple virulence-related characteristics.
Collapse
Affiliation(s)
- Anke Neidig
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, 76021, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
da Silva Batista JS, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics 2011; 75:1211-9. [PMID: 22119543 DOI: 10.1016/j.jprot.2011.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022]
Abstract
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σ(EcfG) regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.
Collapse
|
32
|
Liu X, Rodermel SR, Yu F. A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC PLANT BIOLOGY 2010; 10:287. [PMID: 21187014 PMCID: PMC3022910 DOI: 10.1186/1471-2229-10-287] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis. RESULTS In this report, we show that the suppression of var2 variegation in suppressor line TAG-11 is due to the disruption of the SUPPRESSOR OF VARIEGATION3 (SVR3) gene, encoding a putative TypA-like translation elongation factor. SVR3 is targeted to the chloroplast and svr3 single mutants have uniformly pale green leaves at 22°C. Consistent with this phenotype, most chloroplast proteins and rRNA species in svr3 have close to normal accumulation profiles, with the notable exception of the Photosystem II reaction center D1 protein, which is present at greatly reduced levels. When svr3 is challenged with chilling temperature (8°C), it develops a pronounced chlorosis that is accompanied by abnormal chloroplast rRNA processing and chloroplast protein accumulation. Double mutant analysis indicates a possible synergistic interaction between svr3 and svr7, which is defective in a chloroplast pentatricopeptide repeat (PPR) protein. CONCLUSIONS Our findings, on one hand, reinforce the strong genetic link between VAR2 and chloroplast translation, and on the other hand, point to a critical role of SVR3, and possibly some aspects of chloroplast translation, in the response of plants to chilling stress.
Collapse
Affiliation(s)
- Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Steve R Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
33
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Micklinghoff JC, Schmidt M, Geffers R, Tegge W, Bange FC. Analysis of expression and regulatory functions of the ribosome-binding protein TypA in Mycobacterium tuberculosis under stress conditions. Arch Microbiol 2010; 192:499-504. [PMID: 20437167 DOI: 10.1007/s00203-010-0571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
Abstract
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis.
Collapse
Affiliation(s)
- Julia C Micklinghoff
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
35
|
Draghi WO, Del Papa MF, Pistorio M, Lozano M, De LosÃngeles Giusti M, Torres Tejerizo GA, Jofré E, Boiardi JL, Lagares A. Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH. FEMS Microbiol Lett 2010; 302:123-30. [DOI: 10.1111/j.1574-6968.2009.01846.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
deLivron MA, Makanji HS, Lane MC, Robinson VL. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis. Biochemistry 2009; 48:10533-41. [PMID: 19803466 DOI: 10.1021/bi901026z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and beta-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.
Collapse
Affiliation(s)
- Megan A deLivron
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
37
|
Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B. A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha
H16. Proteomics 2009; 9:5132-42. [DOI: 10.1002/pmic.200900333] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Cheng Z, Duan J, Hao Y, McConkey BJ, Glick BR. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:686-94. [PMID: 19445593 DOI: 10.1094/mpmi-22-6-0686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of canola root exudates on the proteome of Pseudomonas putida UW4 and the mutant strain P. putida UW4/AcdS(-), which lacks a functional 1-aminocyclopropane-1-carboxylate deaminase gene, was examined using two-dimensional difference in-gel electrophoresis. Seventy-two proteins with significantly altered expression levels in the presence of canola root exudates were identified by mass spectrometry. Many of these proteins are involved in nutrient transport and utilization, cell envelope synthesis, and transcriptional or translational regulation and, hence, may play important roles in plant-bacterial interactions. Four proteins showing large changes in expression in response to canola root exudates in both the wild-type and mutant strains of P. putida UW4 (i.e., outer membrane protein F, peptide deformylase, transcription regulator Fis family protein, and a previously uncharacterized protein) were both overexpressed and disrupted in P. putida UW4 in an effort to better understand their functions. Functional studies of these modified strains revealed significantly enhanced or inhibited plant-growth-promoting abilities compared with the wild-type P. putida UW4, in agreement with the suggested involvement of three of these four proteins in plant-bacterial interactions. The work reported here suggests strategies to both identify potential antibacterial agents and develop bacterial strains that might be useful adjuncts to agriculture. This approach may be an effective means of identifying key proteins mediating the interactions of bacteria with their rhizosphere environment.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
39
|
Cheng Z, Wei YYC, Sung WWL, Glick BR, McConkey BJ. Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Sci 2009; 7:18. [PMID: 19422705 PMCID: PMC2689183 DOI: 10.1186/1477-5956-7-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/07/2009] [Indexed: 12/03/2022] Open
Abstract
Background Plant growth-promoting bacteria can alleviate the inhibitory effects of various heavy metals on plant growth, via decreasing levels of stress-induced ethylene. However, little has been done to detect any mechanisms specific for heavy metal resistance of this kind of bacteria. Here, we investigate the response of the wild-type plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress using proteomic approaches. The mutant strain P. putida UW4/AcdS-, lacking a functional 1-aminocyclopropane-1-carboxylic acid deaminase gene, was also assessed for its response to nickel stress. Results Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down- regulated proteins (p < 0.05, | ratio | > 1.5) in P. putida in response to the presence of 2 mM Ni. Out of a total number of 1,702 proteins detected on the analytical gels for P. putida UW4, the expression levels of 82 (4.82%) proteins increased significantly while the expression of 81 (4.76%) proteins decreased significantly. Of 1,575 proteins detected on the analytical gels for P. putida UW4/AcdS-, the expression levels of 74 (4.70%) proteins increased and 51 (3.24%) proteins decreased significantly. Thirty-five proteins whose expression was altered were successfully identified by mass spectrometry and sequence comparisons with related species. Nineteen of the identified proteins were detected as differentially expressed in both wild-type and mutant expression profiles. Conclusion Functional assessment of proteins with significantly altered expression levels revealed several mechanisms thought to be involved in bacterial heavy metal detoxification, including general stress adaptation, anti-oxidative stress and heavy metal efflux proteins. This information may contribute to the development of plant growth-promoting bacteria mediated phytoremediation processes.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Department of Biology, University of Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|
40
|
Suppression of DeltabipA phenotypes in Escherichia coli by abolishment of pseudouridylation at specific sites on the 23S rRNA. J Bacteriol 2008; 190:7675-83. [PMID: 18820021 DOI: 10.1128/jb.00835-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BipA protein of Escherichia coli has intriguing similarities to the elongation factor subfamily of GTPases, including EF-Tu, EF-G, and LepA. In addition, phenotypes of a bipA deletion mutant suggest that BipA is involved in regulation of a variety of pathways. These two points have led to speculation that BipA may be a novel regulatory protein that affects efficient translation of target genes through direct interaction with the ribosome. We isolated and characterized suppressors of the cold-sensitive growth phenotype exhibited by DeltabipA strains and identified insertion mutations in rluC. The rluC gene encodes a pseudouridine synthase responsible for pseudouridine modification of 23S rRNA at three sites, all located near the peptidyl transferase center. Deletion of rluC not only suppressed cold sensitivity but also alleviated the decrease in capsule synthesis exhibited by bipA mutants, suggesting that the phenotypic effects of BipA are manifested through an effect on the ribosome. The suppressor effect is specific to rluC, as deletion of other rlu genes did not relieve cold sensitivity, and further, more than a single pseudouridine residue is involved, as alteration of single residues did not produce suppressors. These results are consistent with a role for BipA in either the structure or the function of the ribosome and imply that wild-type ribosomes are dependent on BipA for efficient expression of target mRNAs and that the lack of pseudouridylation at these three sites renders the ribosomes BipA independent.
Collapse
|
41
|
Effects of Medicago truncatula genetic diversity, rhizobial competition, and strain effectiveness on the diversity of a natural sinorhizobium species community. Appl Environ Microbiol 2008; 74:5653-61. [PMID: 18658290 DOI: 10.1128/aem.01107-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the genetic diversity and symbiotic efficiency of 223 Sinorhizobium sp. isolates sampled from a single Mediterranean soil and trapped with four Medicago truncatula lines. DNA molecular polymorphism was estimated by capillary electrophoresis-single-stranded conformation polymorphism and restriction fragment length polymorphism on five loci (IGS(NOD), typA, virB11, avhB11, and the 16S rRNA gene). More than 90% of the rhizobia isolated belonged to the Sinorhizobium medicae species (others belonged to Sinorhizobium meliloti), with different proportions of the two species among the four M. truncatula lines. The S. meliloti population was more diverse than that of S. medicae, and significant genetic differentiation among bacterial populations was detected. Single inoculations performed in tubes with each bacterial genotype and each plant line showed significant bacterium-plant line interactions for nodulation and N(2) fixation levels. Competition experiments within each species highlighted either strong or weak competition among genotypes within S. medicae and S. meliloti, respectively. Interspecies competition experiments showed S. meliloti to be more competitive than S. medicae for nodulation. Although not highly divergent at a nucleotide level, isolates collected from this single soil sample displayed wide polymorphism for both nodulation and N(2) fixation. Each M. truncatula line might influence Sinorhizobium soil population diversity differently via its symbiotic preferences. Our data suggested that the two species did not evolve similarly, with S. meliloti showing polymorphism and variable selective pressures and S. medicae showing traces of a recent demographic expansion. Strain effectiveness might have played a role in the species and genotype proportions, but in conjunction with strain adaptation to environmental factors.
Collapse
|
42
|
Lee K, Lee HG, Choi YJ. Proteomic analysis of the effect of bile salts on the intestinal and probiotic bacterium Lactobacillus reuteri. J Biotechnol 2008; 137:14-9. [PMID: 18680767 DOI: 10.1016/j.jbiotec.2008.07.1788] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/04/2008] [Indexed: 11/18/2022]
Abstract
Lactobacillus reuteri is a resident of the human and animal intestinal tracts. The ability of L. reuteri to survive passage through the intestinal tract is a key point in its function as a probiotic. In order to examine the nature of bile salt tolerance by L. reuteri, its protein synthesis was analyzed in liquid cultures containing two different bile salt conditions. Significant cell growth inhibition was observed in the presence of 1.2g/L (higher concentration) bile salts. Two-dimensional gel electrophoresis allowed us to identify 28 proteins spots that were consistently and significantly altered in the presence of bile in the growth medium. Peptide mass fingerprinting was used to identify these 28 proteins, and functional annotation revealed their involvement in carbohydrate metabolism, transcription-translation, nucleotide metabolism, amino acid biosynthesis, pH homeostasis and stress responses, oxidation-reduction reactions, and unknown functions. These findings, which suggest that bile salts induce complex physiological responses in L. reuteri may provide early new insights into the inducible mechanisms underlying the capacity of intestinal L. reuteri to tolerate bile stress.
Collapse
Affiliation(s)
- KiBeom Lee
- Department of Biotechnology, SongDo Techno Park, 7-50 Songdo-Dong, Yeonsu-Gu, Incheon 406-840, Republic of Korea.
| | | | | |
Collapse
|
43
|
Salmonella enterica serovar Typhimurium BipA exhibits two distinct ribosome binding modes. J Bacteriol 2008; 190:5944-52. [PMID: 18621905 DOI: 10.1128/jb.00763-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.
Collapse
|
44
|
Wang F, Zhong NQ, Gao P, Wang GL, Wang HY, Xia GX. SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance. PLANT, CELL & ENVIRONMENT 2008; 31:982-94. [PMID: 18373622 DOI: 10.1111/j.1365-3040.2008.01810.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Suaeda salsa is a leaf-succulent euhalophytic plant capable of surviving under seawater salinity. Here, we report the isolation and functional analysis of a novel Suaeda gene (designated as SsTypA1) encoding a member of the TypA/BipA GTPase gene family. The steady-state transcript level of SsTypA1 in S. salsa was up-regulated in response to various external stressors. Expression of SsTypA1 was restricted to the epidermal layers of the leaf and stem in S. salsa, and SsTypA1-green fluorescence protein (GFP) fusion proteins were targeted to the chloroplasts of tobacco leaves. Ectopic over-expression of SsTypA1 rendered the transgenic tobacco plants with significantly increased tolerance to oxidative stress, and this was accompanied by a reduction in H(2)O(2) content. Enzymatic and Western blot analyses revealed that the activity and amount of the thylakoid-bound NAD(P)H dehydrogenase (NDH) complex in the chloroplasts of leaf cells were enhanced. Additionally, an in vitro assay demonstrated that SsTypA1 bound to GTP and possessed GTPase activity that was stimulated by the presence of chloroplast 70S ribosomes. Together, these results suggest that SsTypA1 may play a critical role in the development of oxidative stress tolerance, perhaps as a translational regulator of the stress-responsive proteins involved in reactive oxygen species (ROS) suppression in chloroplast.
Collapse
Affiliation(s)
- Fang Wang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences; National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
45
|
Ampomah OY, Jensen JB, Bhuvaneswari TV. Lack of trehalose catabolism in Sinorhizobium species increases their nodulation competitiveness on certain host genotypes. THE NEW PHYTOLOGIST 2008; 179:495-504. [PMID: 19086182 DOI: 10.1111/j.1469-8137.2008.02460.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of host and bacterial genotypes in determining the competitiveness of trehalose utilization mutants of Sinorhizobium meliloti and Sinorhizobium medicae was investigated here. Trehalose utilization mutants of S. meliloti and S. medicae were obtained by mutagenesis of their trehalose utilization gene thuB. The mutant strains and the wild type were coinoculated on three cultivars of alfalfa (Medicago sativa) and two cultivars of Medicago truncatula and assessed for competitiveness in root colonization, and nodule occupancy. The thuB mutants formed more nodules than their parent strains on two of the three alfalfa lines tested and on one of the two M. truncatula lines tested. They were not more competitive on the other alfalfa and M. truncatula lines. Their competitiveness for nodule occupancy did not correlate positively with their ability to colonize these roots but correlated with the extent of thuB induction in the infection threads. Induction of thuB was shown to be dependent on the concentration of trehalose in the environment. These results suggest a direct role for host trehalose metabolism in early plant-symbiont interactions and show that the ability to manage host-induced stresses during infection, rather than the ability to colonize the root, is critical for competitive nodulation.
Collapse
Affiliation(s)
- Osei Yaw Ampomah
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| | - John Beck Jensen
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| | - T V Bhuvaneswari
- Department of Biology, Faculty of Science, University of Tromsø, N-9037, Norway
| |
Collapse
|
46
|
Barak M, Trebitsh T. A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.). PLANT MOLECULAR BIOLOGY 2007; 65:829-37. [PMID: 17924061 DOI: 10.1007/s11103-007-9246-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 09/20/2007] [Indexed: 05/05/2023]
Abstract
Cucumber (Cucumis sativus) is a monoecious plant that serves as a model for the study of floral sex determination. The genetic background, hormonal and environmental factors regulating unisexual flower development are well characterized, however, the molecular mechanisms are less well understood. To isolate genes involved in male and female flower development we conducted a differential cDNA-Amplified Fragment Length Polymorphism analysis using plant growth apices of predominantly male (monoecious) and female (gynoecious) near isogenic cucumber lines. The plant apices of monoecious cucumbers carry bisexual and unisexual male floral buds while gynoecious ones carry bisexual and unisexual female floral buds. We isolated a cDNA fragment that encodes a putative GTP binding tyrosine phosphorylated protein A (CsTypA1) that is developmentally regulated. CsTypA1 is expressed in stamen primordia and its transcript is more abundant in monoecious plant apices implying a role for CsTypA1 in the early stages of male reproductive organ development. At later stages of flower development a higher transcript level is observed in female flowers in stigmatic papilla, nectary and in particular ovule/ovary tissue. The differential expression of CsTypA1 during male and female flower development indicates a role for CsTypA1 in female flower development, in particular that of the ovary/ovule. Thus, CsTypA1 might have a dual role, one in the early stages of flower development, possibly during sex determination, and the other in the development of the ovary/ovule. This is the first report of a gene encoding a putative TypA in the plant kingdom that is differentially expressed during plant development.
Collapse
Affiliation(s)
- Matat Barak
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| | | |
Collapse
|
47
|
Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl Environ Microbiol 2007; 73:6650-9. [PMID: 17720818 PMCID: PMC2075074 DOI: 10.1128/aem.01514-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N(2) fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C(4) metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.
Collapse
Affiliation(s)
- Shino Suzuki
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tan BM, Tu QV, Kovach Z, Raftery M, Mendz GL. Wolinella succinogenes response to ox-bile stress. Antonie van Leeuwenhoek 2007; 92:319-30. [PMID: 17375366 DOI: 10.1007/s10482-007-9151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/10/2006] [Accepted: 12/13/2006] [Indexed: 11/25/2022]
Abstract
The bacterium Wolinella succinogenes is the only known species of its genus. It was first isolated from cow ruminal fluid, and in cattle, it dwells in the reticulum and rumen compartments of the stomach. The global protein response of W. succinogenes to ox-bile was investigated with the aim to understand bile-tolerance mechanisms of the bacterium. Bacteria were grown in liquid media supplemented with different bile concentrations to determine its effects on growth and morphology. Proteomic analyses served to identify 14 proteins whose expression was modulated by the presence of 0.2% bile. Quantitative real-time PCR analyses of the expression of selected genes were employed to obtain independent confirmation of the proteomics data. Proteins differentially expressed revealed metabolic pathways involved in the adaptation of W. succinogenes to bile. The data suggested that bile stress elicited complex physiological responses rather than just specific pathways, and identified proteins previously unknown to be involved in the adaptation of bacteria to bile.
Collapse
Affiliation(s)
- Bernice M Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
49
|
Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 2007; 8:15. [PMID: 17214893 PMCID: PMC1780047 DOI: 10.1186/1471-2164-8-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 01/10/2007] [Indexed: 12/04/2022] Open
Abstract
Background Translational GTPases are a family of proteins in which GTPase activity is stimulated by the large ribosomal subunit. Conserved sequence features allow members of this family to be identified. Results To achieve accurate protein identification and grouping we have developed a method combining searches with Hidden Markov Model profiles and tree based grouping. We found all the genes for translational GTPases in 191 fully sequenced bacterial genomes. The protein sequences were grouped into nine subfamilies. Analysis of the results shows that three translational GTPases, the translation factors EF-Tu, EF-G and IF2, are present in all organisms examined. In addition, several copies of the genes encoding EF-Tu and EF-G are present in some genomes. In the case of multiple genes for EF-Tu, the gene copies are nearly identical; in the case of multiple EF-G genes, the gene copies have been considerably diverged. The fourth translational GTPase, LepA, the function of which is currently unknown, is also nearly universally conserved in bacteria, being absent from only one organism out of the 191 analyzed. The translation regulator, TypA, is also present in most of the organisms examined, being absent only from bacteria with small genomes. Surprisingly, some of the well studied translational GTPases are present only in a very small number of bacteria. The translation termination factor RF3 is absent from many groups of bacteria with both small and large genomes. The specialized translation factor for selenocysteine incorporation – SelB – was found in only 39 organisms. Similarly, the tetracycline resistance proteins (Tet) are present only in a small number of species. Proteins of the CysN/NodQ subfamily have acquired functions in sulfur metabolism and production of signaling molecules. The genes coding for CysN/NodQ proteins were found in 74 genomes. This protein subfamily is not confined to Proteobacteria, as suggested previously but present also in many other groups of bacteria. Conclusion Four of the translational GTPase subfamilies (IF2, EF-Tu, EF-G and LepA) are represented by at least one member in each bacterium studied, with one exception in LepA. This defines the set of translational GTPases essential for basic cell functions.
Collapse
|
50
|
Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 2006; 11:343-54. [PMID: 17123128 DOI: 10.1007/s00792-006-0042-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/22/2006] [Indexed: 10/23/2022]
Abstract
It is crucial to examine the physiological processes of psychrophiles at temperatures below 4 degrees C, particularly to facilitate extrapolation of laboratory results to in situ activity. Using two dimensional electrophoresis, we examined patterns of protein abundance during growth at 16, 4, and -4 degrees C of the eurypsychrophile Psychrobacter cryohalolentis K5 and report the first identification of cold inducible proteins (CIPs) present during growth at subzero temperatures. Growth temperature substantially reprogrammed the proteome; the relative abundance of 303 of the 618 protein spots detected (approximately 31% of the proteins at each growth temperature) varied significantly with temperature. Five CIPs were detected specifically at -4 degrees C; their identities (AtpF, EF-Ts, TolC, Pcryo_1988, and FecA) suggested specific stress on energy production, protein synthesis, and transport during growth at subzero temperatures. The need for continual relief of low-temperature stress on these cellular processes was confirmed via identification of 22 additional CIPs whose abundance increased during growth at -4 degrees C (relative to higher temperatures). Our data suggested that iron may be limiting during growth at subzero temperatures and that a cold-adapted allele was employed at -4 degrees C for transport of iron. In summary, these data suggest that low-temperature stresses continue to intensify as growth temperatures decrease to -4 degrees C.
Collapse
Affiliation(s)
- Corien Bakermans
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|