1
|
Boushell SC, Hu M. Postinfection Application of Fenhexamid at Lower Doses in Conjunction with Captan Slowed Fungicide Resistance Selection in Botrytis cinerea on Detached Grape Berries. PHYTOPATHOLOGY 2024; 114:368-377. [PMID: 37606323 DOI: 10.1094/phyto-04-23-0141-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fungicide resistance is a limiting factor in sustainable crop production. General resistance management strategies such as rotation and mixtures of fungicides with different modes of action have been proven to be effective in many studies, but guidance on fungicide dose or application timing for resistance management remains unclear or debatable. In this study, Botrytis cinerea and the high-risk fungicide fenhexamid were used to determine the effects of fungicide dose, mixing partner, and application timing on resistance selection across varied frequencies of resistance via detached fruit assays. The results were largely consistent with the recent modeling studies that favored the use of the lowest effective fungicide dose for improved resistance management. In addition, even 10% resistant B. cinerea in the population led to about a 40% reduction of fenhexamid efficacy. Overall, our findings show that application of doses less than the fungicide label dose, mixture with the low-risk fungicide captan, and application postinfection seem to be the most effective management strategies in our controlled experimental settings. This somewhat contradicts the previous assumption that preventative sprays help resistance management.
Collapse
Affiliation(s)
- Stephen C Boushell
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| |
Collapse
|
2
|
Wang F, Saito S, Michailides TJ, Xiao CL. Fungicide Resistance in Alternaria alternata from Blueberry in California and Its Impact on Control of Alternaria Rot. PLANT DISEASE 2022; 106:1446-1453. [PMID: 34874181 DOI: 10.1094/pdis-09-21-1971-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternaria rot caused by Alternaria alternata is one of the major postharvest diseases affecting blueberries in California. The sensitivity profiles of A. alternata from blueberry field to quinone outside inhibitors (QoIs), boscalid, fluopyram, fludioxonil, cyprodinil, and polyoxin D in California were examined in this study. EC50 values of 51 A. alternata isolates for boscalid varied greatly among the isolates, ranging from 0.265 to >100 μg/ml. EC50 values of 51 A. alternata isolates to fluopyram, fludioxonil, cyprodinil, and polyoxin D were 5.188 ± 7.118, 0.078 ± 0.021, 0.465 ± 0.302, and 6.238 ± 7.352 μg/ml, respectively. In total, 143 isolates were screened for resistance at 5 and 10 μg/ml for fludioxonil, cyprodinil, and fluopyram, 10 μg/ml for polyoxin D, and 10 and 50 μg/ml for boscalid. Based on the published discriminatory concentrations for phenotyping resistance, of the 143 isolates, all were considered resistant to boscalid; 32, 69, and 42 were sensitive, low resistant, and resistant to fluopyram, respectively; and all were sensitive to fludioxonil and cyprodinil. In a PCR-restriction fragment length polymorphism method for phenotyping, 60 out of the 143 isolates were classified as resistant to QoIs. Control tests on detached blueberry fruit inoculated with different Alternaria isolates showed that fludioxonil and cyprodinil significantly reduced disease incidence and severity; however, pyraclostrobin, boscalid, fluopyram, and polyoxin D significantly reduced only disease severity. The obtained results will be helpful in making decisions on fungicide programs to control A. alternata isolates with resistance or reduced sensitivities to multiple fungicides.
Collapse
Affiliation(s)
- Fei Wang
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Seiya Saito
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Themis J Michailides
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Chang-Lin Xiao
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
3
|
Li Z, Dai Z, Jiang D, Dai Y, Jin Y, Fu Q, Liang X. Bioactivity-guided separation of antifungal compounds by preparative high-performance liquid chromatography. J Sep Sci 2021; 44:2382-2390. [PMID: 33835699 DOI: 10.1002/jssc.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 01/11/2023]
Abstract
Bioactivity-guided chromatographic methods are of great significance for the isolation of the active compounds in complex samples. In this study, four anti-fungal compounds were located by activity screening and successfully isolated from a microbial fermentation sample by preparative high-performance liquid chromatography. Separation performance of columns including C18, positively charged C18, negatively charged C18 and C8 were firstly investigated. And it showed a better capacity of mixed-mode stationary phases for retention and separation. Therefore, the positively charged C18 column was used to separate the sample into several fractions, among which the active one was identified by the antifungal test. And then the active fraction was enriched and separated again by successively using the negatively charged C18 and C8 columns to obtain four compounds, which were identified as polyoxins A, K, F and H. With activity verification, four polyoxins were found to have good inhibitory effects against the three fungal plant diseases including rice sheath blight, tomato grey mould disease, and apple spot leaf disease.
Collapse
Affiliation(s)
- Zhidong Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China.,Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
4
|
Li Z, Fu Q, Li S, Jin Y, Liang X. Systematic evaluation and optimization of high‐performance liquid chromatography separation of polyoxins. J Sep Sci 2020; 43:3006-3016. [DOI: 10.1002/jssc.202000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Zhidong Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of PharmacyEast China University of Science and Technology Shanghai P.R. China
| | - Qing Fu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of PharmacyEast China University of Science and Technology Shanghai P.R. China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of PharmacyEast China University of Science and Technology Shanghai P.R. China
| | - Yu Jin
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of PharmacyEast China University of Science and Technology Shanghai P.R. China
| | - Xinmiao Liang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of PharmacyEast China University of Science and Technology Shanghai P.R. China
- Key Laboratory of Separation Science for Analytical Chemistry, Key Laboratory of Natural Medicine, Liaoning Province, Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P.R. China
| |
Collapse
|
5
|
Muñoz M, Faust JE, Schnabel G. Characterization of Botrytis cinerea From Commercial Cut Flower Roses. PLANT DISEASE 2019; 103:1577-1583. [PMID: 31082321 DOI: 10.1094/pdis-09-18-1623-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Botrytis cinerea Pers. infects cut flower roses (Rosa × hybrida L.) during greenhouse production and gray mold symptoms are often expressed in the postharvest environment, resulting in significant economic losses. Disease management is based on cultural practices and preventative chemical treatments; however, gray mold outbreaks continue to occur. Rose tissues from six commercial shipments from two greenhouses in Colombia were evaluated to determine the Botrytis species composition as well as identify other pathogens present, gray mold incidence and severity, and fungicide resistance profiles. Botrytis isolates (49 total) were grouped into six morphological phenotypes, and all were identified to be B. cinerea sensu stricto. Disease incidence was higher in the petals than in the stem, stamen, ovary, sepal, or leaf tissues. Other fungi were isolated infrequently and included Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, Penicillium citrinum, Aspergillus brasiliensis, and Diplodia sp. Fungicide resistance profiles were determined using previously established discriminatory doses. Isolates resistant to thiophanate-methyl, iprodione, boscalid, and cyprodinil were found frequently in all shipments and in both greenhouses. The frequency of resistance to penthiopyrad, fenhexamid, fluopyram, isofetamid, and fludioxonil varied between shipments and greenhouses. No resistance to pydiflumetofen was observed at the discriminatory doses tested. Isolates with resistance to multiple chemical classes were commonly found. These results indicate that fungicide resistance management practices may improve preharvest and postharvest gray mold control of cut flower roses.
Collapse
Affiliation(s)
- M Muñoz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - J E Faust
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - G Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
6
|
Cosseboom SD, Ivors KL, Schnabel G, Bryson PK, Holmes GJ. Within-Season Shift in Fungicide Resistance Profiles of Botrytis cinerea in California Strawberry Fields. PLANT DISEASE 2019; 103:59-64. [PMID: 30422743 DOI: 10.1094/pdis-03-18-0406-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sensitivity of Botrytis cinerea to seven fungicide chemical classes was determined for 888 isolates collected in 2016 from 47 California strawberry fields. Isolates were collected early season (minimum fungicide exposure) and late season (maximum fungicide exposure) from the same planting block in each field. Resistance was determined using a mycelial growth assay, and variable frequencies of resistance were observed to each fungicide at both sampling times (early season %, late season %): boscalid (12, 35), cyprodinil (12, 46), fenhexamid (53, 91), fludioxonil (1, 4), fluopyram (2, 7), iprodione (25, 8), isofetamid (0, 1), penthiopyrad (8, 25), pyraclostrobin (77, 98), and thiophanate-methyl (81, 96). Analysis of number of chemical class resistances (CCRs) revealed an increasing shift in CCR from the early to late season. Phenotypes of 40 isolates that were resistant or sensitive to different chemical classes were associated with presence or absence of mutations in target genes. Fungicide-resistance phenotypes determined in the mycelial growth assay closely matched (93.8%) the genotype observed. Previously described resistance-conferring mutations were found for each gene. A survey of fungicide use from 32 of the sampled fields revealed an average of 15 applications of gray mold-labeled fungicides per season at an average interval of 12 days. The most frequently applied fungicides (average number of applications during the 2016 season) were captan (7.3), pyraclostrobin (2.5), cyprodinil (2.3), fludioxonil (2.3), boscalid (1.8), and fenhexamid (1.4). Multifungicide resistance is widespread in California. Resistance management tactics that reduce selection pressure by limiting fungicide use, rotating among Fungicide Resistance Action Committee codes, and mixing/rotating site-specific fungicides with multisite fungicides need to be improved and implemented.
Collapse
Affiliation(s)
- Scott D Cosseboom
- Department of Horticulture and Crop Science, California Polytechnic State University, San Luis Obispo, 93407
| | - Kelly L Ivors
- Department of Horticulture and Crop Science, California Polytechnic State University, San Luis Obispo, 93407
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Patricia K Bryson
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
7
|
Dowling ME, Hu MJ, Schnabel G. Fungicide Resistance in Botrytis fragariae and Species Prevalence in the Mid-Atlantic United States. PLANT DISEASE 2018; 102:964-969. [PMID: 30673377 DOI: 10.1094/pdis-10-17-1615-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botrytis fragariae was recently described causing gray mold of strawberry in Germany and the United States. The goal of the present study was to determine its prevalence, distribution, and sensitivity to fungicides in strawberry fields of five states. In total, 188 Botrytis isolates were obtained from flowers and fruit collected from the states of Maryland (n = 35), Virginia (n = 38), North Carolina (n = 46), South Carolina (n = 41), and Georgia (n = 28). Only 13 of these were fruit samples and came from South Carolina (n = 5) and Georgia (n = 8). B. fragariae made up 35.1% of the entire collection, and composed close to half of the Botrytis population in North Carolina (43.4%), South Carolina (61.0%), and Georgia (42.9%). One isolate of B. mali was also found, and the rest of the isolates were B. cinerea (sensu lato). B. fragariae and B. cinerea were found coexisting in 11 fields, while other field samples consisted of only B. fragariae (n = 3) or only B. cinerea (n = 10) isolates. B. fragariae isolates with resistance to one or more fungicides were found, and resistance profiles differed from those of B. cinerea, in that no resistance to cyprodinil (FRAC 8) or boscalid and other FRAC 7 botryticides was detected. We detected B. fragariae resistance to the active ingredients thiophanate-methyl, iprodione, fludioxonil, and fenhexamid. We also detected B. fragariae isolates with resistance to up to four chemical classes of fungicides, though most isolates were resistant to one or two chemical classes. In conclusion, isolates of the newly detected species B. fragariae were commonly found on strawberry flowers in the Mid-Atlantic United States, and have developed resistance to many of the most commonly used botryticides. Though the relevance of this species to pre- and postharvest fruit infections is unknown, fludioxonil applications may give this species a competitive advantage over B. cinerea. Controlling this fungus with FRAC 7 fungicides may be an effective way of limiting its spread in strawberry fields.
Collapse
Affiliation(s)
- Madeline E Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Meng-Jun Hu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
8
|
Dowling ME, Hu MJ, Schnabel G. Identification and Characterization of Botrytis fragariae Isolates on Strawberry in the United States. PLANT DISEASE 2017; 101:1769-1773. [PMID: 30676928 DOI: 10.1094/pdis-03-17-0316-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray mold is a devastating disease on strawberry, and may be caused by several species of Botrytis. The goal of this study was to better understand and characterize the species of Botrytis with reduced sensitivity to the fungicide Polyoxin D, particularly Botrytis fragariae. In total, 78 Botrytis isolates of unknown species that were sensitive (28 isolates; S), moderately sensitive (22 isolates; MS), or reduced sensitive (28 isolates; RS) to Polyoxin-D were collected from commercial strawberry fields of five states in the United States, identified to the species level, and characterized. The majority (75%) of S isolates were Botrytis cinerea and the majority (79%) of RS isolates were the recently described species B. fragariae, indicating an innate ability of B. fragariae to tolerate Polyoxin-D. B. fragariae produced fluffy, white mycelium and was less likely to sporulate on potato dextrose agar than B. cinerea. Isolates from a commercial field recovered from blossoms in early spring were all B. fragariae, those from leaves of the same plants in late spring were a mixture of B. fragariae and B. cinerea, and those from fruit in early summer were all B. cinerea, indicating that B. fragariae may preferentially colonize blossom tissue. A polymerase chain reaction-based assay was developed based on NEP2 sequence variability to distinguish B. fragariae from other Botrytis spp. that have been reported on strawberry, including B. cinerea, B. mali, B. caroliniana, and B. ricini. None of the isolates collected from Canada, California, or North Carolina nurseries were B. fragariae, indicating that the newly described species may not exist or not be widely distributed in planting stock.
Collapse
Affiliation(s)
- Madeline E Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Meng-Jun Hu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|