1
|
Salo W, Considine JA, Considine MJ. Influence of mixed and single infection of grapevine leafroll-associated viruses and viral load on berry quality. TREE PHYSIOLOGY 2024; 44:tpae035. [PMID: 38501881 PMCID: PMC11070139 DOI: 10.1093/treephys/tpae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Grapevine leafroll disease is a viral disease that affects grapevines (Vitis vinifera L.) and has a severe economic impact on viticulture. In this study, the effect of grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the identity of the clones: clone 3236, infected only with GLRaV-3 (termed single); clone 3215, infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed mixed); and a viral free clone of the same genetic background of the infected clones (termed control). The berry quality indices of size, sugar, acidity and anthocyanin content were measured at harvest maturity. RT-qPCR was used to determine the viral load. The study was repeated over 2 year. A two-way, multivariate analysis of variance was applied with clone and year as independent variables and the measured berry quality parameters as a dependent variable. All dependent variables were significantly affected by viral infection (Wilks, λ, (2,33) = 0.033895, P-value <0.001), while only titratable acidity was affected by year. The average berry dry mass decreased (P-value <0.001). The water content of both infected clones was greater than that of the control (P-value <0.001). Both infected clones displayed reduced sugar content as a fraction of the berry dry mass (P-value <0.001). The anthocyanin and the phenol content of the infected clones were significantly reduced compared with the control clone (P < 0.001, P < 0.05, clone 3236 and clone 3215, respectively). Finally, the viral load was highly variable, and no quantitative relationship between viral load and berry composition was found.
Collapse
Affiliation(s)
- Wisam Salo
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia
- The School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Department of Primary Industries and Regional Development, Perth 6009, Australia
| |
Collapse
|
2
|
Gaši E, Radić T, Čarija M, Gambino G, Balestrini R, Hančević K. Arbuscular Mycorrhizal Fungi Induce Changes of Photosynthesis-Related Parameters in Virus Infected Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091783. [PMID: 37176841 PMCID: PMC10180532 DOI: 10.3390/plants12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The negative effects of viruses and the positive effects of arbuscular mycorrhizal fungi (AMF) on grapevine performance are well reported, in contrast to the knowledge about their interactive effects in perennial plants, e.g., in grapevine. To elucidate the physiological consequences of grapevine-AMF-virus interactions, two different AMF inoculum (Rhizophagus irregularis and 'Mix AMF') were used on grapevine infected with grapevine rupestris stem pitting virus, grapevine leafroll associated virus 3 and/or grapevine pinot gris virus. Net photosynthesis rate (AN), leaf transpiration (E), intercellular CO2 concentration (Ci) and conductance to H2O (gs) were measured at three time points during one growing season. Furthermore, quantum efficiency in light (ΦPSII) and electron transport rate (ETR) were surveyed in leaves of different maturity, old (basal), mature (middle) and young (apical) leaf. Lastly, pigment concentration and growth parameters were analysed. Virus induced changes in grapevine were minimal in this early infection stage. However, the AMF induced changes of grapevine facing biotic stress were most evident in higher net photosynthesis rate, conductance to H2O, chlorophyll a concentration, total carotenoid concentration and dry matter content. The AMF presence in the grapevine roots seem to prevail over virus infection, with Rhizophagus irregularis inducing greater photosynthesis changes in solitary form rather than mixture. This study shows that AMF can be beneficial for grapevine facing viral infection, in the context of functional physiology.
Collapse
Affiliation(s)
- Emanuel Gaši
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Tomislav Radić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Katarina Hančević
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
3
|
Čarija M, Černi S, Stupin-Polančec D, Radić T, Gaši E, Hančević K. Grapevine Leafroll-Associated Virus 3 Replication in Grapevine Hosts Changes through the Dormancy Stage. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233250. [PMID: 36501290 PMCID: PMC9737106 DOI: 10.3390/plants11233250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a graft-transmissible virus present in every viticultural region of the world and poses a large threat to grapevine production. Frequent coinfections with other viruses, the large number of grapevine varieties, the complexity of processes involved in plant response to virus infection, and the lack of studies on GLRaV-3 replication limit our knowledge of GLRaV-3 damaging effects and their background. In this study, five different inocula, one containing GLRaV-3 and others containing GLRaV-3 in combination with different grapevine viruses were green grafted to 52 different grapevine plants of four varieties to analyze the influence of the phenological stage and virus composition on GLRaV-3 replication. Relative concentration analysis by quantitative PCR conducted over a 16-month period revealed that other viruses as well as plant stage had a significant effect on GLRaV-3 replication and symptoms expression. The replication was most pronounced in the deep dormancy stage at the beginning of the infection, and the least at the exit of the dormancy stage. This study brings new insight into GLRaV-3 replication and discusses about viral interactions in one of the most economically important perennial plants, the grapevine.
Collapse
Affiliation(s)
- Mate Čarija
- Institute for Adriatic Crops, 21000 Split, Croatia
| | - Silvija Černi
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Emanuel Gaši
- Institute for Adriatic Crops, 21000 Split, Croatia
| | | |
Collapse
|
4
|
El Aou-ouad H, Montero R, Baraza E, Bota J. Recovering Ancient Grapevine Cultivars in the Balearic Islands: Sanitary Status Evaluation and Virus Elimination. PLANTS (BASEL, SWITZERLAND) 2022; 11:1754. [PMID: 35807705 PMCID: PMC9268875 DOI: 10.3390/plants11131754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Recuperation and genetic diversity preservation of local cultivars have acquired a huge interest in viticulture areas worldwide. In the Balearic Islands, most of the old cultivars are only preserved in grapevine germplasm banks, and so far, the sanitary status of these local cultivars has remained unexplored. The aim of this study was to survey and detect the virus incidence of all conserved cultivars in the government Grapevine Germplasm Bank of the Balearic Islands and to promote the sanitary recovery of two important minor cultivars, Argamussa and Gorgollassa. Enzyme-linked immunosorbent assay (ELISA) screenings were performed on 315 vines of 33 local cultivars. It was shown that the local cultivars were highly infected with simple (39.7%) and mixed infections (52.1%) and only 8.25% of them were free from the viruses tested. Grapevine leafroll-associated virus 3 (GLRaV-3) infection was the most common (82%). Moreover, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV) were also present with considerable incidence (25.4% and 43.5%, respectively). In addition, two sanitation protocols were used: shoot tip culture (ST) and thermotherapy in combination with shoot tip culture (CT). Virus elimination using only ST was effective to obtain "healthy" vines of cvs. Argamussa and Gorgollassa. It is important to emphasize that the methods described in the current study were rapid and effective in eliminating both GLRaV-3 and GFLV, also in combination.
Collapse
Affiliation(s)
- Hanan El Aou-ouad
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
- Ecology and Environment Laboratory, Faculty of Science Ben M’sik, University Hassan II, Casablanca 20000, Morocco
| | - Rafael Montero
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| | - Elena Baraza
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA-UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain; (H.E.A.-o.); (R.M.); (E.B.)
| |
Collapse
|
5
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
6
|
Velasco L, Padilla CV. High-Throughput Sequencing of Small RNAs for the Sanitary Certification of Viruses in Grapevine. FRONTIERS IN PLANT SCIENCE 2021; 12:682879. [PMID: 34367209 PMCID: PMC8336637 DOI: 10.3389/fpls.2021.682879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Biological indexing is the method generally recognized for the certification of propagative grapevines in many countries, and it is mandatory in the European Union. It consists of the evaluation of the plant material after grafting on indicators that are inspected for symptom development. This is a lengthy process that requires well-trained workers, testing field, etc. Alternative diagnostic methods such as serology and RT-qPCR have been discarded for certification because of their intrinsic drawbacks. In turn, high-throughput sequencing (HTS) of plant RNA has been proposed as a plausible alternative to bioassay, but before it is accepted, different aspects of this process must be evaluated. We have compared the HTS of small RNAs with bioassays and other diagnostic methods from a set of 40 grapevine plants submitted for certification. The results allowed the authors the identification of numerous grapevine viruses in the samples, as well as different variants. Besides, relationships between symptom expression and viromes were investigated, in particular leafroll-associated viruses. We compared HTS results using analytical and bioinformatics approaches in order to define minimum acceptable quality standards for certification schemes, resulting in a pipeline proposal. Finally, the comparison between HTS and bioassay resulted favorable for the former in terms of reliability, cost, and timing.
Collapse
Affiliation(s)
- Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Málaga, Spain
| | - Carlos V. Padilla
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| |
Collapse
|
7
|
Morán F, Sassalou CL, Canales C, Maliogka VI, Olmos A, Ruiz-García AB. Specific Real-Time PCR for the Detection and Absolute Quantitation of Grapevine Roditis Leaf Discoloration-Associated Virus, an EPPO Alert Pathogen. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1151. [PMID: 32899894 PMCID: PMC7569790 DOI: 10.3390/plants9091151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022]
Abstract
Grapevine Roditis leaf discoloration-associated virus (GRLDaV) is an emerging grapevine pathogen included in the European and Mediterranean Plant Protection Organization (EPPO) alert list due to its ability to damage grapevine crops and cause production losses. This work aimed to develop a specific and reliable diagnostic tool that would contribute to preventing the spread of this pathogen. Therefore, a TaqMan real-time quantitative PCR was developed. The method was validated according to EPPO guidelines showing a high degree of analytical sensitivity, analytical specificity, selectivity, and repeatability and reproducibility. The sensitivity of this method is much higher than the sensitivity reached by previously reported methods even when tested in crude extracts, which could allow rapid testing by avoiding nucleic acid extraction steps. The method was also able to detect GRLDaV isolates from all the geographic origins reported so far, despite their high degree of genetic diversity. In addition, this new technique has been successfully applied for the quantitative detection of GRLDaV in plant material and two mealybug species, Planococcus citri and Pseudococcus viburni. In conclusion, the methodology developed herein represents a significant contribution to the diagnosis and control of this emerging pathogen in grapevine.
Collapse
Affiliation(s)
- Félix Morán
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, Moncada, 46113 Valencia, Spain; (F.M.); (C.C.); (A.O.)
| | - Chrysoula-Lito Sassalou
- Plant Pathology Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.-L.S.); (V.I.M.)
| | - Celia Canales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, Moncada, 46113 Valencia, Spain; (F.M.); (C.C.); (A.O.)
| | - Varvara I. Maliogka
- Plant Pathology Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.-L.S.); (V.I.M.)
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, Moncada, 46113 Valencia, Spain; (F.M.); (C.C.); (A.O.)
| | - Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, Moncada, 46113 Valencia, Spain; (F.M.); (C.C.); (A.O.)
| |
Collapse
|
8
|
Single berry reconstitution prior to RNA-sequencing reveals novel insights into transcriptomic remodeling by leafroll virus infections in grapevines. Sci Rep 2020; 10:12905. [PMID: 32737411 PMCID: PMC7395792 DOI: 10.1038/s41598-020-69779-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Leafroll viruses are among the most devastating pathogens in viticulture and are responsible for major economic losses in the wine industry. However, the molecular interactions underlying the effects on fruit quality deterioration are not well understood. The few molecular studies conducted on berries from infected vines, associated quality decreases with the repression of key genes in sugar transport and anthocyanin biosynthesis. Sampling protocols in these studies did however not account for berry heterogeneity and potential virus induced phenological shifts, which could have biased the molecular information. In the present study, we adopted an innovative individual berry sampling protocol to produce homogeneous batches for RNA extraction, thereby circumventing berry heterogeneity and compensating for virus induced phenological shifts. This way a characterization of the transcriptomic modulation by viral infections was possible and explain why our results differ significantly from previously reported repression of anthocyanin biosynthesis and sugar metabolism. The present study provides new insights into the berry transcriptome modulation by leafroll infection, highlighting the virus induced upregulation of plant innate immunity as well as an increased responsiveness of the early ripening berry to biotic stressors. The study furthermore emphasizes the importance of sampling protocols in physiological studies on grapevine berry metabolism.
Collapse
|
9
|
Xiao H, Li C, Al Rwahnih M, Dolja V, Meng B. Metagenomic Analysis of Riesling Grapevine Reveals a Complex Virome Including Two New and Divergent Variants of Grapevine leafroll-associated virus 3. PLANT DISEASE 2019; 103:1275-1285. [PMID: 30932733 DOI: 10.1094/pdis-09-18-1503-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The virome of a major white wine grape of cultivar Riesling showing decline and leafroll disease symptoms was analyzed through high-throughput sequencing (HTS) using total RNAs as templates and the Illumina HiSeq 2500 platform. Analysis of HTS data revealed the presence of five viruses and three viroids in the infected vine. These viruses are Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 (genus Ampelovirus, family Closteroviridae) and three viruses of the family Betaflexiviridae (namely, Grapevine virus A [GVA], Grapevine virus B, and Grapevine rupestris stem pitting-associated virus [GRSPaV]). We also show that multiple distinct strains of three viruses (GLRaV-3, GVA, and GRSPaV) were present in this diseased grapevine. The complete genomes of two novel and highly divergent isolates of GLRaV-3 were determined using the draft genomes derived from HTS data and two independent rapid amplification of cDNA ends (RACE) strategies to obtain sequences at both the 5' and the 3' termini of the viral genomes. Questionable genome regions of both isolates were also verified through cloning of reverse transcription polymerase chain reaction products and Sanger sequencing. These two isolates are vastly divergent from all other isolates of GLRaV-3 whose genome sequences are available in GenBank. Isolate ON8415A has up to 76% nucleotide sequence identities to other isolates representing existing variant groups. We also revealed high degrees of variation in both length and sequence in the terminal untranslated regions (UTRs) of GLRaV-3 variants. The 5'-UTR of most GLRaV-3 isolates whose complete genomes have been sequenced contain tandem repeats of 65 nucleotides, a highly unusual feature rarely observed in (+)single-stranded RNA viruses. Mechanisms for the biogenesis of these tandem repeats and their function in virus replication and pathogenesis require investigation. Findings of this research add to the genetic diversity, evolutionary biology, and diagnostics of GLRaV-3 that afflicts the global grape wine industry.
Collapse
Affiliation(s)
- Huogen Xiao
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caihong Li
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maher Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A.; and
| | - Valerian Dolja
- 3 Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Baozhong Meng
- 1 Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
El Aou-Ouad H, Bota J, Obata T, Montero R, Fernie AR, Medrano H, Pou A, Florez-Sarasa I. Combined drought and virus infection trigger aspects of respiratory metabolism related to grapevine physiological responses. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:19-30. [PMID: 30212658 DOI: 10.1016/j.jplph.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In the Mediterranean region, grapevines usually deal with drought during their summer growth season. Concurrently, grapevines are hosts to a large number of viruses from which grapevine leafroll associated virus-3 is one of the most widespread and provokes considerable economic losses in many vineyards. However, information concerning grapevine metabolic responses to the combination of drought and viral infection is scarce. Gas-chromatography coupled to mass-spectrometry based metabolite profiling was used in combination with growth analysis, viral loads and gas exchange data to perform an integrative study of the effects of individual and combined stress in two Majorcan grapevine varieties at two experimental years. Metabolic responses of both varieties to the combination of water stress and virus infection were specific and not predicted from the sum of single stress responses. Correlations between respiration, biomass and key metabolites highlight specific adjustments of respiratory and amino acid metabolism possibly underlying the maintenance of carbon balance and growth in grapevines under stress combination.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Toshihiro Obata
- University of Nebraska Lincoln, 1901 Vine Street, Lincoln, 68588 NE, USA
| | - Rafael Montero
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hipolito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Alicia Pou
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
12
|
Morán F, Olmos A, Lotos L, Predajňa L, Katis N, Glasa M, Maliogka V, Ruiz-García AB. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites. PLoS One 2018; 13:e0197237. [PMID: 29763449 PMCID: PMC5953474 DOI: 10.1371/journal.pone.0197237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.
Collapse
Affiliation(s)
- Félix Morán
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Leonidas Lotos
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Plant Pathology Laboratory, Thessaloniki, Greece
| | - Lukáš Predajňa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Nikolaos Katis
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Plant Pathology Laboratory, Thessaloniki, Greece
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Varvara Maliogka
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Plant Pathology Laboratory, Thessaloniki, Greece
| | - Ana B. Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- * E-mail:
| |
Collapse
|
13
|
Montero R, Pérez-Bueno ML, Barón M, Florez-Sarasa I, Tohge T, Fernie AR, Ouad HEA, Flexas J, Bota J. Alterations in primary and secondary metabolism in Vitis vinifera 'Malvasía de Banyalbufar' upon infection with Grapevine leafroll-associated virus 3. PHYSIOLOGIA PLANTARUM 2016; 157:442-52. [PMID: 26926417 DOI: 10.1111/ppl.12440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Plant defense mechanisms against pathogens result in differential regulation of various processes of primary and secondary metabolism. Imaging techniques, such as fluorescence imaging and thermography, are very valuable tools providing spatial and temporal information about these processes. In this study, effects of Grapevine leafroll-associated virus 3 (GLRaV-3) on grapevine physiology were analyzed in pot-grown asymptomatic plants of the white cultivar Malvasía de Banyalbufar. The virus triggered changes in the activity of photosynthesis and secondary metabolism. There was a decrease in the photorespiratory intermediates glycine and serine in infected plants, possibly as a defense response against the infection. The content of malate, which plays an important role in plant metabolism, also decreased. These results correlate with the increased non-photochemical quenching found in infected plants. On the other hand, the concentration of flavonols (represented by myricetin, kaempferol and quercetin derivatives) and hydroxycinnamic acids (which include derivatives of caffeic acid) increased following infection by the virus. These compounds could be responsible for the increase in multicolor fluorescence F440 (blue fluorescence) and F520 (green fluorescence) on the leaves, and changes in the fluorescence parameters F440/F680, F440/F740, F520/F680, F520/F740 and F680/F740. The combined analysis of chlorophyll fluorescence kinetics and blue-green fluorescence emitted by phenolics could constitute disease signatures allowing the discrimination between GLRaV-3 infected and non-infected plants at very early stage of infection, prior to the development of symptoms.
Collapse
Affiliation(s)
- Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Palma de Mallorca, 07009, Spain
| | - María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC), Granada, 18008, Spain
| | - Matilde Barón
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC), Granada, 18008, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | | | - Hanan El Aou Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, 07071, Spain
| | - Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, 07071, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, 07071, Spain
| |
Collapse
|
14
|
El Aou-Ouad H, Montero R, Medrano H, Bota J. Interactive effects of grapevine leafroll-associated virus 3 (GLRaV-3) and water stress on the physiology of Vitis vinifera L. cv. Malvasia de Banyalbufar and Giro-Ros. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:106-115. [PMID: 27153513 DOI: 10.1016/j.jplph.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Among several biotic and abiotic stress combinations, interaction between drought and pathogen is one of the most studied combinations in some crops but still not in grapevine. In the present work, we focused on the interaction effects of biotic (GLRaV-3) and abiotic (drought) stresses on grapevine photosynthetic metabolism on two cultivars (cvs. 'Malvasia de Banyalbufar and Giro-Ros'). Non-infected and GLRaV-3 infected potted plants were compared under water stress conditions (WS) and well-watered (WW) conditions. Under WW condition, the results showed that photosynthesis (AN) in both cultivars was decreased by the presence of GLRaV-3. The stomatal conductance (gs) was the main factor for decreasing AN in Malvasia, meanwhile reductions in Giro-Ros were closely related to decreases in gm. The observed differences in gm between both cultivars might result from variation in their leaf anatomical, Giro-Ros having higher values of gm and leaf porosity (in all treatments). Moderate water deficit resulted in a closure of stomata and a decrease in gm accompanied by a decrease in AN in both cultivars. The maximum velocity of carboxylation (Vcmax) and electron transport rate (Jmax) were also reduced under water stress. Moreover, the combined stress resulted in a reduction of most physiological parameters compared to healthy irrigated plants. However, no considerable differences were found between non-infected and virus infected (GLRaV-3) plants under water stress. Most of the results could be explained by the difference of virus concentration between cultivars and treatments.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, C/Eusebio Estada n° 145, 07009, Palma de Mallorca, Spain
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain.
| |
Collapse
|
15
|
Effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) and duration of infection on fruit composition and wine chemical profile of Vitis vinifera L. cv. Sauvignon blanc. Food Chem 2015; 197 Pt B:1177-83. [PMID: 26675855 DOI: 10.1016/j.foodchem.2015.11.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022]
Abstract
In order to determine the effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) on fruit composition and chemical profile of juice and wine from Vitis vinifera L. cv. Sauvignon blanc grown in New Zealand, composition variables were measured on fruit from vines either infected with GLRaV-3 (established or recent infections) or uninfected vines. Physiological ripeness (20.4°Brix) was the criterion established to determine the harvest date for each of the three treatments. Date of grape ripeness was strongly affected by virus infection. In juice and wine, GLRaV-3 infection prior to 2008 reduced titratable acidity compared with the uninfected control. Differences observed in amino acids from the three infection status groups did not modify basic wine chemical properties. In conclusion, GLRaV-3 infection slowed grape ripening, but at equivalent ripeness to result in minimal effects on the juice and wine chemistry. Time of infection produced differences in specific plant physiological variables.
Collapse
|
16
|
Sharma AM, Baraff B, Hutchins JT, Wong MK, Blaisdell GK, Cooper ML, Daane KM, Almeida RPP. Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS One 2015; 10:e0142120. [PMID: 26529503 PMCID: PMC4631472 DOI: 10.1371/journal.pone.0142120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
Some diseases manifest as one characteristic set of symptoms to the host, but can be caused by multiple pathogens. Control treatments based on plant symptoms can make it difficult to effectively manage such diseases, as the biology of the underlying pathogens can vary. Grapevine leafroll disease affects grapes worldwide, and is associated with several viral species in the family Closteroviridae. Whereas some of the viruses associated with this disease are transmitted by insect vectors, others are only graft-transmissible. In three regions of California, we surveyed vineyards containing diseased vines and screened symptomatic plants for all known viral species associated with grapevine leafroll disease. Relative incidence of each virus species differed among the three regions regions, particularly in relation to species with known vectors compared with those only known to be graft-transmitted. In one region, the pathogen population was dominated by species not known to have an insect vector. In contrast, populations in the other surveyed regions were dominated by virus species that are vector-transmissible. Our survey did not detect viruses associated with grapevine leafroll disease at some sites with characteristic disease symptoms. This could be explained either by undescribed genetic diversity among these viruses that prevented detection with available molecular tools at the time the survey was performed, or a misidentification of visual symptoms that may have had other underlying causes. Based on the differences in relative prevalence of each virus species among regions and among vineyards within regions, we expect that region and site-specific management strategies are needed for effective disease control.
Collapse
Affiliation(s)
- Abhineet M. Sharma
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Breanna Baraff
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - John T. Hutchins
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Michelle K. Wong
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - G. Kai Blaisdell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Suite 4, Napa, CA, 94559, United States of America
| | - Kent M. Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| |
Collapse
|
17
|
Blaisdell GK, Zhang S, Bratburd JR, Daane KM, Cooper ML, Almeida RPP. Interactions Within Susceptible Hosts Drive Establishment of Genetically Distinct Variants of an Insect-Borne Pathogen. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1531-1539. [PMID: 26470292 DOI: 10.1093/jee/tov153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/15/2015] [Indexed: 06/05/2023]
Abstract
Coinfections are common, leading to pathogen interactions during transmission and establishment in a host. However, few studies have tested the relative strengths of pathogen interactions in vectors and hosts that determine the outcome of infection. We tested interactions between two genetically distinct variants of the mealybug-transmitted Grapevine leafroll-associated virus 3. The transmission efficiency of each variant in single variant inoculations by two vector species was determined. The effects of vector species, a coinfected source, and simultaneous inoculation from multiple hosts to one host on variant establishment were examined. Within-vector interactions could have a role in transmission from hosts containing mixed infections, but not when vectors were moved from separate singly infected source plants to a single recipient plant. The invasive Planococcus ficus (Signoret) was a more efficient vector than Pseudococcus viburni (Signoret). Transmission efficiency of the two variants did not differ in single variant inoculations. Overall infections were the same whether from singly or coinfected source plants. In mixed inoculations, establishment of one variant was reduced. Mixed inoculations from two singly infected source plants resulted in fewer mixed infections than expected by chance. Therefore, the observed outcome was determined subsequent to host inoculation rather than in the vector. The outcome may be due to resource competition between pathogens. Alternatively apparent competition may be responsible; the pathogens' differential ability to overcome host defenses and colonize the host may determine the final outcome of new infections. Detailed knowledge of interactions between pathogens during transmission and establishment could improve understanding and management of disease spread.
Collapse
Affiliation(s)
- G K Blaisdell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - S Zhang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - J R Bratburd
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - K M Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - M L Cooper
- Division of Agriculture and Natural Resources, University of California, UC Cooperative Extension, 1710 Soscol Ave., Suite 4, Napa, CA 94559
| | - R P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720.
| |
Collapse
|
18
|
Bester R, Pepler PT, Burger JT, Maree HJ. Relative quantitation goes viral: An RT-qPCR assay for a grapevine virus. J Virol Methods 2014; 210:67-75. [PMID: 25286180 DOI: 10.1016/j.jviromet.2014.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
Accurate detection and quantitation of viruses can be beneficial to plant-virus interaction studies. In this study, three SYBR green real-time RT-PCR assays were developed to quantitate grapevine leafroll-associated virus 3 (GLRaV-3) in infected vines. Three genomic regions (ORF1a, coat protein and 3'UTR) were targeted to quantitate GLRaV-3 relative to three stably expressed reference genes (actin, GAPDH and α-tubulin). These assays were able to detect all known variant groups of GLRaV-3, including the divergent group VI, with equal efficiency. No link could be established between the concentration ratios of the different genomic regions and subgenomic RNA (sgRNA) expression. However, a significant lower virus concentration ratio for plants infected with variant group VI compared to variant group II was observed for the ORF1a, coat protein and the 3'UTR. Significant higher accumulation of the virus in the growth tip was also detected for both variant groups. The quantitation of viral genomic regions under different conditions can contribute to elucidating disease aetiology and enhance knowledge about virus ecology.
Collapse
Affiliation(s)
- R Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - P T Pepler
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - J T Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - H J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch 7599, South Africa.
| |
Collapse
|