1
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Hussain MA, Nijabat A, Rehman MMU, Qurashi R, Siddiqui MH, Alamri S, Mashwani ZUR, Leghari SUK, Shah MA, Zaman QU. Management of Tomato Bacterial Canker Disease by the Green Fabricated Silver Nanoparticles. BMC PLANT BIOLOGY 2024; 24:597. [PMID: 38914943 PMCID: PMC11197350 DOI: 10.1186/s12870-024-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.
Collapse
Affiliation(s)
- Muhammad Arif Hussain
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan.
| | | | - Rahmatullah Qurashi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | | | | | | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
3
|
Yokotani N, Hasegawa Y, Kouzai Y, Hirakawa H, Isobe S. Transcriptome analysis of tomato plants following salicylic acid-induced immunity against Clavibacter michiganensis ssp. michiganensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:273-282. [PMID: 38434116 PMCID: PMC10905565 DOI: 10.5511/plantbiotechnology.23.0711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 03/05/2024]
Abstract
Salicylic acid (SA) is known to be involved in the immunity against Clavibacter michiganensis ssp. michiganensis (Cmm) that causes bacterial canker in tomato. To identify the candidate genes associated with SA-inducible Cmm resistance, transcriptome analysis was conducted via RNA sequencing in tomato plants treated with SA. SA treatment upregulated various defense-associated genes, such as PR and GST genes, in tomato cotyledons. A comparison of SA- and Cmm-responsive genes revealed that both SA treatment and Cmm infection commonly upregulated a large number of genes. Gene Ontology (GO) analysis indicated that the GO terms associated with plant immunity were over-represented in both SA- and Cmm-induced genes. The genes commonly downregulated by both SA treatment and Cmm infection were associated with the cell cycle and may be involved in growth and immunity trade-off through cell division. After SA treatment, several proteins that were predicted to play a role in immune signaling, such as resistance gene analogs, Ca2+ sensors, and WRKY transcription factors, were transcriptionally upregulated. The W-box element, which was targeted by WRKYs, was over-represented in the promoter regions of genes upregulated by both SA treatment and Cmm infection, supporting the speculation that WRKYs are important for the SA-mediated immunity against Cmm. Prediction of protein-protein interactions suggested that genes encoding receptor-like kinases and EF-hand proteins play an important role in immune signaling. Thus, various candidate genes involved in SA-inducible Cmm resistance were identified.
Collapse
Affiliation(s)
- Naoki Yokotani
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshinori Hasegawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
4
|
Koseoglou E, Hanika K, Mohd Nadzir MM, Kohlen W, van der Wolf JM, Visser RGF, Bai Y. Inactivation of tomato WAT1 leads to reduced susceptibility to Clavibacter michiganensis through downregulation of bacterial virulence factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1082094. [PMID: 37324660 PMCID: PMC10264788 DOI: 10.3389/fpls.2023.1082094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Tomato bacterial canker caused by Clavibacter michiganensis (Cm) is considered to be one of the most destructive bacterial diseases of tomato. To date, no resistance to the pathogen has been identified. While several molecular studies have identified (Cm) bacterial factors involved in disease development, the plant genes and mechanisms associated with susceptibility of tomato to the bacterium remain largely unknown. Here, we show for the first time that tomato gene SlWAT1 is a susceptibility gene to Cm. We inactivated the gene SlWAT1 through RNAi and CRISPR/Cas9 to study changes in tomato susceptibility to Cm. Furthermore, we analysed the role of the gene in the molecular interaction with the pathogen. Our findings demonstrate that SlWAT1 functions as an S gene to genetically diverse Cm strains. Inactivation of SlWAT1 reduced free auxin contents and ethylene synthesis in tomato stems and suppressed the expression of specific bacterial virulence factors. However, CRISPR/Cas9 slwat1 mutants exhibited severe growth defects. The observed reduced susceptibility is possibly a result of downregulation of bacterial virulence factors and reduced auxin contents in transgenic plants. This shows that inactivation of an S gene may affect the expression of bacterial virulence factors.
Collapse
Affiliation(s)
- Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences Wageningen University & Research, Wageningen, Netherlands
| | - Katharina Hanika
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mas M. Mohd Nadzir
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Wouter Kohlen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan M. van der Wolf
- Biointeractions & Plant Health, Wageningen University & Research, Wageningen, Netherlands
| | | | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Kawaguchi A, Kitabayashi S, Inoue K, Tanina K. A PHLID Model for Tomato Bacterial Canker Predicting on Epidemics of the Pathogen. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112099. [PMID: 37299079 DOI: 10.3390/plants12112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
A pathogen, healthy, latently infected, infectious, and diseased plant (PHLID) model for botanical epidemics was defined for tomato bacterial canker (TBC) caused by the pathogenic plant bacteria, Clavibacter michiganensis subsp. michiganensis (Cmm). First, the incubation period had to be defined to develop this type of model. To estimate the parameter of incubation period, inoculation experiments were conducted in which it was assumed that infection is transferred to healthy plants by cutting with contaminated scissors after cutting infected plants with early symptoms or symptomless. The concentration of Cmm was increased over 1 × 106 cells/g plant tissue at 20 cm away from the inoculated point on the stem 10 days after inoculation, and then the approximate incubation period of TBC in symptomless infected plants was defined as 10 days. The developed PHLID model showed the dynamics of diseased plants incidence and fitted the curve of the proportion of diseased plants observed in fields well. This model also contains the factors of pathogen and disease control, and it was able to simulate the control effects and combined two different control methods, which were the soil and scissors disinfections to prevent primary and secondary transmissions, respectively. Thus, this PHLID model for TBC can be used to simulate not only the increasing number of diseased plants but also suppressing disease increase.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Western Region Agricultural Research Center (WARC) (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), Fukuyama 721-8514, Hiroshima, Japan
| | - Shoya Kitabayashi
- Western Region Agricultural Research Center (WARC) (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), Fukuyama 721-8514, Hiroshima, Japan
| | - Koji Inoue
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Akaiwa 709-0801, Okayama, Japan
| | - Koji Tanina
- Okayama Agriculture Development Institute, Akaiwa 701-2221, Okayama, Japan
| |
Collapse
|
6
|
Benchlih S, Esmaeel Q, Aberkani K, Tahiri A, Belabess Z, Lahlali R, Barka EA. Modes of Action of Biocontrol Agents and Elicitors for sustainable Protection against Bacterial Canker of Tomato. Microorganisms 2023; 11:microorganisms11030726. [PMID: 36985299 PMCID: PMC10054590 DOI: 10.3390/microorganisms11030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Tomato is one of the world’s most commonly grown and consumed vegetables. However, it can be attacked by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm), which causes bacterial canker on tomato plants, resulting in significant financial losses in field production and greenhouses worldwide. The current management strategies rely principally on the application of various chemical pesticides and antibiotics, which represent a real danger to the environment and human safety. Plant growth-promoting rhizobacteria (PGPR) have emerged as an attractive alternative to agrochemical crop protection methods. PGPR act through several mechanisms to support plant growth and performance, while also preventing pathogen infection. This review highlights the importance of bacterial canker disease and the pathogenicity of Cmm. We emphasize the application of PGPR as an ecological and cost-effective approach to the biocontrol of Cmm, specifying the complex modes of biocontrol agents (BCAs), and presenting their direct/indirect mechanisms of action that enable them to effectively protect tomato crops. Pseudomonas and Bacillus are considered to be the most interesting PGPR species for the biological control of Cmm worldwide. Improving plants’ innate defense mechanisms is one of the main biocontrol mechanisms of PGPR to manage bacterial canker and to limit its occurrence and gravity. Herein, we further discuss elicitors as a new management strategy to control Cmm, which are found to be highly effective in stimulating the plant immune system, decreasing disease severity, and minimizing pesticide use.
Collapse
Affiliation(s)
- Salma Benchlih
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Kamal Aberkani
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Correspondence: (R.L.); (E.A.B.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (R.L.); (E.A.B.)
| |
Collapse
|
7
|
Deletion of pbpC Enhances Bacterial Pathogenicity on Tomato by Affecting Biofilm Formation, Exopolysaccharides Production, and Exoenzyme Activities in Clavibacter michiganensis. Int J Mol Sci 2023; 24:ijms24065324. [PMID: 36982399 PMCID: PMC10049144 DOI: 10.3390/ijms24065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are considered essential for bacterial peptidoglycan biosynthesis and cell wall assembly. Clavibacter michiganensis is a representative Gram-positive bacterial species that causes bacterial canker in tomato. pbpC plays a significant role in maintaining cell morphological characteristics and stress responses in C. michiganensis. The current study demonstrated that the deletion of pbpC commonly enhances bacterial pathogenicity in C. michiganensis and revealed the mechanisms through which this occurs. The expression of interrelated virulence genes, including celA, xysA, xysB, and pelA, were significantly upregulated in △pbpC mutants. Compared with those in wild-type strains, exoenzyme activities, the formation of biofilm, and the production of exopolysaccharides (EPS) were significantly increased in △pbpC mutants. It is noteworthy that EPS were responsible for the enhancement in bacterial pathogenicity, with the degree of necrotic tomato stem cankers intensifying with the injection of a gradient of EPS from C. michiganensis. These findings highlight new insights into the role of pbpC affecting bacterial pathogenicity, with an emphasis on EPS, advancing the current understanding of phytopathogenic infection strategies for Gram-positive bacteria.
Collapse
|
8
|
Bai K, Jiang N, Chen X, Xu X, Li J, Luo L. RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. PHYTOPATHOLOGY 2022; 112:1844-1858. [PMID: 35341314 DOI: 10.1094/phyto-01-22-0023-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xing Chen
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xiaoli Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| |
Collapse
|
9
|
Esquivel-Cervantes LF, Tlapal-Bolaños B, Tovar-Pedraza JM, Pérez-Hernández O, Leyva-Mir SG, Camacho-Tapia M. Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1638. [PMID: 35807589 PMCID: PMC9269266 DOI: 10.3390/plants11131638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Gray mold (Botrytis cinerea), late blight (Phytophthora infestans), powdery mildew (Leveillula taurica), pith necrosis (Pseudomonas corrugata), and bacterial canker (Clavibacter michiganensis) are major diseases that affect tomato (Solanum lycopersicum L.) in greenhouse production in Mexico. Management of these diseases depends heavily on chemical control, with up to 24 fungicide applications required in a single season to control fungal diseases, thus ensuring a harvestable crop. While disease chemical control is a mainstay practice in the region, its frequent use increases the production costs, likelihood of pathogen-resistance development, and negative environmental impact. Due to this, there is a need for alternative practices that minimize such effects and increase profits for tomato growers. The aim of this study is to evaluate the effect of biorational products in the control of these diseases in greenhouse production. Four different treatments, including soil application of Bacillus spp. or B. subtilis and foliar application of Reynoutria sachalinensis, Melaleuca alternifolia, harpin αβ proteins, or bee honey were evaluated and compared to a conventional foliar management program (control) in a commercial production greenhouse in Central Mexico in 2016 and 2017. Disease incidence was measured at periodic intervals for six months and used to calculate the area under the disease progress curve (AUDPC). Overall, the analysis of the AUDPC showed that all treatments were more effective than the conventional program in controlling most of the examined diseases. The tested products were effective in reducing the intensity of powdery mildew and gray mold, but not that of bacterial canker, late blight, and pith necrosis. Application of these products constitutes a disease management alternative that represents cost-saving to tomato growers of about 2500 U.S. dollars per production cycle ha-1, in addition to having less negative impact on the environment. The products tested in this study have the potential to be incorporated in an integrated program for management of the examined diseases in tomato in this region.
Collapse
Affiliation(s)
| | - Bertha Tlapal-Bolaños
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, Mexico; (L.F.E.-C.); (S.G.L.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico
| | - Oscar Pérez-Hernández
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Santos Gerardo Leyva-Mir
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, Mexico; (L.F.E.-C.); (S.G.L.-M.)
| | - Moisés Camacho-Tapia
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| |
Collapse
|
10
|
Serrano-Carreón L, Aranda-Ocampo S, Balderas-Ruíz KA, Juárez AM, Leyva E, Trujillo-Roldán MA, Valdez-Cruz NA, Galindo E. A case study of a profitable mid-tech greenhouse for the sustainable production of tomato, using a biofertilizer and a biofungicide. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Park IW, Hwang IS, Oh EJ, Kwon CT, Oh CS. Nicotiana benthamiana, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, Clavibacter michiganensis, and C. capsici in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:876971. [PMID: 35620684 PMCID: PMC9127732 DOI: 10.3389/fpls.2022.876971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 06/11/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes bacterial canker and wilting in host plants like tomato. Two major virulence genes encoding a cellulase (celA) and a putative serine protease (pat-1) have been reported. Here we show that Nicotiana benthamiana, a commonly used model plant for studying molecular plant-pathogen interactions, is a surrogate host of C. michiganensis and C. capsici. When a low concentration of two Clavibacter species, C. michiganensis and C. capsici, were infiltrated into N. benthamiana leaves, they caused blister-like lesions closely associated with cell death and the generation of reactive oxygen species and proliferated significantly like a pathogenic bacterium. By contrast, they did not cause any disease symptoms in N. tabacum leaves. The celA and pat-1 mutants of C. michiganensis still caused blister-like lesions and cankers like the wild-type strain. When a high concentration of two Clavibacter species and two mutant strains were infiltrated into N. benthamiana leaves, all of them caused strong and rapid necrosis. However, only C. michiganensis strains, including the celA and pat-1 mutants, caused wilting symptoms when it was injected into stems. When two Clavibacter species and two mutants were infiltrated into N. tabacum leaves at the high concentration, they (except for the pat-1 mutant) caused a strong hypersensitive response. These results indicate that C. michiganensis causes blister-like lesions, canker, and wilting in N. benthamiana, and celA and pat-1 genes are not necessary for the development of these symptoms. Overall, N. benthamiana is a surrogate host of Clavibacter species, and their novel virulence factors are responsible for disease development in this plant.
Collapse
Affiliation(s)
- In Woong Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Choon-Tak Kwon
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
12
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
13
|
Jang H, Kim ST, Sang MK. Suppressive Effect of Bioactive Extracts of Bacillus sp. H8-1 and Bacillus sp. K203 on Tomato Wilt Caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms 2022; 10:microorganisms10020403. [PMID: 35208859 PMCID: PMC8880269 DOI: 10.3390/microorganisms10020403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Tomatoes are cultivated worldwide, and are economically important. Clavibacter michiganensis subsp. michiganensis (Cmm) is a pathogen that causes canker and wilting in tomatoes, resulting in serious damage to tomato plants. We aimed to control Cmm proliferation using substances produced by useful microorganisms. The water extracts of strains H8-1 and K203 inhibited wilting caused by Cmm and slowed the pathogenic colonization in tomato plants. The relative expressions of celA, celB, pat1, and pelA of Cmm treated with the bacterial water extracts were reduced by 0.41-, 0.01-, 0.15-, and 0.14-fold for H8-1, respectively, and 0.45-, 0.02-, 0.13-, and 0.13-fold for K203, respectively, compared to controls at 72 h after treatments. In tomato plants inoculated with Cmm, when water extracts of H8-1 and K203 were treated, relative expression of ACO encoding 1-aminocyclopropane-1-carboxylic acid oxidase was suppressed by 0.26- and 0.23-fold, respectively, while PR1a was increased by 1.94- and 2.94-fold, respectively; PI2 expression was increased by 3.27-fold in water extract of H8-1-treated plants. As antioxidant enzymes of plants inoculated with Cmm, peroxidase and glutathione peroxidase levels were increased in K203-water-extract-treated plants, and catalase was increased in the case of the H8-1 water extract at 10 days after inoculation. In terms of soil enzyme activity, each water extract tended to increase urease activity and microbial diversity; in addition, K203 water extract increased plant growth. Thus, H8-1 and K203 water extracts can be used as potential biocontrol agents against Cmm.
Collapse
Affiliation(s)
- Hwajin Jang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang Tae Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-63-238-3055; Fax: +82-63-238-3834
| |
Collapse
|
14
|
Abebe AM, Oh CS, Kim HT, Choi G, Seo E, Yeam I, Lee JM. QTL-Seq Analysis for Identification of Resistance Loci to Bacterial Canker in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 12:809959. [PMID: 35154207 PMCID: PMC8826648 DOI: 10.3389/fpls.2021.809959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Bacterial canker caused by Clavibacter michiganensis (Cm) is one of the most economically important vascular diseases causing unilateral leaf wilting, stem canker, a bird's-eye lesion on fruit, and whole plant wilting in tomato. There is no commercially available cultivar with bacterial canker resistance, and genomics-assisted breeding can accelerate the development of cultivars with enhanced resistance. Solanum lycopersicum "Hawaii 7998" was found to show bacterial canker resistance. A Quantitative trait loci (QTL)-seq was performed to identify the resistance loci using 909 F2 individuals derived from a cross between S. lycopersicum "E6203" (susceptible) and "Hawaii 7998," and a genomic region (37.24-41.15 Mb) associated with bacterial canker resistance on chromosome 6 (Rcm6) was found. To dissect the Rcm6 region, 12 markers were developed and several markers were associated with the resistance phenotypes. Among the markers, the Rcm6-9 genotype completely matched with the phenotype in the 47 cultivars. To further validate the Rcm6 as a resistance locus and the Rcm6-9 efficiency, subsequent analysis using F2 and F3 progenies was conducted. The progeny individuals with homozygous resistance allele at the Rcm6-9 showed significantly lower disease severity than those possessing homozygous susceptibility alleles. Genomes of five susceptible and two resistant cultivars were analyzed and previously known R-genes were selected to find candidate genes for Rcm6. Nucleotide-binding leucine-rich repeat, receptor-like kinase, and receptor-like protein were identified to have putative functional mutations and show differential expression upon the Cm infection. The DNA markers and candidate genes will facilitate marker-assisted breeding and provide genetic insight of bacterial canker resistance in tomato.
Collapse
Affiliation(s)
- Alebel Mekuriaw Abebe
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Giwon Choi
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Eunyoung Seo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
Yokotani N, Hasegawa Y, Sato M, Hirakawa H, Kouzai Y, Nishizawa Y, Yamamoto E, Naito Y, Isobe S. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: a role of salicylic acid in the host response. BMC PLANT BIOLOGY 2021; 21:476. [PMID: 34666675 PMCID: PMC8524973 DOI: 10.1186/s12870-021-03251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/05/2021] [Indexed: 05/05/2023]
Abstract
Bacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq. Overall, 1788 and 540 genes were upregulated and downregulated upon infection, respectively. Gene Ontology enrichment analysis revealed that genes involved in the defense response, phosphorylation, and hormone signaling were over-represented by the infection. Induced expression of defense-associated genes suggested that the tomato response to Cmm showed similarities to common plant disease responses. After infection, many resistance gene analogs (RGAs) were transcriptionally upregulated, including the expressions of some receptor-like kinases (RLKs) involved in pattern-triggered immunity. The expressions of WRKYs, NACs, HSFs, and CBP60s encoding transcription factors (TFs) reported to regulate defense-associated genes were induced after infection with Cmm. Tomato genes orthologous to Arabidopsis EDS1, EDS5/SID1, and PAD4/EDS9, which are causal genes of salicylic acid (SA)-deficient mutants, were upregulated after infection with Cmm. Furthermore, Cmm infection drastically stimulated SA accumulation in tomato cotyledons. Genes involved in the phenylalanine ammonia lyase pathway were upregulated, whereas metabolic enzyme gene expression in the isochorismate synthase pathway remained unchanged. Exogenously applied SA suppressed bacterial growth and induced the expression of WRKYs, suggesting that some Cmm-responsive genes are regulated by SA signaling, and SA signaling activation should improve tomato immunity against Cmm.
Collapse
Affiliation(s)
- Naoki Yokotani
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan.
| | - Yoshinori Hasegawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Masaru Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yusuke Kouzai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Eiji Yamamoto
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshiki Naito
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
16
|
Vallejo-Pérez MR, Sosa-Herrera JA, Navarro-Contreras HR, Álvarez-Preciado LG, Rodríguez-Vázquez ÁG, Lara-Ávila JP. Raman Spectroscopy and Machine-Learning for Early Detection of Bacterial Canker of Tomato: The Asymptomatic Disease Condition. PLANTS (BASEL, SWITZERLAND) 2021; 10:1542. [PMID: 34451590 PMCID: PMC8399098 DOI: 10.3390/plants10081542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
Bacterial canker of tomato is caused by Clavibacter michiganensis subsp. michiganensis (Cmm). The disease is highly destructive, because it produces latent asymptomatic infections that favor contagion rates. The present research aims consisted on the implementation of Raman spectroscopy (RS) and machine-learning spectral analysis as a method for the early disease detection. Raman spectra were obtained from infected asymptomatic tomato plants (BCTo) and healthy controls (HTo) with 785 nm excitation laser micro-Raman spectrometer. Spectral data were normalized and processed by principal component analysis (PCA), then the classifiers algorithms multilayer perceptron (PCA + MLP) and linear discriminant analysis (PCA + LDA) were implemented. Bacterial isolation and identification (16S rRNA gene sequencing) were realized of each plant studied. The Raman spectra obtained from tomato leaf samples of HTo and BCTo exhibited peaks associated to cellular components, and the most prominent vibrational bands were assigned to carbohydrates, carotenoids, chlorophyll, and phenolic compounds. Biochemical changes were also detectable in the Raman spectral patterns. Raman bands associated with triterpenoids and flavonoids compounds can be considered as indicators of Cmm infection during the asymptomatic stage. RS is an efficient, fast and reliable technology to differentiate the tomato health condition (BCTo or HTo). The analytical method showed high performance values of sensitivity, specificity and accuracy, among others.
Collapse
Affiliation(s)
- Moisés Roberto Vallejo-Pérez
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de San Luis Potosí, CIACYT, Alvaro Obregon 64, Col. Centro, San Luis Potosí 78000, Mexico
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Jesús Antonio Sosa-Herrera
- Consejo Nacional de Ciencia y Tecnología-Centro de Investigación en Ciencias de Información Geoespacial A. C., Laboratorio Nacional de Geointeligencia, Aguascalientes 20313, Mexico;
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Luz Gabriela Álvarez-Preciado
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Ángel Gabriel Rodríguez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - José Pablo Lara-Ávila
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Km. 14.5 Carretera San Luis Potosí, Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico;
| |
Collapse
|
17
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
18
|
Basim H, Basim E, Tombuloglu H, Unver T. Comparative transcriptome analysis of resistant and cultivated tomato lines in response to Clavibacter michiganensis subsp. michiganensis. Genomics 2021; 113:2455-2467. [PMID: 34052318 DOI: 10.1016/j.ygeno.2021.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive bacterium causing destructive bacterial wilt and canker disease in tomato. Herein, a comparative transcriptome analysis was performed on Cmm-resistant and -susceptible tomato lines. Tomato seedlings were inoculated with Cmm and harvested for transcriptome analysis after 4 and 8 day time-points. Twenty-four transcriptome libraries were profiled by RNA sequencing approach. Total of 545 million clean reads was generated. 1642 and 2715 differentially expressed genes (DEG) were identified in susceptible lines within 4 and 8 days after inoculation (DAI), respectively. In resistant lines, 1731 and 1281 DEGs were found following 4 and 8 DAI, respectively. Gene Ontology analysis resulted in a higher number of genes involved in biological processes and molecular functions in susceptible lines. On the other hand, such biological processes, "defense response", and "response to stress" were distinctly indicated in resistant lines which were not found in susceptible ones upon inoculation, according to the gene set enrichment analyses. Upon Cmm-inoculation, several defense responsive genes were found to be differentially expressed. Of which 26 genes were in the resistant line and three were in the susceptible line. This study helps to understand the transcriptome response of Cmm-resistant and -susceptible tomato lines. The results provide comprehensive data for molecular breeding studies, for the purpose to control of the pathogen in tomato.
Collapse
Affiliation(s)
- Huseyin Basim
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070 Antalya, Turkey.
| | - Esin Basim
- Department of Organic Agriculture, Technical Sciences Vocational School, Akdeniz University, 07070 Antalya, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Turgay Unver
- Ficus Biotechnology, Ostim OSB Mah, 100. Yil Blv, No:55, Yenimahalle, Ankara, Turkey
| |
Collapse
|
19
|
Someya N, Kubota M, Morohoshi T, Inoue Y. Detection of Culturable Bacteria from Tomato Seeds on Media Semi-selective for the Canker Pathogen. Biocontrol Sci 2021; 26:61-65. [PMID: 33716251 DOI: 10.4265/bio.26.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Culturable bacteria were isolated from tomato seeds using media selective for the canker pathogen Clavibacter michiganensis subsp. michiganensis. Clustering analysis (>99% identity) revealed the presence of 16 operational taxonomic units (OTUs) among isolates detected on semi-selective media. Three OTUs belonged to the phylum Actinobacteria, including those of Micrococcus and Dermacoccus, and 13 OTUs belonged to the phylum Firmicutes, including Bacillus and related genera. These Gram-positive endophytic bacteria have the potential to provide false-positive results in seed health tests using media considered semi-selective for the cancer pathogen.
Collapse
Affiliation(s)
- Nobutaka Someya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
| | - Masaharu Kubota
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO)
| | - Tomohiro Morohoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University
| | | |
Collapse
|
20
|
You F, Wei J, Cheng Y, Wen Z, Ding C, Guo Y, Wang K. A sensitive and stable visible-light-driven photoelectrochemical aptasensor for determination of oxytetracycline in tomato samples. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122944. [PMID: 32768827 DOI: 10.1016/j.jhazmat.2020.122944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 05/12/2023]
Abstract
Sensitive detection of oxytetracycline (OTC) has attracted increasing attention worldwide due to the relationship between food safety and human health problems. In this work, a visible-light-driven photoelectrochemical (PEC) OTC aptasensor was constructed using Bi4VO8Cl/nitrogen-doped graphene quantum dots (Bi4VO8Cl/N-GQDs) nanohybrids as photoactive material and OTC aptamer as identification element. Owing to the well matched heterojunction of Bi4VO8Cl and nitrogen-doped graphene quantum dots (N-GQDs), the photogenerated electron-hole pairs could be separated effectively, so that the photocurrent intensity of as-prepared Bi4VO8Cl/N-GQDs nanohybrids was about 7 times higher than pure Bi4VO8Cl and had higher stability. The constructed "signal-off" PEC aptasensor realized OTC detection in tomato samples with excellent sensitivity, specificity and repeatability. The photocurrent decreased with the increase of OTC concentration in a range from 0.1 nM to 150 nM, and the detection limit was 0.03 nM (S/N = 3). The national standard method was used to compare with our method and the results were consistent.
Collapse
Affiliation(s)
- Fuheng You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Cheng
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zuorui Wen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
21
|
Méndez V, Valenzuela M, Salvà-Serra F, Jaén-Luchoro D, Besoain X, Moore ERB, Seeger M. Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants. Microorganisms 2020; 8:microorganisms8111679. [PMID: 33137950 PMCID: PMC7692107 DOI: 10.3390/microorganisms8111679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
22
|
Thapa SP, O'Leary M, Jacques MA, Gilbertson RL, Coaker G. Comparative Genomics to Develop a Specific Multiplex PCR Assay for Detection of Clavibacter michiganensis. PHYTOPATHOLOGY 2020; 110:556-566. [PMID: 31799900 DOI: 10.1094/phyto-10-19-0405-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.
Collapse
Affiliation(s)
- Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Michael O'Leary
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, Beaucouzé, France
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| |
Collapse
|
23
|
Peritore-Galve FC, Miller C, Smart CD. Characterizing Colonization Patterns of Clavibacter michiganensis During Infection of Tolerant Wild Solanum Species. PHYTOPATHOLOGY 2020; 110:574-581. [PMID: 31725349 DOI: 10.1094/phyto-09-19-0329-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Christine Miller
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
24
|
Yin J, Yu Y, Zhang Z, Chen L, Ruan L. Enrichment of potentially beneficial bacteria from the consistent microbial community confers canker resistance on tomato. Microbiol Res 2020; 234:126446. [PMID: 32126507 DOI: 10.1016/j.micres.2020.126446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/26/2022]
Abstract
The soil microbiota interacts with plants closely and exerts strong influences on plant health and productivity. However, the relationship between the microbiota and the bacterial canker of tomato that is caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is still unclear. In order to establish causal relationship between the microbiota and plant phenotypes, the microbial communities of 49 tomato samples (including 15 cultivars) with different canker symptoms collected from the greenhouse in Gansu province, China were investigated via 16S ribosomal RNA sequencing. Roots exhibited a strong filter effect in the process of root colonization by microorganisms according to the α-diversity and the separation patterns of the microbiota in bulk soil, rhizosphere and endosphere. In addition, the gradually decreased cluster extent from bulk soil to endosphere indicating the selective effect of tomato on microbiota. Although the composition of the microbiota is similar, the potential beneficial bacteria and functions (e.g. antibiotics production, pollution degradation, nutrition acquisition) enriched in the rhizosphere and endosphere of healthy samples compared to those in the diseased ones. Furthermore, more robust networks occurred in the rhizosphere and endosphere of healthy samples compared to the diseased ones. Our research provided substantial evidence that although the plant genotype is the dominant factor of phenotype, the rhizosphere and endosphere microbiota, as part of phytobiomes or holobiont, could contribute to the host's phenotype. This causal relationship between microbiota and host phenotypes could guide us in rationally designing novel synthetic communities (SynComs) for tomato canker biocontrol in the near future.
Collapse
Affiliation(s)
- Jiakang Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Youfeng Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ziliang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
25
|
Lyu Q, Bai K, Kan Y, Jiang N, Thapa SP, Coaker G, Li J, Luo L. Variation in Streptomycin Resistance Mechanisms in Clavibacter michiganensis. PHYTOPATHOLOGY 2019; 109:1849-1858. [PMID: 31334679 DOI: 10.1094/phyto-05-19-0152-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is the causal agent of bacterial canker of tomato, which causes significant economic losses because of the lack of resistant tomato varieties. Chemical control with streptomycin or cupric bactericides is the last defensive line in canker disease management. Streptomycin is an aminoglycoside antibiotic that inhibits protein synthesis and targets the 30S ribosomal protein RpsL. Streptomycin has been used to control multiple plant bacterial diseases. However, identification and characterization of streptomycin resistance in C. michiganensis have remained unexplored. In this study, a naturally occurring C. michiganensis strain TX-0702 exhibiting spontaneous streptomycin resistance was identified, with a minimum inhibitory concentration of 128 μg/ml. Additionally, an induced streptomycin-resistant strain BT-0505-R was generated by experimental evolution of the sensitive C. michiganensis strain BT-0505. Genome sequencing and functional analyses were used to identify the genes conferring resistance. A point mutation at the 128th nucleotide in the rpsL gene of strain BT-0505-R is responsible for conferring streptomycin resistance. However, in TX-0702, resistance is not attributed to mutation of rpsL, streptomycin inactivation enzymes, or multidrug efflux pumps. The mechanism of resistance in TX-0702 is independent of previously reported bacterial loci. Taken together, these data highlight diverse mechanisms used by a Gram-positive plant pathogenic bacterium to confer antibiotic resistance.
Collapse
Affiliation(s)
- Qingyang Lyu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Kaihong Bai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yumin Kan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Na Jiang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Jianqiang Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Laixin Luo
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
26
|
Peritore-Galve FC, Schneider DJ, Yang Y, Thannhauser TW, Smart CD, Stodghill P. Proteome Profile and Genome Refinement of the Tomato-Pathogenic Bacterium Clavibacter michiganensis subsp. michiganensis. Proteomics 2019; 19:e1800224. [PMID: 30648817 DOI: 10.1002/pmic.201800224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - David J Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Yong Yang
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| | - Theodore W Thannhauser
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Paul Stodghill
- United States Department of Agriculture (USDA), Agricultural Research Service, Robert W. Holley Center, Ithaca, NY, 14853, USA
| |
Collapse
|
27
|
Assessment of plant growth promoting activities of five rhizospheric Pseudomonas strains. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Pérez MRV, Contreras HRN, Sosa Herrera JA, Ávila JPL, Tobías HMR, Martínez FDB, Ramírez RF, Vázquez ÁGR. Detection of Clavibacter michiganensis subsp. michiganensis Assisted by Micro-Raman Spectroscopy under Laboratory Conditions. THE PLANT PATHOLOGY JOURNAL 2018; 34:381-392. [PMID: 30369848 PMCID: PMC6200046 DOI: 10.5423/ppj.oa.02.2018.0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Clavibacter michiganensis subsp. michiganesis (Cmm) is a quarantine-worthy pest in México. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with Cmm, the disease epidemiology was monitored. Micro-Raman spectroscopy (532 nm λ laser) technique was evaluated its performance at assisting on Cmm detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants × 4 rows). The Cmm infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of Cmm. Carotenoid specific bands with wavelengths at 1146 and 1510 cm-1 were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate Cmm from other endophytic bacteria (Bacillus and Pantoea). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).
Collapse
Affiliation(s)
- Moisés Roberto Vallejo Pérez
- CONACyT-Universidad Autónoma de San Luis Potosí. Álvaro Obregón #64, Col. Centro, C.P. 78000, San Luis Potosí, S.L.P.
México
| | - Hugo Ricardo Navarro Contreras
- Universidad Autónoma de San Luis Potosí. Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Av. Sierra Leona #550, Col. Lomas 2a. Sección, C.P. 78210, S.L.P.,
México
| | - Jesús A. Sosa Herrera
- CONACyT-Centro de Investigación en Ciencias de Información Geoespacial A.C. Circuito Tecnopolo Norte 117, Col. Fraccionamiento Tecnopolo Pocitos, CP. 20313, Aguascalientes, Ags.
México
| | - José Pablo Lara Ávila
- Universidad Autónoma de San Luis Potosí. Facultad de Agronomía y Veterinaria. Km. 14.5 Carretera San Luis Potosí, Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, C.P. 78321. S.L.P.
México
| | - Hugo Magdaleno Ramírez Tobías
- Universidad Autónoma de San Luis Potosí. Facultad de Agronomía y Veterinaria. Km. 14.5 Carretera San Luis Potosí, Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, C.P. 78321. S.L.P.
México
| | - Fernando Díaz-Barriga Martínez
- Universidad Autónoma de San Luis Potosí. Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Av. Sierra Leona #550, Col. Lomas 2a. Sección, C.P. 78210, S.L.P.,
México
| | - Rogelio Flores Ramírez
- CONACyT-Universidad Autónoma de San Luis Potosí. Álvaro Obregón #64, Col. Centro, C.P. 78000, San Luis Potosí, S.L.P.
México
| | - Ángel Gabriel Rodríguez Vázquez
- Universidad Autónoma de San Luis Potosí. Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Av. Sierra Leona #550, Col. Lomas 2a. Sección, C.P. 78210, S.L.P.,
México
| |
Collapse
|
29
|
Pétriacq P, López A, Luna E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? PLANTS (BASEL, SWITZERLAND) 2018; 7:E77. [PMID: 30248893 PMCID: PMC6314081 DOI: 10.3390/plants7040077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.
Collapse
Affiliation(s)
- Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux et INRA de Bordeaux, F-33883 Villenave d'Ornon, France.
- Plateforme Métabolome Bordeaux-MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ana López
- Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, 28049 Madrid, Spain.
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
30
|
Takishita Y, Charron JB, Smith DL. Biocontrol Rhizobacterium Pseudomonas sp. 23S Induces Systemic Resistance in Tomato ( Solanum lycopersicum L.) Against Bacterial Canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 2018; 9:2119. [PMID: 30254615 PMCID: PMC6141633 DOI: 10.3389/fmicb.2018.02119] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
Tomato bacterial canker disease, caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is a destructive disease and has been a serious concern for tomato industries worldwide. Previously, a rhizosphere isolated strain of Pseudomonas sp. 23S showed antagonistic activity toward Cmm in vitro. This Pseudomonas sp. 23S was characterized to explore the potential of this bacterium for its use in agriculture. Pseudomonas sp. 23S possesses ability to solubilize inorganic phosphorus, and to produce siderophores, indole acetic acid, and hydrogen cyanide. The strain also showed antagonistic activity against Pseudomonas syringae pv. tomato DC 3000. A plant assay indicated that Pseudomonas sp. 23S could promote growth of tomato seedlings. The potential of treating tomato plants with Pseudomonas sp. 23S to reduce the severity of tomato bacterial canker by inducing systemic resistance (ISR) was investigated using well characterized marker genes such as PR1a [salicylic acid (SA)], PI2 [jasmonic acid (JA)], and ACO [ethylene (ET)]. Two-week-old tomato plants were treated with Pseudomonas sp. 23S by soil drench, and Cmm was inoculated into the stem by needle injection on 3, 5, or 7 days post drench. The results indicated that plants treated with Pseudomonas sp. 23S, 5 days prior to Cmm inoculation significantly delayed the progression of the disease. These plants, after 3 weeks from the date of Cmm inoculation, had significantly higher dry shoot and root weight, higher levels of carbon, nitrogen, phosphorus, and potassium in the leaf tissue, and the number of Cmm population in the stem was significantly lower for the plants treated with Pseudomonas sp. 23S. From the real-time quantitative PCR (qRT-PCR) analysis, the treatment with Pseudomonas sp. 23S alone was found to trigger a significant increase in the level of PR1a transcripts in tomato plants. When the plants were treated with Pseudomonas sp. 23S and inoculated with Cmm, the level of PR1a and ACO transcripts were increased, and this response was faster and greater as compared to plants inoculated with Cmm but not treated with Pseudomonas sp. 23S. Overall, the results suggested the involvement of SA signaling pathways for ISR induced by Pseudomonas sp. 23S.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montréal, QC, Canada
| |
Collapse
|
31
|
Han S, Jiang N, Lv Q, Kan Y, Hao J, Li J, Luo L. Detection of Clavibacter michiganensis subsp. michiganensis in viable but nonculturable state from tomato seed using improved qPCR. PLoS One 2018; 13:e0196525. [PMID: 29723290 PMCID: PMC5933903 DOI: 10.1371/journal.pone.0196525] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/13/2018] [Indexed: 12/02/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-borne pathogen that causes bacterial canker disease of tomato. Cmm is typically detected in tomato seeds using quantitative real-time polymerase chain reaction (qPCR) combined with culture-based isolation. The viable but nonculturable (VBNC) state of Cmm may result in the underestimation or false negative detection of the pathogen. In the present study, propidium monoazide (PMA) and its improved structure PMAxx were used to pretreat Cmm prior to DNA extraction, followed by qPCR. Both PMA and PMAxx could bind to the chromosomal DNA of dead bacterial cells and therefore block DNA amplification by PCR. This effect, however, does not occur in living bacterial cells, as the chemicals cannot penetrate through the undamaged cell membrane. Both viable and dead Cmm cells were treated with PMA and PMAxx at various concentrations. With this treatment, the range of the cell population was determined for effective detection. PMAxx showed a better discrimination effect than PMA on the viable and dead cells of Cmm and was therefore used throughout the present study. VBNC cells of Cmm (108 CFU mL-1) was induced by 50 μM copper sulfate, which was detected at different sampling times up to a month by using both PMAxx-qPCR and flow cytometry assays. The optimal PMAxx concentration was 20 μM for detecting membrane-intact Cmm cells. High specificity and sensitivity were obtained at Cmm concentrations ranging from 103 to 107 CFU mL-1. The accurate and robust results of PMAxx-qPCR were confirmed by flow cytometry method to detect viable Cmm cells. Furthermore, the PMAxx-qPCR assay was successfully used in detecting VBNC Cmm cells in tomato seeds with as few as 10 seeds per set.
Collapse
Affiliation(s)
- Sining Han
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Qingyang Lv
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Yumin Kan
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, Maine, United States of America
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| |
Collapse
|
32
|
Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:2036-2050. [PMID: 29528201 PMCID: PMC6638088 DOI: 10.1111/mpp.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 05/11/2023]
Abstract
Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Jacqueline Macdonald
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Peng Liu
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| | - Ze‐Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| |
Collapse
|
33
|
Hwang IS, Oh EJ, Kim D, Oh CS. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper. THE NEW PHYTOLOGIST 2018; 217:1177-1189. [PMID: 29134663 DOI: 10.1111/nph.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/12/2017] [Indexed: 05/24/2023]
Abstract
Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1Cmc and 145 kb pCM2Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Donghyuk Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| |
Collapse
|
34
|
Sen Y, Aysan Y, Mirik M, Ozdemir D, Meijer-Dekens F, van der Wolf JM, Visser RGF, van Heusden S. Genetic Characterization of Clavibacter michiganensis subsp. michiganensis Population in Turkey. PLANT DISEASE 2018; 102:300-308. [PMID: 30673530 DOI: 10.1094/pdis-02-17-0276-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pathogenic gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. is the most harmful bacterium to tomatoes in many countries with a cooler climate. Multilocus sequence analysis was performed on five housekeeping genes (bipA, gyrB, kdpA, ligA, and sdhA) and three virulence-related genes (ppaA, chpC, and tomA) to determine evolutionary relationships and population structure of 108 C. michiganensis subsp. michiganensis strains collected from Turkey between 1996 and 2012. Based on these analyses, we concluded that C. michiganensis subsp. michiganensis in Turkey is highly uniform. However, at least four novel C. michiganensis subsp. michiganensis strains were recently introduced, possibly at the beginning of the 1990s. The singletons might point to additional sources or to strains that have evolved locally in Turkey.
Collapse
Affiliation(s)
- Yusuf Sen
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Yesim Aysan
- Cukurova University, Faculty of Agriculture, Department of Plant Protection, 01330 Adana, Turkey
| | - Mustafa Mirik
- Namik Kemal University, Department of Plant Protection, TR-59030 Tekirdag, Turkey
| | - Duygu Ozdemir
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Fien Meijer-Dekens
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Jan M van der Wolf
- Wageningen University and Research, Bio-interactions and Plant Health, 6700 AB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Sjaak van Heusden
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
35
|
Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G. Genomic Analysis of Clavibacter michiganensis Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:786-802. [PMID: 28677494 DOI: 10.1094/mpmi-06-17-0146-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.
Collapse
Affiliation(s)
- Shree P Thapa
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Sivakumar Pattathil
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | - Michael G Hahn
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | | | - Robert L Gilbertson
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Gitta Coaker
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| |
Collapse
|
36
|
Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann K, Eichenlaub R, Sessa G, Manulis‐Sasson S. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. MOLECULAR PLANT PATHOLOGY 2017; 18:336-346. [PMID: 26992141 PMCID: PMC6638269 DOI: 10.1111/mpp.12400] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 05/03/2023]
Abstract
Clavibacter michiganensis ssp. michiganensis (Cmm) causes substantial economic losses in tomato production worldwide. The disease symptoms observed in plants infected systemically by Cmm are wilting and canker on the stem, whereas blister-like spots develop in locally infected leaves. A wide repertoire of serine proteases and cell wall-degrading enzymes has been implicated in the development of wilt and canker symptoms. However, virulence factors involved in the formation of blister-like spots, which play an important role in Cmm secondary spread in tomato nurseries, are largely unknown. Here, we demonstrate that Cmm virulence factors play different roles during blister formation relative to wilting. Inoculation with a green fluorescent protein (GFP)-labelled Cmm382 indicates that penetration occurs mainly through trichomes. When spray inoculated on tomato leaves, the wild-type Cmm382 and Cmm100 (lacking plasmids pCM1 and pCM2) strains form blister-like spots on leaves, whereas Cmm27 (lacking the chp/tomA pathogenicity island) is non-pathogenic, indicating that plasmid-borne genes, which have a crucial role in wilting, are not required for blister formation. Conversely, mutations in chromosomal genes encoding serine proteases (chpC and sbtA), cell wall-degrading enzymes (pgaA and endX/Y), a transcriptional regulator (vatr2), a putative perforin (perF) and a putative sortase (srtA) significantly affect disease incidence and the severity of blister formation. The transcript levels of these genes, as measured by quantitative reverse transcription-polymerase chain reaction, showed that, during blister formation, they are expressed early at 8-16 h after inoculation, whereas, during wilting, they are expressed after 24-72 h or expressed at low levels. Plant gene expression studies suggest that chpC is involved in the suppression of host defence.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Orit Dror
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Karl‐Heinz Gartemann
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Rudolf Eichenlaub
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| |
Collapse
|
37
|
Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1506-1518. [PMID: 27238249 PMCID: PMC6638406 DOI: 10.1111/mpp.12436] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.
Collapse
Affiliation(s)
- George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Luisa F. Castiblanco
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment StationNew HavenCT06504USA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
38
|
Blank L, Cohen Y, Borenstein M, Shulhani R, Lofthouse M, Sofer M, Shtienberg D. Variables Associated with Severity of Bacterial Canker and Wilt Caused by Clavibacter michiganensis subsp. michiganensis in Tomato Greenhouses. PHYTOPATHOLOGY 2016; 106:254-261. [PMID: 26623996 DOI: 10.1094/phyto-07-15-0159-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis, the causal agent of bacterial canker and wilt of tomato, is considered to be one of the most important bacterial pathogens worldwide. In the year 2000 there was an increase in the number of infected greenhouses and in the severity of the disease in Israel. As part of the effort to cope with the disease, a comprehensive survey was conducted. Scouts recorded disease severity monthly in 681 production units. At the end of the season the scouts met with the growers and together recorded relevant details about the crop and cultural practices employed. The results suggested an absence of anisotropy pattern in the study region. Global Moran's I analysis showed that disease severity had significant spatial autocorrelation. The strongest spatial autocorrelation occurred within a 1,500 m neighborhood, which is comparable to the distance between production units maintained by one grower (Farm). Next, we tested three groups of variables including or excluding the Farm as a variable. When the Farm was included the explained variation increased in all the studied models. Overall, results of this study demonstrate that the most influential factor on bacterial canker severity was the Farm. This variable probably encompasses variation in experience, differences in agricultural practices between growers, and the quality of implementation of management practices.
Collapse
Affiliation(s)
- L Blank
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - Y Cohen
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - M Borenstein
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - R Shulhani
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - M Lofthouse
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - M Sofer
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| | - D Shtienberg
- First, third, fourth, fifth, and seventh authors: Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, 50250, Israel; second author: Institute of Agricultural Engineering, ARO, Volcani Center, Bet Dagan 50250, Israel; and fifth and sixth authors: Negev R&D Center, D.N. Negev, 85400, Israel
| |
Collapse
|