1
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
2
|
Hong Y, Wang S, Feng J, Liang Y. Effect of Mulching on Soil Temperatures and Its Impact on Plasmodiophora brassicae and Clubroot. PLANT DISEASE 2023; 107:3731-3736. [PMID: 37337441 DOI: 10.1094/pdis-05-23-0960-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a serious soilborne disease on cruciferous crops worldwide. Agricultural practice is a preferable clubroot management strategy because of its low investment requirement and environmental safety. Among the agricultural practices, solarization has been widely applied in the integrated management of other soilborne diseases. However, only few reports exist on the effect of solarization on clubroot management. In this study, we measured the effect of plastic mulching on soil temperature at different depths and on clubroot incidence and severity under greenhouse and field conditions. The pathogen density in the soil after solarization was measured by quantitative PCR analysis. Results indicated that the mulching treatment increased soil temperature especially in the soil layer ranges of 0 to 20 cm. Solarization with mulching also effectively reduced the incidence and severity of clubroot in the greenhouse assay and the field trial by decreasing the P. brassicae population in the soil. This study suggested that solarization with mulching can impair clubroot development and thus contribute to the sustainable management of clubroot.
Collapse
Affiliation(s)
- Yingzhe Hong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Siqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Feng
- Alberta Plant Health Lab, Alberta Agriculture and Irrigation, Edmonton, Alberta T5Y 6H3, Canada
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Patel A, Kennedy R. Production of Clubroot Standards Using a Recombinant Surrogate to Overcome Natural Genetic Variability. PLANTS (BASEL, SWITZERLAND) 2023; 12:1690. [PMID: 37111913 PMCID: PMC10146943 DOI: 10.3390/plants12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Clubroot is caused by the obligate pathogen Plasmodiophora brassicae. The organism targets root hair cells for entry and forms spores in numbers so large that they eventually develop characteristic galls or clubs on the roots. Clubroot incidence is rising globally and impacting the production of oil seed rape (OSR) and other economically important brassica crops where fields are infected. P. brassicae has a wide genetic diversity, and different isolates can vary in virulence levels depending on the host plant. Breeding for clubroot resistance is a key strategy for managing this disease, but identifying and selecting plants with desirable resistance traits are difficult due to the symptom recognition and variability in the gall tissues used to produce clubroot standards. This has made the accurate diagnostic testing of clubroot challenging. An alternative method of producing clubroot standards is through the recombinant synthesis of conserved genomic clubroot regions. This work demonstrates the expression of clubroot DNA standards in a new expression system and compares the clubroot standards produced in a recombinant expression vector to the standards generated from clubroot-infected root gall samples. The positive detection of recombinantly produced clubroot DNA standards in a commercially validated assay indicates that recombinant clubroot standards are capable of being amplified in the same way as conventionally generated clubroot standards. They can also be used as an alternative to standards generated from clubroot, where access to root material is unavailable or would take great effort and time to produce.
Collapse
|
4
|
Javed MA, Schwelm A, Zamani‐Noor N, Salih R, Silvestre Vañó M, Wu J, González García M, Heick TM, Luo C, Prakash P, Pérez‐López E. The clubroot pathogen Plasmodiophora brassicae: A profile update. MOLECULAR PLANT PATHOLOGY 2023; 24:89-106. [PMID: 36448235 PMCID: PMC9831288 DOI: 10.1111/mpp.13283] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION PLADBR: EPPO A2 list; Annex designation 9E.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Arne Schwelm
- Department of Plant ScienceWageningen University and ResearchWageningenNetherlands
- Teagasc, Crops Research CentreCarlowIreland
| | - Nazanin Zamani‐Noor
- Julius Kühn‐Institute, Institute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
| | - Rasha Salih
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Jiaxu Wu
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Melaine González García
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | | | - Chaoyu Luo
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Priyavashini Prakash
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- K. S. Rangasamy College of TechnologyNamakkalIndia
| | - Edel Pérez‐López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
5
|
Yang X, Sun L, Sun H, Hong Y, Xia Z, Pang W, Piao Z, Feng J, Liang Y. A Loop-Mediated Isothermal DNA Amplification (LAMP) Assay for Detection of the Clubroot Pathogen Plasmodiophora brassicae. PLANT DISEASE 2022; 106:1730-1735. [PMID: 34879734 DOI: 10.1094/pdis-11-21-2430-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a serious threat to cruciferous crops around the world. The resting spores of P. brassicae are a primary source of infection and can survive in soil for many years. Detection of resting spores in soil is essential for forecasting clubroot prevalence. Detection of P. brassicae has been relying on plant bioassays or PCR-based methods. The loop-mediated isothermal DNA amplification (LAMP) is a promising approach for microorganism detection with the advantage of high sensitivity, accuracy, and convenience in viewing. In this study, we developed a LAMP assay for detection of P. brassicae in soil, roots, and seeds. This method can detect P. brassicae at a minimal amount of 1 fg of plasmid DNA or 10 resting spores in the soil. Compared with conventional PCR, the LAMP was more sensitive in detection of P. brassicae at the lower levels in soil samples. In conclusion, we elaborated a sensitive, accurate, and easy-to-use LAMP assay to detect P. brassicae, which will facilitate sustainable clubroot management and planning.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lin Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yingzhe Hong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jie Feng
- Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
6
|
Wang Y, Koopmann B, von Tiedemann A. Methods for Assessment of Viability and Germination of Plasmodiophora brassicae Resting Spores. Front Microbiol 2022; 12:823051. [PMID: 35069518 PMCID: PMC8767001 DOI: 10.3389/fmicb.2021.823051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
Clubroot caused by the obligate biotrophic parasite Plasmodiophora brassicae is a destructive soil borne disease of cruciferous crops. Resting spores of P. brassicae can survive in the soil for a long period without hosts or external stimulants. The viability and germination rate of resting spores are crucial factors of the inoculum potential in the field. The accurate assessment of viability and germination rate is the foundation to evaluate the effect of control methods. In this study, we evaluated several methods for the assessment of viability and germination rate of P. brassicae resting spores. Dual staining with calcofluor white-propidium iodide (CFW-PI) or single stain with Evans blue showed reliable accuracy in estimating viability. CFW-PI was capable of reliably determining the viability within 10 min, while Evans blue required overnight incubation to obtain accurate results. Due to DNA degradation of heat treatments, acetone was selected to evaluate the efficiency of propidium monoazide (PMA)–quantitative PCR (qPCR) used for the quantification of DNA from viable cells. The staining with 4,6-Diamidine-2-phenylindole dihydrochloride (DAPI) and the use of differential interference contrast microscopy were suitable for the determination of resting spore germination rates. The latter method also allowed recording individual germination states of spores. Alternatively, dual staining with CFW-Nile red was successfully used to assess the germination rate of resting spores with a lethal pre-treatment. This study evaluates and confirms the suitability of various microscopic and molecular genetic methods for the determination of viability and germination of P. brassicae resting spores. Such methods are required to study factors in the soil regulating survival, dormancy and germination of P. brassicae resting spores causing clubroot disease in Brassicaceae hosts and therefore are fundamental to develop novel strategies of control.
Collapse
Affiliation(s)
- Yao Wang
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Birger Koopmann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Hill TB, Daniels GC, Feng J, Harding MW. Hard to Kill: Inactivation of Plasmodiophora brassicae Resting Spores Using Chemical Disinfectants. PLANT DISEASE 2022; 106:190-196. [PMID: 34370550 DOI: 10.1094/pdis-05-21-1055-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosafety practices, such as bioexclusion via sanitization, can prevent the spread of infectious soilborne threats such as the clubroot pathogen Plasmodiophora brassicae. Twenty-three chemical disinfectants were evaluated for efficacy against P. brassicae resting spores. Evans blue staining was used to directly measure the viability of P. brassicae resting spores after 20-min exposures to 10 concentrations of each of the 23 chemical disinfectants. Only nine disinfectants were capable of >95% inactivation, and only five were capable of inactivating >99% of resting spores. Bleach (sodium hypochlorite) and Spray Nine were the most effective disinfectants for inactivation of clubroot resting spores. AES 2500, SaniDate, and ethanol also inactivated >99% of resting spores but only at very high concentrations. A time course experiment showed that 10- to 12-min contact time was sufficient for ≥95% resting spore inactivation with Spray Nine and sodium hypochlorite, but ≥30-min contact was required for other disinfectants evaluated. These results will assist in guiding management recommendations for sanitization aimed at bioexclusion and biocontainment of P. brassicae.
Collapse
Affiliation(s)
- T Blake Hill
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| | - Greg C Daniels
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
| | - Michael W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta T1R 1E6, Canada
| |
Collapse
|
8
|
Zahr K, Sarkes A, Yang Y, Ahmed H, Zhou Q, Feindel D, Harding MW, Feng J. Plasmodiophora brassicae in Its Environment: Effects of Temperature and Light on Resting Spore Survival in Soil. PHYTOPATHOLOGY 2021; 111:1743-1750. [PMID: 33656354 DOI: 10.1094/phyto-09-20-0415-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is an important disease on cruciferous crops worldwide. Management of clubroot is challenging, largely because of the millions of resting spores produced within an infected root that can survive dormant in the soil for many years. This study was conducted to investigate some of the environmental conditions that may affect the survival of resting spores in the soil. Soil samples containing clubroot resting spores (1 × 107 spores/g soil) were stored at various temperatures for 2 years. Additionally, other samples were buried in soil or kept on the soil surface in the field. The content of P. brassicae DNA and the numbers of viable spores in the samples were assessed by quantitative PCR (qPCR) and pathogenicity bioassays, respectively. The results indicated that 4°C, 20°C, and being buried in the soil were more conductive conditions for spore survival than -20°C, 30°C, and at the soil surface. Most (99.99%) of the spores kept on the soil surface were nonviable, suggesting a negative effect of light on spore viability. Additional experiments confirmed the negative effect of ultraviolet light on spore viability because spores receiving 2 and 3 h ultraviolet light exhibited lower disease potential and contained less DNA content than the nontreated control. Finally, this work confirmed that DNA-based quantification methods such as qPCR can be poor predictors of P. brassicae disease potential because of the presence and persistence of DNA from dead spores.
Collapse
Affiliation(s)
- Kher Zahr
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Alian Sarkes
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Yalong Yang
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Hafiz Ahmed
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Qixing Zhou
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - David Feindel
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Michael W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, Alberta, Canada
| | - Jie Feng
- The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Current and Future Pathotyping Platforms for Plasmodiophora brassicae in Canada. PLANTS 2021; 10:plants10071446. [PMID: 34371649 PMCID: PMC8309272 DOI: 10.3390/plants10071446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.
Collapse
|
10
|
Brischetto C, Bove F, Fedele G, Rossi V. A Weather-Driven Model for Predicting Infections of Grapevines by Sporangia of Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2021; 12:636607. [PMID: 33767721 PMCID: PMC7985336 DOI: 10.3389/fpls.2021.636607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 06/01/2023]
Abstract
A mechanistic model was developed to predict secondary infections of Plasmopara viticola and their severity as influenced by environmental conditions; the model incorporates the processes of sporangia production and survival on downy mildew (DM) lesions, dispersal and deposition, and infection. The model was evaluated against observed data (collected in a 3-year vineyard) for its accuracy to predict periods with no sporangia (i.e., for negative prognosis) or with peaks of sporangia, so that growers can identify periods with no/low risk or high risk. The model increased the probability to correctly predict no sporangia [P(P-O-) = 0.67] by two times compared to the prior probability, with fewer than 3% of the total sporangia found in the vineyard being sampled when not predicted by the model. The model also correctly predicted peaks of sporangia, with only 1 of 40 peaks unpredicted. When evaluated for the negative prognosis of infection periods, the model showed a posterior probability for infection not to occur when not predicted P(P-O-) = 0.87 with only 9 of 108 real infections not predicted; these unpredicted infections were mild, accounting for only 4.4% of the total DM lesions observed in the vineyard. In conclusion, the model was able to identify periods in which the DM risk was nil or very low. It may, therefore, help growers avoid fungicide sprays when not needed and lengthen the interval between two sprays, i.e., it will help growers move from calendar-based to risk-based fungicide schedules for the control of P. viticola in vineyards.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
11
|
Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 2020; 241:126565. [DOI: 10.1016/j.micres.2020.126565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
|
12
|
Ciampi-Guillardi M, Ramiro J, Moraes MHDD, Barbieri MCG, Massola NS. Multiplex qPCR Assay for Direct Detection and Quantification of Colletotrichum truncatum, Corynespora cassiicola, and Sclerotinia sclerotiorum in Soybean Seeds. PLANT DISEASE 2020; 104:3002-3009. [PMID: 32822262 DOI: 10.1094/pdis-02-20-0231-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise diagnosis of plant diseases is one of the most effective tools to minimize yield losses. Colletotrichum truncatum, Corynespora cassiicola, and Sclerotinia sclerotiorum are common soilborne pathogens that affect soybeans all over the world. We developed a multiplex quantitative real-time polymerase chain reaction (qPCR) assay to simultaneously detect and quantify the three pathogens in soybean seeds and to survey their occurrence in the main soybean production areas in Brazil. Species-specific primers and probes for C. truncatum and C. cassiicola were designed based on GAPDH and TEF1 genes, respectively, to be combined with qPCR detection of S. sclerotiorum previously reported. The multiplex qPCR assay was successful in the simultaneous detection of C. truncatum, C. cassiicola, and S. sclerotiorum, along with a host internal control. The four pathogens were detected and quantified in artificially and naturally infested soybean seeds, even in the lowest incidence level tested of 0.0625% or 1 infected seed out of 1,599 healthy ones. From 81 seed samples tested, C. truncatum was the most frequently detected pathogen and with higher incidence levels (0.25 to 0.125%), followed by S. sclerotiorum and C. cassiicola, both with lower incidence levels (0.125 to 0.0625%). Together, the results evidenced the high sensitivity of the multiplex qPCR assay, indicating its usefulness for a quick and reliable diagnosis of soybean diseases in seeds.
Collapse
Affiliation(s)
- Maísa Ciampi-Guillardi
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| | - Juliana Ramiro
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| | | | | | - Nelson S Massola
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| |
Collapse
|
13
|
Li J, Philp J, Li J, Wei Y, Li H, Yang K, Ryder M, Toh R, Zhou Y, Denton MD, Hu J, Wang Y. Trichoderma harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community. Microorganisms 2020; 8:microorganisms8091325. [PMID: 32878079 PMCID: PMC7563613 DOI: 10.3390/microorganisms8091325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Clubroot is a disease of cruciferous crops that causes significant economic losses to vegetable production worldwide. We applied high-throughput amplicon sequencing technology to quantify the effect of Trichodermaharzianum LTR-2 inoculation on the rhizosphere community of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Jiaozhou) in a commercial production area. T. harzianum inoculation of cabbage reduced the incidence of clubroot disease by 45.4% (p < 0.05). The disease control efficacy (PDIDS) was 63%. This reduction in disease incidence and severity coincided with a drastic reduction in both the relative abundance of Plasmodiaphora brassicae, the causative pathogen of cabbage clubroot disease, and its copy number in rhizosphere soil. Pathogenic fungi Alternaria and Fusarium were also negatively associated with Trichoderma inoculation according to co-occurrence network analysis. Inoculation drastically reduced the relative abundance of the dominant bacterial genera Delftia and Pseudomonas, whilst increasing others including Bacillus. Our results demonstrate that T. harzianum LTR-2 is an effective biological control agent for cabbage clubroot, which acts through modulation of the soil and rhizosphere microbial community.
Collapse
Affiliation(s)
- Junhui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
| | - Joshua Philp
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
| | - Kai Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
| | - Maarten Ryder
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
| | - Ruey Toh
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
| | - Yi Zhou
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
| | - Matthew D. Denton
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.L.); (Y.W.); (H.L.); (K.Y.)
- China-Australia Joint Laboratory for Soil Ecological Health and Remediation, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (J.P.); (M.R.); (R.T.); (Y.Z.); (M.D.D.)
- Correspondence: (J.H.); (Y.W.)
| | - Yan Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (J.H.); (Y.W.)
| |
Collapse
|
14
|
Si Ammour M, Bove F, Toffolatti SL, Rossi V. A Real-Time PCR Assay for the Quantification of Plasmopara viticola Oospores in Grapevine Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:1202. [PMID: 32849746 PMCID: PMC7426466 DOI: 10.3389/fpls.2020.01202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 05/28/2023]
Abstract
Grapevine downy mildew caused by Plasmopara viticola is one of the most important diseases in vineyards. Oospores that overwinter in the leaf litter above the soil are the sole source of inoculum for primary infections of P. viticola; in addition to triggering the first infections in the season, the oospores in leaf litter also contribute to disease development during the season. In the current study, a quantitative polymerase chain reaction (qPCR) method that was previously developed to detect P. viticola DNA in fresh grapevine leaves was assessed for its ability to quantify P. viticola oospores in diseased, senescent grapevine leaves. The qPCR assay was specific to P. viticola and sensitive to decreasing amounts of both genomic DNA and numbers of P. viticola oospores used to generate qPCR standard curves. When the qPCR assay was compared to microscope counts of oospores in leaves with different levels of P. viticola infestation, a strong linear relationship (R2 = 0.70) was obtained between the numbers of P. viticola oospores per gram of leaves as determined by qPCR vs. microscopic observation. Unlike microscopic observation, the qPCR assay was able to detect significant differences between leaf samples with a low level of oospore infestation (25% infested leaves and 75% non-infested leaves) vs. samples without infestation, and this ability was not influenced by the weight of the leaf sample. The results indicate that the qPCR method is sensitive and provides reliable estimates of the number of P. viticola oospores in grapevine leaves. Additional research is needed to determine whether the qPCR method is useful for quantifying P. viticola oospores in grapevine leaf litter.
Collapse
Affiliation(s)
- Melissa Si Ammour
- Department of Sustainable Crop Production, DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federica Bove
- Department of Sustainable Crop Production, DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production, DI.PRO.VE.S., Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
15
|
Azospirillum brasilense viable cells enumeration using propidium monoazide-quantitative PCR. Arch Microbiol 2020; 202:1653-1662. [DOI: 10.1007/s00203-020-01877-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023]
|
16
|
Wen R, Lee J, Chu M, Tonu N, Dumonceaux T, Gossen BD, Yu F, Peng G. Quantification of Plasmodiophora brassicae Resting Spores in Soils Using Droplet Digital PCR (ddPCR). PLANT DISEASE 2020; 104:1188-1194. [PMID: 32065569 DOI: 10.1094/pdis-03-19-0584-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmodiophora brassicae, an obligate soilborne pathogen that causes clubroot on Brassica crops, is spreading rapidly in western Canada, threatening canola production in the region. Bioassays and molecular assays have been used to estimate the concentration of P. brassicae resting spores in soil, which can affect clubroot incidence and severity on crops. Droplet digital PCR (ddPCR) is a promising new approach for quantification of pathogen inoculum owing to its low sensitivity to inhibitors and consistency at low target concentrations. The objective of this study was to assess ddPCR against existing quantitative PCR (qPCR) for potential advantage and/or improvement in quantifying P. brassicae resting spores in soil. The new protocol enumerated resting spores accurately in spiked potting mix or soil samples ranging from 102 to 107 spores per gram. At a spore concentration ≥107 spores per gram, however, ddPCR became less accurate, with a tendency of overestimation. The protocol was validated by quantifying the resting spores in spiked brown, dark brown, and black soils using both ddPCR and qPCR simultaneously. These soil types are found commonly on the Canadian Prairies, and they vary in texture, pH, and organic content. ddPCR showed similar results among the different soil types, whereas qPCR often displayed lower counts for the same spore concentration, with the amplification of DNA inhibited completely in black soil samples. The inhibition can be removed by a 10-fold dilution of DNA samples. The results show that ddPCR can be a more versatile tool than qPCR for detection and quantification of P. brassicae resting spores in soil samples.
Collapse
Affiliation(s)
- Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Jillian Lee
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Mingguang Chu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Nazmoon Tonu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Tim Dumonceaux
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
17
|
Wang H, Turechek WW. Detection of Viable Xanthomonas fragariae Cells in Strawberry Using Propidium Monoazide and Long-Amplicon Quantitative PCR. PLANT DISEASE 2020; 104:1105-1112. [PMID: 32040389 DOI: 10.1094/pdis-10-19-2248-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xanthomonas fragariae causes angular leaf spot in strawberry. The pathogen's association with its host tissue is thought to be a condition for its survival. Consequently, transmission of the pathogen to field production sites occurs almost exclusively through the movement of contaminated planting stock. The aim of this study was to develop a propidium monoazide (PMA)-quantitative PCR (qPCR) protocol for specific detection of viable X. fragariae cells. The qPCR procedure was developed for two different primer pairs: one producing a long amplicon (863 bp) and the other a short amplicon (61 bp). Both pairs were tested on mixtures of viable and heat-killed bacteria cells, bacteria-spiked strawberry petiole samples, and petioles collected from symptomatic, inoculated plants. The results showed that long-amplicon PMA-qPCR enabled specific and sensitive detection of X. fragariae with a detection limit of 103 CFU/ml, and it significantly improved PMA efficiency in differentiating viable from dead bacterial cells relative to short-amplicon PMA-qPCR. Based on the delta threshold cycle (Ct) values (i.e., the difference in Ct values between PMA-treated and nontreated samples), the long-amplicon PMA-qPCR was able to suppress the detection of dead X. fragariae cells 1.9- to 3.1-fold across all petiole samples tested. The quantification results from PMA-qPCR for mixtures of viable and dead cells were highly correlated with the predicted bacterial concentrations in a linear relationship (R2 = 0.981). This assay can be useful for identifying inoculum sources in the strawberry production cycle, which may lead to improved disease management strategies.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Agricultural and Environmental Sciences, Clemson University, Blackville, SC
| | - William W Turechek
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| |
Collapse
|
18
|
Harding MW, Hill TB, Yang Y, Daniels GC, Hwang SF, Strelkov SE, Howard RJ, Feng J. An Improved Evans Blue Staining Method for Consistent, Accurate Assessment of Plasmodiophora brassicae Resting Spore Viability. PLANT DISEASE 2019; 103:2330-2336. [PMID: 31298992 DOI: 10.1094/pdis-05-18-0855-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is an important disease of brassica crops. The use of vital stains to determine the viability of P. brassicae resting spores can provide useful information regarding spore longevity, inoculum potential, or the efficacy of antimicrobial treatments. Evans blue is one example of a vital stain that has been reported to differentially stain viable and nonviable resting spores. Some previously published protocols using Evans blue to stain P. brassicae resting spores have not provided accurate or consistent results. In this study, we modified the Evans blue method by increasing the staining time to 8 h or more and evaluated P. brassicae resting spores after heat treatment at various combinations of temperature and time. Extending staining times significantly increased the numbers of stained resting spores up to 7 h, after which the numbers of stained spores did not change significantly (R2 = 96.88; P ≤ 0.001). The accuracy of the modified method to discriminate viable and nonviable spores was evaluated in repeated experiments and by comparing the staining data with those derived from inoculation assays and propidium monoazide quantitative PCR (qPCR). The results demonstrated that the modified Evans blue staining method improved the accuracy and consistency of measurement of P. brassicae resting spore viability. Additionally, it was equivalent to the qPCR method for differentiating viable and nonviable spores (R2 = 99.84; P ≤ 0.001) and confirmed in canola infection bioassays.
Collapse
Affiliation(s)
- M W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB T1R 1E6, Canada
| | - T B Hill
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB T1R 1E6, Canada
| | - Y Yang
- Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, AB T5Y 6H3, Canada
| | - G C Daniels
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB T1R 1E6, Canada
| | - S F Hwang
- Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, AB T5Y 6H3, Canada
| | - S E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - R J Howard
- RJH Ag Research Solutions Ltd., Brooks, AB T1R 1C3, Canada
| | - J Feng
- Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
19
|
Testen AL, Miller SA. Anaerobic Soil Disinfestation to Manage Soilborne Diseases in Muck Soil Vegetable Production Systems. PLANT DISEASE 2019; 103:1757-1762. [PMID: 31082319 DOI: 10.1094/pdis-09-18-1578-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anaerobic soil disinfestation (ASD) was evaluated as a tool for managing the root-knot nematode Meloidogyne hapla in lettuce (Lactuca sativa) and clubroot disease, caused by Plasmodiophora brassicae, in mustard greens (Brassica juncea) produced on Ohio muck soils in Huron and Stark Counties. In two consecutive years of field trials, wheat bran (20.2 Mg ha-1), molasses (10.1 Mg ha-1), and wheat bran (20.2 Mg ha-1) plus molasses (10.1 Mg ha-1) were assessed as ASD carbon sources and compared with nonamended controls. Data were collected from plants grown in the field and from plants grown in field-treated soils in growth chamber-based post-ASD bioassays. Anaerobic conditions developed in ASD-treated soils in both trial years, as indicated by polyvinyl chloride pipes painted with an iron oxide paint. Soil pH did not decrease during ASD at the Huron County site of the mustard greens clubroot trials in either trial year but soil pH decreased significantly during ASD in Stark County soils treated with ASD with either wheat bran or wheat bran plus molasses compared with control soils in both trial years. Impacts of ASD on plant biomass were inconsistent in direct field measurements; however, significantly higher biomasses were observed in lettuce and mustard greens grown in bioassay soils collected from plots treated with ASD with wheat bran-based amendments compared with plants grown in soils from control plots. Based on direct field measurements and bioassays, the use of ASD with any carbon source led to significant reductions in root-knot nematode galling on lettuce compared with controls. Reductions in clubroot severity in mustard greens following ASD were less consistent; however, significant reductions in clubroot severity were observed in the field in one trial year and in both years of bioassays. The results of these studies indicate that ASD is a promising tool for managing soilborne diseases in muck soil vegetable production systems.
Collapse
Affiliation(s)
- Anna L Testen
- Department of Plant Pathology, The Ohio State University Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|