1
|
Shi N, Qiu D, Chen F, Yang YQ, Du Y. Analysis of the Difenoconazole-Resistance Risk and Its Molecular Basis in Colletotrichum truncatum from Soybean. PLANT DISEASE 2023; 107:3123-3130. [PMID: 37172974 DOI: 10.1094/pdis-12-22-2983-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Anthracnose disease, caused by Colletotrichum truncatum, is a destructive fungal disease in soybean worldwide, and some demethylation inhibitor fungicides are used to manage it. In this study, the sensitivity of C. truncatum to difenoconazole was determined, and the risk for resistance development of C. truncatum to difenoconazole was also assessed. The results showed that the mean EC50 value was 0.9313 μg/ml, and the frequency of sensitivity formed a unimodal distribution. Six stable mutants with a mutation frequency of 8.33 × 10-5 were generated, and resistance factors ranged from 3.00 to 5.81 after 10 successive culture transfers. All mutants exhibited fitness penalties in reduced mycelial growth rate, sporulation, and pathogenicity, except for the Ct2-3-5 mutant. Positive cross-resistance was observed between difenoconazole and propiconazole but not between difenoconazole and prochloraz, pyraclostrobin, or fluazinam. One point mutation I463V in CYP51A was found in five resistant mutants. Surprisingly, the homologous I463V mutation has not been observed in other plant pathogens. CYP51A and CYP51B expression increased slightly in the resistant mutants as compared to wild-types when exposed to difenoconazole but not in the CtR61-2-3f and CtR61-2-4a mutants. In general, a new point mutation, I463V in CYP51A, could be associated with low resistance to difenoconazole in C. truncatum. In the greenhouse assay, control efficacy of difenoconazole on both parental isolates and the mutants increased in a dose-dependent manner. Collectively, the resistance risk of C. truncatum to difenoconazole is regarded to be low to moderate, suggesting that difenoconazole can still be reasonably used to control soybean anthracnose.
Collapse
Affiliation(s)
- Niuniu Shi
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| | - Dezhu Qiu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Furu Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| | - Ying-Qing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| |
Collapse
|
2
|
Peng K, Pan Y, Tan T, Zeng X, Lin M, Jiang S, Zhao Z, Tian F, Zhao X. Characterization and fungicide sensitivity of Colletotrichum godetiae causing sweet cherry fruit anthracnose in Guizhou, China. Front Microbiol 2022; 13:923181. [PMID: 36312935 PMCID: PMC9611538 DOI: 10.3389/fmicb.2022.923181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet cherry is an important fruit crop with high economic and ornamental value in China. However, cherry fruit anthracnose, caused by Colletotrichum species, greatly impacts cherry yield and quality. Here, we surveyed cherry anthracnose in Guizhou, China from 2019–2020. Necrotic sweet cherry fruits were collected from different areas in Guizhou and examined. A total of 116 Colletotrichum strains were isolated from these symptomatic fruits. Based on the morphological characteristics of the isolates and phylogenetic analyses of concatenate internal transcribed spacer (ITS) region and ACT, CHS-1, GAPDH, TUB2, and HIS3 genes, the pathogen responsible for causing sweet cherry anthracnose was identified as Colletotrichum godetiae. Pathogenicity tests were conducted by inoculating healthy sweet cherry fruits with spore suspensions of the fungal pathogen, and Koch’s postulates were confirmed by pathogen re-isolation and identification. The Q-1 isolate showed different sensitivities to 13 fungicides, exhibiting seven different modes of action, and its EC50 values ranged from 0.04 to 91.26 μg ml−1. According to that, the sensitivity of 20 isolates from different samples to ten fungicides with better performance, were measured. The results showed that 6 of the 10 fungicides (difenoconazole, propiconazole, prochloraz-manganese, pyraclostrobin, trifloxystrobin-tebuconazole, and difenoconazole-azoxystrobin) all showed higher sensitive to the 20\u00B0C. godetiae isolates, and no resistance groups appeared. Its EC50 values ranged from 0.013 to 1.563 μg ml−1. In summary, this is the first report demonstrating that C. godetiae causes sweet cherry anthracnose and the results of this study provide insights into how sweet cherry anthracnose could be effectively controlled in China.
Collapse
|
3
|
Du Y, Shi N, Ruan H, Miao J, Yan H, Shi C, Chen F, Liu X. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporus. PEST MANAGEMENT SCIENCE 2021; 77:4680-4690. [PMID: 34132039 DOI: 10.1002/ps.6509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wet bubble disease (WBD), caused by Mycogone rosea, is one of the most serious diseases of white button mushroom (Agaricus bisporus) in China. Prochloraz-Mn is the main fungicide used in the management of WBD. To provide essential references for early warning of prochloraz-Mn resistance and management of WBD, this study was performed to assess the resistance risk to prochloraz-Mn in M. rosea, as well as its underlying resistance mechanism. RESULTS Eight stable prochloraz-Mn-resistant mutants with a mutation frequency of 1.3 × 10-4 were generated and resistance factors ranged from 2.57 to 7.80 after 10 successive culture transfers. All eight resistant mutants exhibited fitness penalties in decreased sporulation and pathogenicity. Positive cross-resistance was observed between prochloraz-Mn and prochloraz or imazalil, but not between prochloraz-Mn and diniconazole, fenbuconazole, thiabendazole or picoxystrobin. The point mutation F511I in MrCYP51 protein was found in six mutants and the point mutation G464S occurred only in the SDW2-2-1M mutant. The up-regulated expression of MrCYP51 in all mutants was less than that in their parental isolates when exposed to prochloraz-Mn. Without prochloraz-Mn treatment, MrCYP51 expression was up-regulated in GX203-3-1M and FJ58-2-1M mutants, whereas it was down-regulated in other mutants compared to their respective parental isolates. CONCLUSION Genotypes with two separate point mutations, F511I and G464S in MrCYP51, may be associated with resistance to prochloraz-Mn in M. rosea. The resistance risk of M. rosea to prochloraz-Mn is likely to be low to moderate, indicating that prochloraz-Mn can still be used reasonably to control WBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Du
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Niuniu Shi
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Hongchun Ruan
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Jianqiang Miao
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
| | - He Yan
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Chunxi Shi
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Furu Chen
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Xili Liu
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| |
Collapse
|
4
|
Wang C, Yang J, Qin J, Yang Y. Eco-Friendly Nanoplatforms for Crop Quality Control, Protection, and Nutrition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004525. [PMID: 33977068 PMCID: PMC8097385 DOI: 10.1002/advs.202004525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Indexed: 05/27/2023]
Abstract
Agricultural chemicals have been widely utilized to manage pests, weeds, and plant pathogens for maximizing crop yields. However, the excessive use of these organic substances to compensate their instability in the environment has caused severe environmental consequences, threatened human health, and consumed enormous economic costs. In order to improve the utilization efficiency of these agricultural chemicals, one strategy that attracted researchers is to design novel eco-friendly nanoplatforms. To date, numerous advanced nanoplatforms with functional components have been applied in the agricultural field, such as silica-based materials for pesticides delivery, metal/metal oxide nanoparticles for pesticides/mycotoxins detection, and carbon nanoparticles for fertilizers delivery. In this review, the synthesis, applications, and mechanisms of recent eco-friendly nanoplatforms in the agricultural field, including pesticides and mycotoxins on-site detection, phytopathogen inactivation, pest control, and crops growth regulation for guaranteeing food security, enhancing the utilization efficiency of agricultural chemicals and increasing crop yields are highlighted. The review also stimulates new thinking for improving the existing agricultural technologies, protecting crops from biotic and abiotic stress, alleviating the global food crisis, and ensuring food security. In addition, the challenges to overcome the constrained applications of functional nanoplatforms in the agricultural field are also discussed.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jie Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jian‐Chun Qin
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|