1
|
Sagouti T, Rhallabi N, Polizzi G, Tahiri A, Belabess Z, Barka EA, Lahlali R. Comparison of Serological and Molecular Methods for Detection of Spiroplasma citri in Moroccan Citrus-Growing Areas. PLANTS (BASEL, SWITZERLAND) 2023; 12:667. [PMID: 36771751 PMCID: PMC9918891 DOI: 10.3390/plants12030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Spiroplasma citri, a helical motile, wall-less, and cultivable microorganism of the class Mollicutes, is the agent of the citrus stubborn disease. There is currently a lack of data about the presence of this pathogen in Moroccan citrus orchards. This study aims to validate serological and molecular methods for routine S. citri diagnosis in Moroccan citrus groves. To provide an update on the present status of the outbreak of the pathogen in Moroccan citrus orchards, a survey of S. citri was conducted in the main citrus-growing regions of Morocco. A total of 575 leaf samples were collected from citrus trees with symptoms attributable to S. citri infection. Samples were collected during 2020 and 2021 from 23 citrus orchards. The presence of S. citri was tested in all samples using the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Using this method, 57 samples were found to be infected with S. citri, 41 samples had doubtful results, and the remaining samples were negative. To corroborate the results of the DAS-ELISA test, 148 samples were chosen for additional molecular testing using conventional polymerase chain reaction (PCR) and real-time PCR (qPCR) based on specific primer pairs targeting three different genes (putative adhesion-like gene P58, putative adhesion gene P89, and spiralin gene). Using primers that target the putative adhesion-like gene P58, S. citri was detected by conventional and real-time PCR amplification from plant tissue with differing degrees of specificity. The results allowed us to determine the incidence of S. citri in all Moroccan citrus orchards, with a wide range of positive samples varying from 6.5% to 78%, and to show that molecular tests, particularly real-time PCR assays that target the putative adhesion-like gene P58, are the most sensitive for making an accurate diagnosis of S. citri. Indeed, the real-time PCR with P58-targeting primers yielded positive results from all positive and doubtful ELISA samples as well as some negative samples, with an OD value close to 1.5× times healthy samples, thus demonstrating a high sensibility of this technique.
Collapse
Affiliation(s)
- Tourya Sagouti
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco
| | - Naima Rhallabi
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP. 578, Meknes 50000, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| |
Collapse
|
2
|
Rattner RJ, Godfrey KE, Hajeri S, Yokomi RK. An Improved Recombinase Polymerase Amplification Coupled with Lateral Flow Assay for Rapid Field Detection of ' Candidatus Liberibacter asiaticus'. PLANT DISEASE 2022; 106:3091-3099. [PMID: 35596249 DOI: 10.1094/pdis-09-21-2098-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus disease that affects citrus production worldwide. 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium, is the associated causal agent of HLB. The current standard for detection of CLas is real-time quantitative polymerase chain reaction (qPCR) using either the CLas 16S rRNA gene or the ribonucleotide reductase (RNR) gene-specific primers/probe. qPCR requires well-equipped laboratories and trained personnel, which is not convenient for rapid field detection of CLas-infected trees. Recombinase polymerase amplification (RPA) assay is a fast, portable alternative to PCR-based diagnostic methods. In this study, an RPA assay was developed to detect CLas in crude citrus extracts utilizing isothermal amplification, without the need for DNA purification. Primers were designed to amplify a region of the CLas RNR gene, and a fluorescent labeled probe allowed for detection of the amplicon in real-time within 8 mins at 39°C. The assay was specific to CLas, and the sensitivity was comparable to qPCR, with a detection limit cycle threshold of 34. Additionally, the RPA assay was combined with a lateral flow device for a point-of-use assay that is field deployable. Both assays were 100% accurate in detecting CLas in fresh citrus crude extracts from leaf midribs and roots from five California strains of CLas tested in the Contained Research Facility in Davis, California. This assay will be important for distinguishing CLas-infected trees in California from those infected by other pathogens that cause similar disease symptoms and can help control HLB spread.
Collapse
Affiliation(s)
- Rachel J Rattner
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Kris E Godfrey
- Contained Research Facility, University of California at Davis, Davis, CA 95616
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, CA 93274
| | - Raymond K Yokomi
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
3
|
Sagouti T, Belabess Z, Rhallabi N, Barka EA, Tahiri A, Lahlali R. Citrus Stubborn Disease: Current Insights on an Enigmatic Problem Prevailing in Citrus Orchards. Microorganisms 2022; 10:183. [PMID: 35056632 PMCID: PMC8779666 DOI: 10.3390/microorganisms10010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Citrus stubborn was initially observed in California in 1915 and was later proven as a graft-transmissible disease in 1942. In the field, diseased citrus trees have compressed and stunted appearances, and yield poor-quality fruits with little market value. The disease is caused by Spiroplasma citri, a phloem-restricted pathogenic mollicute, which belongs to the Spiroplasmataceae family (Mollicutes). S. citri has the largest genome of any Mollicutes investigated, with a genome size of roughly 1780 Kbp. It is a helical, motile mollicute that lacks a cell wall and peptidoglycan. Several quick and sensitive molecular-based and immuno-enzymatic pathogen detection technologies are available. Infected weeds are the primary source of transmission to citrus, with only a minor percentage of transmission from infected citrus to citrus. Several phloem-feeding leafhopper species (Cicadellidae, Hemiptera) support the natural spread of S. citri in a persistent, propagative manner. S. citri-free buds are used in new orchard plantings and bud certification, and indexing initiatives have been launched. Further, a quarantine system for newly introduced types has been implemented to limit citrus stubborn disease (CSD). The present state of knowledge about CSD around the world is summarized in this overview, where recent advances in S. citri detection, characterization, control and eradication were highlighted to prevent or limit disease spread through the adoption of best practices.
Collapse
Affiliation(s)
- Tourya Sagouti
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco; (T.S.); (N.R.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Naima Rhallabi
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco; (T.S.); (N.R.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Meknes 50001, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Meknes 50001, Morocco;
| |
Collapse
|
4
|
Widmer TL, Costa JM. Impact of the United States Department of Agriculture, Agricultural Research Service on Plant Pathology: 2015-2020. PHYTOPATHOLOGY 2021; 111:1265-1276. [PMID: 33507089 DOI: 10.1094/phyto-09-20-0393-ia] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an increasing need to supply the world with more food as the population continues to grow. Research on mitigating the effects of plant diseases to improve crop yield and quality can help provide more food without increasing the land area devoted to farming. National Program 303 (NP 303) within the U.S. Department of Agriculture, Agricultural Research Service is dedicated to research across multiple fields in plant pathology. This review article highlights the research impact within NP 303 between 2015 and 2020, including case studies on wheat and citrus diseases and the National Plant Disease Recovery System, which provide specific examples of this impact.
Collapse
Affiliation(s)
- Timothy L Widmer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| | - José M Costa
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
5
|
Maheshwari Y, Selvaraj V, Godfrey K, Hajeri S, Yokomi R. Multiplex detection of "Candidatus Liberibacter asiaticus" and Spiroplasma citri by qPCR and droplet digital PCR. PLoS One 2021; 16:e0242392. [PMID: 33730040 PMCID: PMC7968697 DOI: 10.1371/journal.pone.0242392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) and Spiroplasma citri are phloem-limited bacteria that infect citrus and are transmitted by insect vectors. S. citri causes citrus stubborn disease (CSD) and is vectored by the beet leafhopper in California. CLas is associated with the devastating citrus disease, Huanglongbing (HLB), and is vectored by the Asian citrus psyllid. CLas is a regulatory pathogen spreading in citrus on residential properties in southern California and is an imminent threat to spread to commercial citrus plantings. CSD is endemic in California and has symptoms in citrus that can be easily confused with HLB. Therefore, the objective of this study was to develop a multiplex qPCR and duplex droplet digital PCR (ddPCR) assay for simultaneous detection of CLas and S. citri to be used where both pathogens can co-exist. The multiplex qPCR assay was designed to detect multicopy genes of CLas—RNR (5 copies) and S. citri–SPV1 ORF1 (13 copies), respectively, and citrus cytochrome oxidase (COX) as internal positive control. Absolute quantitation of these pathogens was achieved by duplex ddPCR as a supplement for marginal qPCR results. Duplex ddPCR allowed higher sensitivity than qPCR for detection of CLas and S. citri. ddPCR showed higher tolerance to inhibitors and yielded highly reproducible results. The multiplex qPCR assay has the benefit of testing both pathogens at reduced cost and can serve to augment the official regulatory protocol for CLas detection in California. Moreover, the ddPCR provided unambiguous absolute detection of CLas and S. citri at very low concentrations without any standards for pathogen titer.
Collapse
Affiliation(s)
- Yogita Maheshwari
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
| | - Vijayanandraj Selvaraj
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
- * E-mail: (RY); (VS)
| | - Kristine Godfrey
- Contained Research Facility, University of California, Davis, Davis, California, United States of America
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, California, United States of America
| | - Raymond Yokomi
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, California, United States of America
- * E-mail: (RY); (VS)
| |
Collapse
|
6
|
Yokomi R, Rattner R, Osman F, Maheshwari Y, Selvaraj V, Pagliaccia D, Chen J, Vidalakis G. Whole genome sequence of five strains of Spiroplasma citri isolated from different host plants and its leafhopper vector. BMC Res Notes 2020; 13:320. [PMID: 32620150 PMCID: PMC7333264 DOI: 10.1186/s13104-020-05160-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/27/2020] [Indexed: 11/12/2022] Open
Abstract
Objectives Spiroplasma citri is a bacterium with a wide host range and is the causal agent of citrus stubborn and brittle root diseases of citrus and horseradish, respectively. S. citri is transmitted in a circulative, persistent manner by the beet leafhopper, Neoaliturus (Circulifer) tenellus (Baker), in North America. Five strains of S. citri were cultured from citrus, horseradish, and N. tenellus from different habitats and times. DNA from cultures were sequenced and genome assembled to expand the database to improve detection assays and better understand its genetics and evolution. Data description The whole genome sequence of five strains of S. citri are described herein. The S. citri chromosome was circularized for all five strains and ranged from 1,576,550 to 1,742,208 bp with a G + C content of 25.4–25.6%. Characterization of extrachromosomal DNAs resulted in identification of one or two plasmids, with a G + C content of 23.3 to 27.6%, from plant hosts; and eight or nine plasmids, with a G + C content of 21.65 to 29.19%, from N. tenellus. Total genome size ranged from 1,611,714 to 1,832,173 bp from plants and 1,968,976 to 2,155,613 bp from the leafhopper. All sequence data has been deposited in DDBJ/ENA/GenBank under the accession numbers CP046368-CP046373 and CP047426-CP047446.
Collapse
Affiliation(s)
- Raymond Yokomi
- United States Department of Agriculture -Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA.
| | - Rachel Rattner
- United States Department of Agriculture -Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Yogita Maheshwari
- United States Department of Agriculture -Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Vijayanandraj Selvaraj
- United States Department of Agriculture -Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Deborah Pagliaccia
- Department of Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Jianchi Chen
- United States Department of Agriculture -Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Maheshwari Y, Selvaraj V, Hajeri S, Yokomi R. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR. PLoS One 2017; 12:e0184751. [PMID: 28910375 PMCID: PMC5599046 DOI: 10.1371/journal.pone.0184751] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022] Open
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD) in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative) PCR (qPCR) for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.
Collapse
Affiliation(s)
- Yogita Maheshwari
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| | - Vijayanandraj Selvaraj
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, CA, United States of America
| | - Raymond Yokomi
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| |
Collapse
|
8
|
Zheng Z, Xu M, Bao M, Wu F, Chen J, Deng X. Unusual Five Copies and Dual Forms of nrdB in "Candidatus Liberibacter asiaticus": Biological Implications and PCR Detection Application. Sci Rep 2016; 6:39020. [PMID: 27958354 PMCID: PMC5154197 DOI: 10.1038/srep39020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas), a non-culturable α-proteobacterium, is associated with citrus Huanglongbing (HLB, yellow shoot disease) currently threatening citrus production worldwide. Here, the whole genome sequence of CLas strain A4 from Guangdong of China was analyzed. Five copies of nrdB, encoding β-subunit of ribonucleotide reductase (RNR), a critical enzyme involving bacterial proliferation, were found. Three nrdB copies were in long form (nrdBL, 1,059 bp) and two were in short form (nrdBS, 378 bp). nrdBS shared >99% identity to 3' end of nrdBL and had no active site. Sequences of CLas nrdB genes formed a distinct monophyletic lineage among eubacteria. To make use of the high copy number feature, a nrdB-based primer set RNRf/RNRr was designed and evaluated using real-time PCR with 262 HLB samples collected from China and USA. Compared to the current standard primer set HLBas/HLBr derived from the 16S rRNA gene, RNRf/RNRr had Ct value reductions of 1.68 (SYBR Green PCR) and 1.77 (TaqMan PCR), thus increasing the detection sensitivity three-fold. Meanwhile, RNRf/RNRr was more than twice the stability of primer set LJ900f/LJ900r derived from multi-copy prophage. The nrdB-based PCR thereby provides a sensitive and reliable CLas detection with broad application, especially for the early diagnosis of HLB.
Collapse
Affiliation(s)
- Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Minli Bao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Fengnian Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| |
Collapse
|