1
|
Ye L, Kuang W, Zhang L, Lin Y, Zhang Y, Sun X, Cui R. Functional Characterization of the Histone Acetyltransferase FcElp3 in Lotus Rhizome Rot-Causing Fungus Fusarium commune. PHYTOPATHOLOGY 2024; 114:2300-2309. [PMID: 39007807 DOI: 10.1094/phyto-01-24-0017-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fusarium commune is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in F. commune homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of F. commune to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the ΔFcElp3 strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the ΔFcElp3 mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor Fcap1 involved in the oxidative stress response. Pathogenicity tests revealed that the ΔFcElp3 mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that FcElp3 was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.
Collapse
Affiliation(s)
- Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
2
|
Wang S, Chen K, Guo J, Zhang P, Li Y, Xu Z, Cui L, Qiang Y. Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. PLANTS (BASEL, SWITZERLAND) 2024; 13:2236. [PMID: 39204672 PMCID: PMC11360731 DOI: 10.3390/plants13162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Fritillaria taipaiensis P. Y. Li (F. taipaiensis) is a traditional Chinese herbal medicine that has been used for over two millennia to treat cough and expectoration. However, the increasing cultivation of F. taipaiensis has led to the spread of bulb rot diseases. In this study, pathogens were isolated from rotten F. taipaiensis bulbs. Through molecular identification, pathogenicity testing, morphological assessment, and microscopy, Fusarium solani was identified as the pathogen causing bulb rot in F. taipaiensis. The colonization of F. solani in the bulbs was investigated through microscopic observation. The rapid and accurate detection of this pathogen will contribute to better disease monitoring and control. Loop-mediated isothermal amplification (LAMP) and qPCR methods were established to quickly and specifically identify this pathogen. These results provide valuable insights for further research on the prediction, rapid detection, and effective prevention and control of bulb rot in F. taipaiensis.
Collapse
Affiliation(s)
- Shijie Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China;
| | - Jiaqi Guo
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Panwang Zhang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yuchen Li
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhenghao Xu
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yi Qiang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
3
|
Kuang W, Zhang L, Ye L, Ma J, Shi X, Lin Y, Sun X, Cui R. Genome and Transcriptome Sequencing Analysis of Fusarium commune Provides Insights into the Pathogenic Mechanisms of the Lotus Rhizome Rot. Microbiol Spectr 2022; 10:e0017522. [PMID: 35867414 PMCID: PMC9431280 DOI: 10.1128/spectrum.00175-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022] Open
Abstract
Fusarium wilt, a vascular wilt caused by F. commune, has been a serious problem for the lotus. Although some F. commune isolate genomes have been sequenced, little is known about the genomic information of the strain that causes Fusarium wilt of aquatic plants. In this study, the genome of F. commune FCN23 isolated from lotuses in China was sequenced using Illumina and PacBio sequencing platforms. The FCN23 genome consisted of 53 scaffolds with a combined size of 46,211,149 bp. According to the reference genome, F. oxysporum f. sp. lycopersici 4287 isolated from tomato, it was finally assembled into 14 putative chromosomes, including 10 core and 4 lineage-specific chromosomes. The genome contains about 3.45% repeats and encodes 14,698 putative protein-coding genes. Among these, 1,038 and 296 proteins were potentially secreted proteins and candidate effector proteins, respectively. Comparative genomic analysis showed that the CAZyme-coding genes and secondary metabolite biosynthesis genes of FCN23 were similar to those of other Ascomycetes. Additionally, the transcriptome of FCN23 during infection of lotus was analyzed and 7,013 differentially expressed genes were identified. Eight putative effectors that were upregulated in the infection stage were cloned. Among them, F23a002499 exhibited strong hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. Our results provide a valuable genetic basis for understanding the molecular mechanism of the interaction between F. commune and aquatic plants. IMPORTANCE Fusarium commune is an important soilborne pathogen with a wide range of hosts and can cause Fusarium wilt of land plants. However, there are few studies on Fusarium wilt of aquatic plants. Lotus rhizome rot mainly caused by F. commune is a devastating disease that causes extensive yield and quality losses in China. Here, we obtained high-quality genomic information of the FCN23 using Illumina NovaSeq and the third-generation sequencing technology PacBio Sequel II. Compared to the reference genome F. oxysporum f. sp. lycopersici strain 4287, it contains 11 core and 3 lineage-specific chromosomes. Many differentially expressed genes associated with pathogenicity were identified by RNA sequencing. The genome and transcriptome sequences of FCN23 will provide important genomic information and insights into the infection mechanisms of F. commune on aquatic plants.
Collapse
Affiliation(s)
- Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
He Y, Chen J, Tang C, Deng Q, Guo L, Cheng Y, Li Z, Wang T, Xu J, Gao C. Genetic Diversity and Population Structure of Fusarium commune Causing Strawberry Root Rot in Southcentral China. Genes (Basel) 2022; 13:genes13050899. [PMID: 35627284 PMCID: PMC9140712 DOI: 10.3390/genes13050899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Strawberry plants and fruits are vulnerable to infections by a broad range of pathogens and pests. However, knowledge about the epidemiology of pathogens causing strawberry diseases is limited. In this study, we analyzed Fusarium commune, a major fungal pathogen causing strawberry root rot, from diseased strawberry root tissues in southcentral China. A total of 354 isolates were obtained from 11 locations that spanned about 700 km from both south to north and east to west. Multilocus genotypes of all isolates were obtained using seven polymorphic simple sequence repeat markers developed in this study. Our analyses revealed significant genetic diversity within each of the 11 local populations of F. commune. STRUCTURE analysis revealed that the optimal number of genetic populations for the 354 strains was two, with most local geographic populations containing isolates in both genetic clusters. Interestingly, many isolates showed allelic ancestry to both genetic clusters, consistent with recent hybridization between the two genetic clusters. In addition, though alleles and genotypes were frequently shared among local populations, statistically significant genetic differentiations were found among the local populations. However, the observed F. commune population genetic distances were not correlated with geographic distances. Together, our analyses suggest that populations of F. commune causing strawberry root rot are likely endemic to southcentral China, with each local population containing shared and unique genetic elements. Though the observed gene flow among geographic regions was relatively low, human activities will likely accelerate pathogen dispersals, resulting in the generation of new genotypes through mating and recombination.
Collapse
Affiliation(s)
- Yunlu He
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chao Tang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qiao Deng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
5
|
Pang Z, Mao X, Xia Y, Xiao J, Wang X, Xu P, Liu G. Multiomics Reveals the Effect of Root Rot on Polygonati Rhizome and Identifies Pathogens and Biocontrol Strain. Microbiol Spectr 2022; 10:e0238521. [PMID: 35225655 PMCID: PMC9045327 DOI: 10.1128/spectrum.02385-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 01/19/2023] Open
Abstract
Root (rhizome) rot of Polygonatum plants has received substantial attention because it threatens yield and sustainable utilization in the polygonati rhizome industry. However, the potential pathogens that cause rhizome rot as well as the direct and indirect (via root-associated microbes) strategies by which Polygonatum defends against pathogens remain largely unknown. Herein, we used integrated multiomics of plant-targeted metabolomics and transcriptomics, microbiome, and culture-based methods to systematically investigate the interactions between the Polygonatum cyrtonema Hua root-associated microbiota and pathogens. We found that root rot inhibited P. cyrtonema rhizome growth and that the fresh weight significantly decreased (P < 0.001). The transcriptomic and metabonomic results showed that the expression of differentially expressed genes (DEGs) related to specialized metabolic and systemic resistance pathways, such as glycolysis/gluconeogenesis and flavonoid biosynthesis, cycloartenol synthase activity (related to saponin synthesis), mitogen-activated protein kinase (MAPK) signaling, and plant hormone signal transduction, was particularly increased in diseased rhizomes. Consistently, the contents of lactose, d-fructose, sarsasapogenin, asperulosidic acid, botulin, myricadoil, and other saponins, which are functional medicinal compounds present in P. cyrtonema rhizomes, were also increased in diseased plants infected with rhizome rot. The microbiome sequencing and culture results showed that root rot disrupted the P. cyrtonema bacterial and fungal communities and reduced the microbial diversity in the rhizomes and rhizosphere soil. We further found that a clear enrichment of Streptomyces violascens XTBG45 (HJB-XTBG45) in the healthy rhizosphere could control the root rot caused by Fusarium oxysporum and Colletotrichum spaethianum. Taken together, our results indicate that P. cyrtonema can modulate the plant immune system and metabolic processes and enrich beneficial root microbiota to defend against pathogens. IMPORTANCE Root (rhizome or tuber) reproduction is the main method for the agricultural cultivation of many important cash crops, and infected crop plants rot, exhibit retarded growth, and experience yield losses. While many studies have investigated medicinal plants and their functional medicinal compounds, the occurrence of root (rhizome) rot of plant and soil microbiota has received little attention. Therefore, we used integrated multiomics and culture-based methods to systematically study rhizome rot on the famous Chinese medicine Polygonatum cyrtonema and identify pathogens and beneficial microbiota of rhizome rot. Rhizome rot disrupted the Polygonatum-associated microbiota and reduced microbial diversity, and rhizome transcription and metabolic processes significantly changed. Our work provides evidence that rhizome rot not only changes rhizome transcription and functional metabolite contents but also impacts the microbial community diversity, assembly, and function of the rhizome and rhizosphere. This study provides a new friendly strategy for medicinal plant breeding and agricultural utilization.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, China
| | - Xinyu Mao
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Xia
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Jinxian Xiao
- School of Biological and Chemical Science, Pu’er University, Puer, China
| | - Xiaoning Wang
- Key Laboratory for Crop Breeding of Hainan Province, Haikou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Peng Xu
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, China
| | - Guizhou Liu
- Crops Conservation and Breeding Base, CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|